
HAL Id: hal-03114574
https://centralesupelec.hal.science/hal-03114574v1

Submitted on 19 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A relaxed Lyapunov-Krasovskii condition for global
exponential stability of Lipschitz time-delay systems

Antoine Chaillet, Jakub Orlowski, Pierdomenico Pepe

To cite this version:
Antoine Chaillet, Jakub Orlowski, Pierdomenico Pepe. A relaxed Lyapunov-Krasovskii condition for
global exponential stability of Lipschitz time-delay systems. 58th IEEE Conference on Decision and
Control (CDC 2019), Dec 2019, Nice, France. �10.1109/cdc40024.2019.9030092�. �hal-03114574�

https://centralesupelec.hal.science/hal-03114574v1
https://hal.archives-ouvertes.fr


A relaxed Lyapunov-Krasovskii condition for global exponential
stability of Lipschitz time-delay systems

Antoine Chaillet, Jakub Orłowski, and Pierdomenico Pepe

Abstract— For nonlinear time-delay systems with globally
Lipschitz vector fields, we propose a relaxed sufficient condition
for global exponential stability (GES), in which the dissipation
rate of the Lyapunov-Krasovskii functional is not needed to
involve the functional itself, but merely the point-wise current
value of the solution. Our proof technique consists in explicitly
constructing a Lyapunov-Krasovskii functional that satisfies
existing criteria for GES. Consequences for robustness to
exogenous inputs are briefly evoked and an example taken from
neuroscience literature illustrates the applicability of the result.

I. INTRODUCTION

A powerful tool to study the stability of nonlinear time-
delay systems is the Lyapunov-Krasovkii approach. This
method requires to find a proper functional that decreases
along the solutions of the system [10], [5], [8], [14]. The
key difference with the Lyapunov approach for delay-free
systems is that the object of study is no longer a function,
but rather a functional (as its argument is the whole state
history over a bounded time interval).

In order to ensure asymptotic stability, the Lyapunov-
Krasovskii approach requires that the derivative of the func-
tional V dissipates in a point-wise manner, in the sense that
its derivative along solutions needs to be negative as long as
x(t) 6= 0. This light requirement turns out to be very handy in
practice. However, when it comes to exponential stability, the
only existing results require a dissipation rate that involves
the whole functional itself (of the form V̇ ≤ −εV , see [10],
[18], [22]): we call this a strict dissipation. In a delay free
context, strict and point-wise dissipations are the same, as the
Lyapunov function is upper and lower bounded by the state
norm. However, for time-delay systems, these two bounds
often differ (the lower bound involves the point-wise value
of the solution’s norm, whereas the upper bound involves the
supremum norm of the state history).

The question of what stability properties can be guaranteed
with a point-wise dissipation was already the subject of [3]
and [2] for input-to-state stability properties and some ques-
tions remain open in that respect. Here, we address systems
without input and show that a point-wise dissipation is indeed
enough to show global exponential stability for systems with
globally Lipschitz dynamics. Our proof is constructive: based
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on a functional with point-wise dissipation, we explicitly
construct a functional that dissipates in terms of the whole
state history norm. For globally Lipschitz dynamics, we show
that point-wise, strict, and history-wise dissipations are the
same from the point of view of global exponential stability.

We briefly describe how this result can be used to study
robustness to exogenous inputs. We also illustrate its appli-
cability with an example taken from neuroscience literature.

II. PROBLEM STATEMENT

We consider nonlinear time-delay systems of the form:

ẋ(t) = f(xt). (1)

The state xt is defined as xt(s) := x(t+s) for all s ∈ [−δ; 0],
where δ ≥ 0 denotes the maximum delay of the system. For
each t ≥ 0, xt ∈ Cn where C := C([−δ; 0],R), the set
of continuous functions from [−δ; 0] to R. The vector field
f : Cn → Rn is assumed to be Lipschitz on bounded sets (it
will actually be assumed globally Lipschitz in most of the
paper, but the introductory results below do not require this)
and to satisfy f(0) = 0.

We make use of two different norms. Given a vec-
tor z ∈ Rn, |z| denotes its Euclidean norm, namely:
|z| :=

√∑n
i=1 z

2
i . Given a function φ ∈ Cn, ‖φ‖ :=

maxs∈[−δ;0] |φ(s)|. We will also make use of comparison
functions: α : R≥0 → R≥0 is of class K if it is zero at
zero, continuous, and increasing; α ∈ K∞ if α ∈ K and it is
unbounded; β ∈ KL if, for each t ≥ 0, β(·, t) ∈ K and, for
each s ≥ 0, β(s, ·) is continuous, non-increasing, and tends
to zero as its argument tends to infinity.

A sufficient condition for global asymptotic stability of
(1) dates back to the fifties [10]. It makes use of Lyapunov-
Krasovskii functionals (LKF), which have become a classical
tool for the stability analysis of time-delay systems. It states
that, if there exist a functional V : Cn → R≥0 and K∞
functions α, α, and α such that, for all φ ∈ Cn,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖)
D+

(1)V (φ) ≤ −α(|φ(0)|),

then the origin of (1) is globally asymptotically stable. In
this result, formally stated in e.g. [5, Theorem 2.1, p. 105],
D+

(1)V denotes the upper-right Dini derivative of V along the
solutions of (1), namely:

D+
(1)V (φ) := lim sup

h→0+

V (xh(φ))− V (φ)

h
.

Several aspects are worth noticing. First, the upper and lower
bounds on the LKF V differ: the upper bound involves the



whole norm ‖φ‖ of the state history whereas the lower
bound involves solely the current value of the solution’s
norm |φ(0)|. Using the terminology of e.g. [12], V does
not need to be coercive (which would require a lower bound
involving the whole ‖φ‖). This turns out to be useful in
some applications. More crucially, the Dini derivative of V is
required to dissipate only in terms of the current value of the
solution’s norm, rather than the LKF itself. This key property,
which we name “point-wise dissipation”, often simplifies the
analysis, as will be illustrated in Section V. A particular form
of global asymptotic stability is the following.

Definition 1 (GES) The origin of system (1) is globally
exponentially stable (GES) if there exists η, γ > 0 such that,
for each x0 ∈ Cn, its solution satisfies

|x(t;x0)| ≤ η‖x0‖e−γt, ∀t ≥ 0.

GES is a powerful stability property, as it ensures both an
exponential decay to the origin and a transient overshoot
proportional to the initial state norm ‖x0‖. Moreover, under
regularity conditions on the vector field, this property is
known to ensure robustness to exogenous disturbances in
an input-to-state stability (ISS) sense [22].

LKF characterizations of exponential stability also exist
for a long time. Nevertheless, quite surprisingly, none of
them allow for a point-wise dissipation rate. In order to make
this more precise, we introduce the following terminology.

Definition 2 (GES LKF) Let V : Cn → R≥0 be a func-
tional, Lipschitz on bounded sets of Cn, for which there exist
k, k > 0 such that, for all φ ∈ Cn,

k|φ(0)|2 ≤ V (φ) ≤ k‖φ‖2.

Then V is said to be:
• a GES LKF with history-wise dissipation for (1) if there

exists k > 0 such that

D+
(1)V (φ) ≤ −k‖φ‖2, ∀φ ∈ Cn,

• a strict GES LKF for (1) if there exists k > 0 such that

D+
(1)V (φ) ≤ −kV (φ), ∀φ ∈ Cn,

• a GES LKF with point-wise dissipation for (1) if there
exists k > 0 such that

D+
(1)V (φ) ≤ −k|φ(0)|2, ∀φ ∈ Cn.

These three types of GES LKF thus differ only in the
way they dissipate along the solutions of (1). Clearly, any
GES LKF with history-wise dissipation is a strict GES LKF,
which is also a GES LKF with point-wise dissipation.

The fact that GES can be established with a strict LKF
(hence, with an LFK with history-wise dissipation) is known
[10], [18], [22]. However, obtaining a strict LKF on practical
examples usually requires some tricks. For instance, for an
LKF that involves only the sum of terms of the form |φi(0)|2
and

∫ 0

−δ |φi(s)|
2ds (as is often the case), we can add a

term in the kernel of the integral (e.g. exponential) to get
a dissipation involving the whole LKF [17], [7], [11].

Still, these tricks are not guaranteed to work with any LKF.
Moreover, the use of GES LKF with point-wise dissipation
would be much handier in practice and would homogenize
GES theory with that for global asymptotic stability. Our
main result establishes that these three notions of LKF
are actually equivalent for systems defined by a globally
Lipschitz vector field and ensure global exponential stability.

III. MAIN RESULT

Our main result, proved in Section IV, is the following.

Theorem 1 (GES characterizations) Let f : Cn → Rn be
globally Lipschitz and satisfy f(0) = 0. Then the following
statements are equivalent:

i) (1) admits a GES LKF with history-wise dissipation
ii) (1) admits a strict GES LKF

iii) (1) admits a GES LKF with point-wise dissipation
iv) the origin of (1) is GES.

For globally Lipschitz systems, point-wise dissipation is
thus sufficient to establish GES and the existence of a
strict GES LKF, and even a GES LKF with history-wise
dissipation, then come for free.

The above result can prove useful when studying robust-
ness to exogenous disturbances. For this, the main tool is
ISS, which was originally introduced for delay-free systems
[19] and then extended to time-delay systems [21], [17], [9].
It concerns systems of the form:

ẋ(t) = f(xt, u(t)), (2)

where f : Cn ×Rm → Rn is Lipschitz on bounded sets and
satisfies f(0, 0) = 0. The input u is assumed to be in Um,
the set of signals u : R≥0 → Rm that are measurable and
locally bounded. We recall the definition of ISS below.

Definition 3 (ISS) The system (2) is input-to-state stable
(ISS) if there exist β ∈ KL and µ ∈ K∞ such that, for
any x0 ∈ Cn and any u ∈ Um, its solution satisfies

|x(t;x0, u)| ≤ β(‖x0‖, t) + µ

(
sup
s∈[0;t]

|u(s)|

)
, ∀t ≥ 0.

We refer the reader to the survey [20] for more information
about ISS. It was shown in [22] that GES guarantees ISS
under some regularity assumptions on f . Thus, the following
is a direct consequence of Theorem 1.

Corollary 1 (GES & ISS) Assume the input-free system
ẋ(t) = f(xt, 0) admits a GES LKF with point-wise dissi-
pation. Assume further that f( · , 0) is globally Lispchitz and
that there exists c > 0 and q ∈ [0; 1) such that, for all φ ∈ Cn
and all v ∈ Rm,

|f(φ, v)− f(φ, 0)| ≤ c max{‖φ‖q; 1}|v|. (3)

Then system (2) is ISS.



Proof: By Theorem 1, the origin of the input-free
system ẋ(t) = f(xt, 0) is GES. ISS of (2) then follows from
[22, Theorem 3.2].

The regularity assumption (3) is fulfilled in particular if f
is globally Lipschitz in both its arguments (in which case
q = 0). This corollary slightly complements [3], which
investigates whether a point-wise dissipation is enough to
guarantee ISS (note that this question is still open).

IV. PROOF OF THEOREM 1
The implications i) ⇒ ii) and ii) ⇒ iii) are trivial.

In [22, Theorem 2.4], it is stated that iv) guarantees the
existence of a globally Lipschitz functional V0 : Cn → R≥0
and κ, κ, κ > 0 such that, for all φ ∈ Cn, κ‖φ‖ ≤ V0(φ) ≤
κ‖φ‖ and D+

(1)V0(φ) ≤ −κ‖φ‖. Hence, the functional V :=

V 2
0 satisfies κ2‖φ‖2 ≤ V (φ) ≤ κ2‖φ‖2 and D+

(1)V (φ) =

2V0(φ)D+
(1)V0(φ) ≤ −κκ‖φ‖2. Thus, iv) implies i) (acually,

with a coercive LKF). So it is sufficient to prove that iii) ⇒
iv), namely that the existence of a GES LKF with point-
wise dissipation guarantees global exponential stability. To
that aim, recall that iii) means that there exists a functional
V : Cn → R≥0, Lipschitz on bounded sets, and k, k, k > 0
such that, for all φ ∈ Cn,

k|φ(0)|2 ≤ V (φ) ≤ k‖φ‖2 (4)

D+
(1)V (φ) ≤ −k|φ(0)|2. (5)

Let

W (φ) :=

∫ 0

−δ
max
s∈[τ ;0]

|φ(s)|2dτ, ∀φ ∈ Cn. (6)

The proof consists in showing that the functional

V(φ) := V (φ) + εW (φ),

with some ε > 0, has a history-wise dissipation rate along
the solutions of (1). We start by showing the following.

Claim 1 Given any ε > 0, V is Lipschitz on bounded sets.

Proof: Since V is Lipschitz on bounded sets, it is
sufficient to show that W enjoys the same property. First
observe that, for all τ ∈ [−δ; 0] and for all φ, ψ ∈ Cn,∣∣∣∣ max
s∈[τ ;0]

|φ(s)|2 − max
s∈[τ ;0]

|ψ(s)|2
∣∣∣∣ ≤ max

s∈[τ ;0]

∣∣∣|φ(s)|2 − |ψ(s)|2
∣∣∣.

(7)

To see this, consider first the case when maxs∈[τ ;0] |φ(s)|2 ≥
maxs∈[τ ;0] |ψ(s)|2 and let s∗ ∈ [τ ; 0] be such that
maxs∈[τ ;0] |φ(s)|2 = |φ(s∗)|2. Then it holds that∣∣∣∣ max

s∈[τ ;0]
|φ(s)|2 − max

s∈[τ ;0]
|ψ(s)|2

∣∣∣∣
= |φ(s∗)|2 − max

s∈[τ ;0]
|ψ(s)|2

≤ |φ(s∗)|2 − |ψ(s∗)|2

≤ max
s∈[τ ;0]

(
|φ(s)|2 − |ψ(s)|2

)
≤ max
s∈[τ ;0]

∣∣∣|φ(s)|2 − |ψ(s)|2
∣∣∣.

The case when maxs∈[τ ;0] |φ(s)|2 ≤ maxs∈[τ ;0] |ψ(s)|2 can
be addressed in the same way, which establishes (7). Let
X be any bounded set of Cn and assume that φ, ψ ∈ X .
Since the function x 7→ x2 is locally Lipschitz, there exists
` > 0 such that

∣∣|φ(s)|2 − |ψ(s)|2
∣∣ ≤ `

∣∣|φ(s)| − |ψ(s)|
∣∣ ≤

`|φ(s) − ψ(s)|. It follows from (7) that, for all τ ∈ [−δ; 0]
and all φ, ψ ∈ X ,∣∣∣∣ max

s∈[τ ;0]
|φ(s)|2 − max

s∈[τ ;0]
|ψ(s)|2

∣∣∣∣ ≤ ` max
s∈[τ ;0]

|φ(s)− ψ(s)|

≤ `‖φ− ψ‖. (8)

Thus, in view of (6), it holds for all φ, ψ ∈ X that

|W (φ)−W (ψ)|

=

∣∣∣∣∫ 0

−δ
max
s∈[τ ;0]

|φ(s)|2dτ −
∫ 0

−δ
max
s∈[τ ;0]

|ψ(s)|2dτ
∣∣∣∣

≤
∫ 0

−δ

∣∣∣∣ max
s∈[τ ;0]

|φ(s)|2 − max
s∈[τ ;0]

|ψ(s)|2
∣∣∣∣ dτ

≤ `δ‖φ− ψ‖,

meaning that W is Lipschitz on bounded sets.

Using (4) and (6), we also have the following.

Claim 2 Given any ε > 0 it holds that

k|φ(0)|2 ≤ V(φ) ≤ (k̄ + εδ)‖φ‖2, ∀φ ∈ Cn.

We now proceed to computing the Dini derivative of V
along the solutions of (1). To that aim, consider the solution
t 7→ xt of (1) starting from any x0 ∈ Cn at t = 0. Note that,
since f is globally Lipschitz, this solution exists at all times
t ≥ 0 and is unique [5]. Hence, for all t ≥ 0, it holds that

W (xt) =

∫ 0

−δ
max
s∈[τ ;0]

|x(t+ s)|2dτ.

Operating successively the changes of variables s ← t + s
and τ ← τ + t, it follows that

W (xt) =

∫ t

t−δ
max
s∈[τ ;t]

|x(s)|2dτ. (9)

The following statement constitutes the key idea of the
paper: adding W to the GES LKF V with point-wise
dissipation allows to obtain a history-wise dissipation term.

Claim 3 For all t ≥ 0, it holds that

D+
(1)W (xt) ≤ |x(t)|2 − ‖xt‖2 + 2δ|x(t)| |f(xt)|.

Proof: If τ 7→ maxs∈[τ ;t] |x(s)|2 were differentiable,
then the derivative of W could be easily computed using
Leibniz integral rule. Unfortunately, this may not be the case.
This is why the proof of this claim is a bit technical. In order
to lighten the notation, define:

m(τ, t) := max
s∈[τ ;t]

|x(s)|2, ∀t ≥ τ ≥ 0. (10)

Then the function m satisfies the following:



P1 m(τ, t) ≥ 0 for all t ≥ τ ≥ 0
P2 τ 7→ m(τ, t) is non-increasing on [0; t]
P3 t 7→ m(τ, t) is non-decreasing on [τ ; +∞).
P4 m(τ, t)=max{m(τ, s);m(s, t)} for all t ≥ s ≥ τ ≥ 0.

With this notation, W (xt) =
∫ t
t−δm(τ, t)dτ , hence:

D+
(1)W (xt) = lim sup

h→0+

1

h

(∫ t+h

t+h−δ
m(τ, t+ h)dτ−

∫ t

t−δ
m(τ, t)dτ

)
.

Let

I(t) := lim sup
h→0+

1

h

∫ t+h

t+h−δ

(
m(τ, t+ h)−m(min{τ ; t}, t)

)
dτ.

(11)

Then it holds that

D+
(1)W (xt) ≤ I(t)

+ lim sup
h→0+

1

h

(∫ t+h

t+h−δ
m(min{τ ; t}, t)dτ −

∫ t

t−δ
m(τ, t)dτ

)
.

Notice that this latter term reads

lim sup
h→0+

1

h

(∫ t+h

t+h−δ
m(min{τ ; t}, t)dτ −

∫ t

t−δ
m(τ, t)dτ

)

= lim sup
h→0+

1

h

(∫ t+h

t

m(t, t)dτ +

∫ t

t+h−δ
m(τ, t)dτ −

∫ t

t−δ
m(τ, t)dτ

)

= lim sup
h→0+

1

h

(∫ t+h

t

m(t, t)dτ −
∫ t+h−δ

t−δ
m(τ, t)dτ

)
= m(t, t)−m(t− δ, t)
= |x(t)|2 − ‖xt‖2,

where the last equality comes from (10). It follows that

D+
(1)W (xt) ≤ I(t) + |x(t)|2 − ‖xt‖2. (12)

So all we need to show is that I(t) ≤ 2δ|x(t)| |f(xt)|. In
view of (11), I(t) can be written as

I(t) = lim sup
h→0+

J(h, t)

h
, (13)

where

J(h, t) :=

∫ t+h

t+h−δ

(
m(τ, t+ h)−m(min{τ ; t}, t)

)
dτ

=

∫ t

t+h−δ

(
m(τ, t+ h)−m(min{τ ; t}, t)

)
dτ

+

∫ t+h

t

(
m(τ, t+ h)−m(min{τ ; t}, t)

)
dτ

=

∫ t

t+h−δ

(
m(τ, t+ h)−m(τ, t)

)
dτ

+

∫ t+h

t

(
m(τ, t+ h)−m(t, t)

)
dτ.

Since m(t, t) = |x(t)|2, we get that

J(h, t) =

∫ t

t+h−δ

(
m(τ, t+ h)−m(τ, t)

)
dτ

+

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ

=

∫ t

t−δ

(
m(τ, t+ h)−m(τ, t)

)
dτ

−
∫ t+h−δ

t−δ

(
m(τ, t+ h)−m(τ, t)

)
dτ

+

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ.

Observing that the second integral of this expression is non-
negative (due to P3), we get that

J(h, t) ≤
∫ t

t−δ

(
m(τ, t+ h)−m(τ, t)

)
dτ

+

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ.

It follows from (13) that I(t) ≤ I1(t) + I2(t), where

I1(t) := lim sup
h→0+

1

h

∫ t

t−δ

(
m(τ, t+ h)−m(τ, t)

)
dτ

I2(t) := lim sup
h→0+

1

h

∫ t+h

t

(
m(τ, t+ h)− |x(t)|2

)
dτ.

We start by computing I2(t): using P2, it holds that

I2(t) ≤ lim sup
h→0+

1

h

∫ t+h

t

(
m(t, t+ h)− |x(t)|2

)
dτ

≤ lim sup
h→0+

m(t, t+ h)− |x(t)|2 = 0,

using (10) and the continuity of s 7→ |x(s)|. Thus, I(t) ≤
I1(t). Moreover, using P4, it holds for all t ≥ τ that m(τ, t+
h) = max{m(τ, t);m(t, t+ h)}. It follows that

I1(t) = lim sup
h→0+

1

h

∫ t

t−δ

(
m(τ, t+ h)−m(τ, t)

)
dτ

= lim sup
h→0+

1

h

∫ t

t−δ
max{0;m(t, t+ h)−m(τ, t)}dτ

≤ lim sup
h→0+

δ

h
max{0;m(t, t+ h)− |x(t)|2},

since m(τ, t) = maxs∈[τ ;t] |x(s)|2 ≥ |x(t)|2. Furthermore,
for all s ≥ t, x(s) = x(t) +

∫ s
t
f(xθ)dθ. It follows that

m(t, t+ h) = max
s∈[t;t+h]

x(s)Tx(s)

= max
s∈[t;t+h]

|x(t)|2 + 2x(t)T
∫ s

t

f(xθ)dθ +

∣∣∣∣∫ s

t

f(xθ)dθ

∣∣∣∣2
≤ |x(t)|2 + 2|x(t)|

∫ t+h

t

|f(xθ)|dθ +

(∫ t+h

t

|f(xθ)|dθ

)2

.

Recalling that m(t, t) = |x(t)|2, we obtain:

I1(t) ≤ lim sup
h→0+

δ

h

2|x(t)|
∫ t+h

t

|f(xθ)|dθ+

(∫ t+h

t

|f(xθ)|dθ

)2
.



Now, observe that (5) ensures in particular that D+
(1)V (xt) ≤

0. This, combined with (4), guarantees that |x(t)| ≤√
k
k‖x0‖, which in turn implies that ‖xt‖ ≤

√
k
k‖x0‖. Since

f is globally Lipschitz and f(0) = 0, there exists a positive
constant `f such that |f(xt)| ≤ `f‖x0‖. Consequently:

I(t) ≤ I1(t)

≤ 2δ|x(t)| lim sup
h→0+

1

h

∫ t+h

t

|f(xθ)|dθ + lim sup
h→0+

h2`2f‖x0‖2

h

≤ 2δ|x(t)| |f(xt)|.

The claim then follows from (12).

We can now conclude the proof of Theorem 1. Since
|f(xt)| ≤ `f‖xt‖ for some `f > 0, it follows from Claim 3
that, for all t ≥ 0,

D+
(1)W (xt) ≤ |x(t)|2 − ‖xt‖2 + 2δ`f |x(t)|‖xt‖. (14)

Now, recall that V(φ) := V (φ) + εW (φ), with ε > 0 to be
chosen. (5) and (14) ensure that, for any λ > 0,

D+
(1)V(xt) ≤−k|x(t)|2+ε|x(t)|2−ε‖xt‖2+2εδ`f |x(t)|‖xt‖

≤ −(k − ε)|x(t)|2−ε‖xt‖2+εδ`f

(
λ|x(t)|2 +

‖xt‖2

λ

)
≤ −(k − ε− εδ`fλ)|x(t)|2 − ε

(
1− δ`f

λ

)
‖xt‖2.

Pick λ = 2δ`f , then

D+
(1)V(xt) ≤ −

(
k − ε− 2εδ2`2f

)
|x(t)|2 − ε

2
‖xt‖2.

Thus, by picking ε := k/(1 + 2δ2`2f ), we finally obtain that

D+
(1)V(xt) ≤ −

ε

2
‖xt‖2, ∀t ≥ 0. (15)

From this, a strategy to conclude GES is to use the bounds
on V from Claim 2 to show the exponential decay of V(xt)
with the help of a comparison lemma by taking into account
that V is locally Lipschitz (thus the problem of the absolute
continuity is overcome, see [16]), and that the function t 7→
W (xt) is locally absolutely continuous. An alternative is to
directly integrate (15) to get from Claim 2 that∫ ∞

0

‖xt‖2dt ≤
2

ε
V (x0) ≤ 2k̄

ε
‖x0‖2, ∀x0 ∈ Cn,

and GES follows from the integral criterion proposed in [6].

V. EXAMPLE

In [13], a model of two interconnected neuronal popu-
lations was proposed to explain a possible mechanism for
parkinsonian brain oscillations onset. This model reads:

τ1ẋ1=−x1+S1

(
c11x1(t− δ11)−c12x2(t−δ12)+µ

)
(16a)

τ2ẋ2=−x2+S2

(
c21x1(t− δ21)− c22x2(t− δ22)

)
, (16b)

where the argument t of the non-delayed variables have
been omitted. In this model, x1(t) and x2(t) represent the
neuronal activity of populations 1 and 2. τ1, τ2 > 0 are

time constants. S1, S2 : R→ R are Lipschitz function (with
no loss of generality, we assume their Lipschitz constant is
1). For each i, j ∈ {1, 2}, cij ≥ 0 represents the synaptic
strength from population j to population i and the delays
δij ≥ 0 take into account the finite velocity of action
potentials propagation from population j to population i.
µ(t) ∈ R represents an artificial stimulation signal that
can be introduced through implanted electrodes in order to
disrupt pathological oscillations.

With appropriate parameter values, this system exhibits
sustained pathological oscillations as a result of instability
caused by strong synaptic connectivity between the two pop-
ulations [13], [15]. This model has been studied in [4], using
linearization around equilibrium, to show that a proportional
feedback strategy from Population 1 to itself is able to locally
stabilize the system. This was confirmed in a spatio-temporal
extension of this model [1]. The following result states that
this feedback globally exponentially stabilizes the system.

Proposition 1 For each i, j ∈ {1, 2}, let cij , δij ≥ 0 and
τi > 0. Assume that functions Si are globally Lipschitz with
Lipschitz constant 1, non-decreasing, and such that Si(0) =
0. Then there exists θ∗ ≥ 0 such that, for all θ ≥ θ∗, the
system (16) in closed loop with µ(t) = −θx1(t) is GES.

The proof consists in finding a GES LKF with point-wise
dissipation. For this particular example, one could find a
strict LKF (by putting exponential terms in the kernels of
(18) below), but at the price of more involved computations.
Note that if additive disturbances act in the dynamics (16),
whether inside or outside the functions Si, ISS can easily be
derived based on Corollary 1.

Proof: For any θ ≥ 0, the closed-loop dynamics reads:

τ1ẋ1=−x1+S1

(
c11x1(t−δ11)−c12x2(t− δ12)−θx1

)
(17a)

τ2ẋ2=−x2+S2

(
c21x1(t− δ21)− c22x2(t− δ22)

)
. (17b)

Let V (φ) = V1(φ1) + ρV2(φ2) where, for each j ∈ {1, 2},

Vj(φ) =
1

2

(
τjφ(0)2 +

2∑
i=1

∫ 0

−δij
λijφ(s)2ds

)
, (18)

with ρ > 0 and λij > 0 to be chosen. V is Lipschitz on
bounded sets. Moreover, it satisfies bounds of the form (4)
by setting k = τ1+ρτ2+λ11δ11+λ21δ21+ρλ12δ12+ρλ22δ22
and k = min{τ1, τ2}min{1, ρ}/2. Moreover, for all φ ∈ C2,

D+
(17)V=−φ1(0)2−ρφ2(0)2+φ1(0)S1

(
c11φ1(−δ11)−c12φ2(−δ12)

− θφ1(0)
)

+ ρφ2(0)S2

(
c21φ1(−δ21)− c22φ2(−δ22)

)
+

2∑
i=1

λi1
2

(
φ1(0)2−φ1(−δi1)2

)
+

2∑
i=1

ρλi2
2

(
φ2(0)2−φ2(−δi2)2

)
.

Since each Si is globally Lipschitz with Lipschitz constant
1, nondecreasing, and satisfies Si(0) = 0, it holds that
|Si(s)| ≤ |s| and Si(s)s ≥ 0 for all s ∈ R. Based
on this, the examination of two cases, whether or not
the argument of S1 dominates the control signal −θφ1(0),



shows that φ1(0)S1

(
c11φ1(−δ11)−c12φ2(−δ12)−θφ1(0)

)
≤

4
θ

(
c211x1(t− δ11)2 + c212x2(t− δ12)2

)
. In the same way,

φ2(0)S2 (c21φ1(−δ21 − c22φ2(−δ22)) ≤
c21
2

(
ξ1φ2(0)2+

φ1(−δ21)2

ξ1

)
+
c22
2

(
ξ2φ2(0)2+

φ2(−δ22)2

ξ2

)
.

for any ξ1; ξ2 > 0. Putting it all together, it follows that

D+
(17)V (φ) ≤ −φ1(0)2 − ρφ2(0)2 +

4

θ

(
c211φ1(−δ11)2

+ c212φ2(−δ12)2
)

+
ρc21

2

(
ξ1φ2(0)2 +

1

ξ1
φ1(−δ21)2

)
+
ρc22

2

(
ξ2φ2(0)2 +

1

ξ2
φ2(−δ22)2

)
+

1

2

2∑
i=1

λi1
(
φ1(0)2−φ1(−δi1)2

)
+ρλi2

(
φ2(0)2−φ2(−δi2)2

)
.

Regrouping terms, it follows that D+
(17)V (φ) ≤

− 1−c22
2 |φ(0)|2, provided that:

(a) : λ11 + λ21 < 2, (b) : ρc21
ξ1
≤ λ21,

(c) : c21ξ1 + c22ξ2 + λ12 + λ22 < 2, (d) : 8
θρc

2
12 ≤ λ12,

(e) : 8
θ c

2
11 ≤ λ11, (f) : c22

ξ2
≤ λ22.

By setting λ22 = c22
ξ2

, (f) is fulfilled and (c) reads
c21ξ1 + c22 (ξ2 + 1/ξ2) + λ12 < 2. For positive arguments,
the function x 7→ x+ 1/x has a minimum for x = 1, so we
set ξ2 = 1. By setting λ12 = 1−c22

2 and ξ1 = λ12

c21
= 1−c22

2c21
,

(c) is fulfilled provided that c22 < 1, which we have by
assumption. The choice ρ = 8

θλ12
c212 =

16c212
θ(1−c22) validates

(d). Moreover, by letting λ11 = 8
θ c

2
11 and λ21 = ρc21

ξ1
=

2ρc221
1−c22 , (e) and (b) are fulfilled and (a) reads 8

θ c
2
11+

2ρc221
1−c22 <

2. Replacing ρ by its value, possible choices of θ are:

θ ≥ θ∗ := 8

(
c211 +

4c221c
2
12

(1− c22)2

)
.

By Theorem 1, (17) is GES for these values.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have shown that GES can be established
with a functional that dissipates only point-wisely, if the
dynamics are globally Lipschitz. We have quickly evoked
some consequences in terms of robustness to exogenous
inputs and illustrated its applicability through an example
taken from neuroscience literature.

The restriction to globally Lipschitz dynamics is of course
the main drawback of the approach: further work is needed
to investigate whether the proposed LKF construction can be
extended to merely locally Lipschitz systems. Also, the LKF
considered here have quadratic bounds: deeper investigations
are required to check whether bounds in the power p ≥ 1
can also be employed. The proof presented here suggests
that this extension is feasible for p > 1, but linear bounds
(p = 1) seem less straightforward. This is a pity as converse
results for GES do make use of linear bounds [18] and such
an extension would probably allow to construct a globally
Lipschitz LKF with history-wise dissipation (which would

be expected in view of the strong regularity requirements
imposed on the fector field). We also hope that the proposed
LKF construction will be of some help to solve the conjecture
posed in [3] about ISS based on point-wise dissipation.
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