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Introduction Problem

Constrained multi-objective optimization problem

• Given

o X ⊂ Rd → search space
o f = (fj)1≤j≤p → objective functions (to be minimized)
o c = (ci)1≤i≤q → constraint functions

• Build an approximation of the set of feasible and non-dominated
solutions:

Γ = {x ∈ X : c(x) ≤ 0 and ∄x′ ∈ X s.t. c(x′) ≤ 0 and f(x′) ≺ f(x)}

• Objectives and constraints computed using numerical simulations
(e.g., fluid dynamics, structural analysis. . . ): black-box
optimization with expensive-to-evaluate functions.
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Introduction Problem

Practical considerations

• For very expensive numerical simulations,

→ approximating the entire Pareto front is too expensive,

→ not all objectives are equally worth improving.

• Computational effort should focus on preferred regions of the
Pareto front1.

1See, e.g., Li et al. [2016]
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Introduction Motivating examples

Motivating example (1/2)

• Optimization of an aircraft mission: efficiency on cruise is more
interesting than that at other engine regimes → preference for
one objective
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Figure: Typical aircraft mission diagram with associated CO2 emission
share.
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Introduction Motivating examples

Motivating example (2/2)

• Improve upon a reference design → preference for a given region
of the Pareto front.
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Figure: Efficiency trade-off compared to a reference design.
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Proposed approach Bayesian optimization framework

Statistical model

• Classical Bayesian optimization setting2: f modeled using a
stationary Gaussian process model ξ.
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Figure: Sample paths of ξ under a Gaussian process prior distribution
(left). Sample paths of ξ when four observations have been made (right)

2see, e.g., Santner et al. [2003], Williams and Rasmussen [2006]
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Proposed approach Bayesian optimization framework

Bayesian optimization strategy

• Define

o X : (X1, X2, . . .) → optimization strategy

o εn → loss at time n ≥ 1

• One-step look-ahead optimal choice at time n:

Xn+1 = argmax
x∈X

ρn(x),

where
ρn(x) = E

(

εn − εn+1|Xn+1 = x
)

, x ∈ X

• ρn is called the EI (expected improvement) sampling criterion3.

3See, e.g., Mockus et al. [1978], Jones et al. [1998]
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Proposed approach Bayesian optimization framework

Illustration: unconstrained single-objective

• Loss function:
εn = mn −m

where
{

m = min
X

f,

mn = min (f(X1), . . . , f(Xn)), n ≥ 0.
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Figure: Bayesian optimization with the EI criterion
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Proposed approach Bayesian optimization framework

Unconstrained multi-objective setting

• Define:










B = {y ∈ Rp; y ≤ yupp} , yupp ∈ Rp

H = {y ∈ B; ∃x ∈ X, f(x) ≺ y}

Hn = {y ∈ B; ∃i ≤ n, f(Xi) ≺ y}

• Loss function:

εn = |H \Hn| = |H| − |Hn|
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Figure: Hypervolume
improvement yielded by the
observation of y5
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Proposed approach Bayesian optimization framework

EHVI (expected hypervolume improvement)

• The EHVI sampling criterion4 takes the form of an integral over
the non-dominated subset of the objectives space:

ρn(x) =

∫

B\Hn

Pn (ξ(x) ≺ y) dy , x ∈ X.

4See Emmerich [2005], Emmerich et al. [2006],
Emmerich and Klinkenberg [2008], Bader and Zitzler [2011], Hupkens et al. [2014],
Couckuyt et al. [2014]
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Proposed approach Expected weighted hypervolume improvement

Weighted hypervolume5 loss function

• The EHVI corresponds to using the Lebesgue measure of the
non-dominated subset

• Our proposal:
εn = µ(H)− µ(Hn),

where µ is a positive measure defined by

dµ = ωdy,

for some weight function

ω : Rp 7→ R+.

5Zitzler et al. [2007], Friedrich et al. [2013], Emmerich et al. [2014]
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Proposed approach Expected weighted hypervolume improvement

EWHI (Expected weighted hypervolume improvement)

• The new criterion can be written as

ρn(x) = E
(

εn − εn+1|Xn+1 = x
)

,

= En

(

µ(Hn ∪ {y ∈ Rp; ξ(x) ≺ y})− µ(Hn)
)

,

= En

(

∫

Hc
n

ω(y) · 1ξ(x)≺y dy

)

,

=

∫

Hc
n

ω(y) · Pn (ξ(x) ≺ y) dy , x ∈ X.

• EHVI is recovered by taking ω = 1B.
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Proposed approach Expected weighted hypervolume improvement

Computation of the criterion

ρn(x) =

∫

Hc
n

ω(y) · Pn (ξ(x) ≺ y) dy , x ∈ X.

• No closed form expression of the integral is known in the general
case

• Our proposal: sequential Monte-Carlo6 approximation

6See,e.g., Del Moral et al. [2006], Liu [2001]
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Numerical experiments Bi-objective test problem

Bi-objective test problem from Chafekar et al. [2003]






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






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

(x1, x2) ∈ [0, 5]× [0, 3] ,

f1(x1, x2) = 4x2

1 + 4x2

2 ,

f2(x1, x2) = (x1 − 5)2 + (x2 − 5)2 ,

c1(x1, x2) = (x1 − 5)2 + x2

2 − 25 ,

c1(x1, x2) = 7.7− (x1 − 8)2 − (x2 + 3)2 ,
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Figure: Pareto front for the BNH problem. In gray the feasible region.
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Numerical experiments Examples of weight functions

Examples of weight functions

• Define weight functions7 w1, w2 on R2:















ω1(y) =
1

15
e−

y1

15 ·
1[0,150](y1)

150
·
1[0,60](y2)

60
,

ω2(y) =
1

2

(

ϕ (y, µ1, C) + ϕ (y, µ2, C)
)

,

where ϕ(y, µ, C) denotes the Gaussian pdf with mean µ and
covariance matrix C, evaluated at y.

• Weight function ω1 encodes preference for the first objective.

• Weight function ω2 encodes preference for regions centered on µ1

and µ2

7Zitzler et al. [2007], Auger et al. [2009a]
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Numerical experiments Examples of weight functions

Results obtained using the EHVI criterion
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Figure: Results obtained using the EHVI criterion
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Numerical experiments Examples of weight functions

Preference for one objective
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Figure: Results obtained using the EWHI criterion with an exponential
weight function
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Numerical experiments Examples of weight functions

Preference for given regions
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Figure: Results obtained using the EWHI criterion with a Gaussian weight
function
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Conclusions

Summary of contributions & perspectives

• New EI sampling criterion called EWHI criterion.

• A generalization of the EHVI criterion.

• Makes it possible to encode preference on objectives or regions of
the Pareto front8.

• Crafting of weight functions should be further investigated:

→ Approaches based on desirability functions9 are promising.

→ Theoretical results from Auger et al. [2009b] provide insights as
well.

8See also the truncated EHVI criterion of Yang et al. [2016a,b]
9Wagner and Trautmann [2010], Emmerich et al. [2014]
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