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Integral input-to-state stability of delay systems based on Lyapunov-Krasovskii functionals with point-wise dissipation rate

We show that a Lyapunov-Krasovskii functional whose dissipation rate involves solely the current instantaneous value of the state norm is enough to guarantee integral inputto-state stability (iISS). This result generalizes existing sufficient conditions for iISS, where the dissipation rate involves the whole Lyapunov-Krasovskii functional itself, and simplifies their applicability. Moreover, it provides a more natural bridge with the classical condition for global asymptotic stability of input-free systems. The proof strategy we employ relies on a novel characterization of global asymptotic stability, which may be of interest on its own.

I. INTRODUCTION

The input-to-state stability (ISS) framework, standard tool in the analysis and control of finite-dimensional systems [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF], [START_REF] Sontag | Input to state stability: Basic concepts and results[END_REF], has more recently extended to infinite-dimensional dynamics, including time-delay systems. A handy tool to establish ISS of time-delay systems is to rely on Lyapunov-Krasovskii functionals (LKF) [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]. More precisely, just like in the finite-dimensional case, ISS is guaranteed provided that the derivative of such functional V along the system's solutions satisfies

V ≤ -α(V ) + γ(|u|), (1) 
where α, γ are K ∞ functions and u is the system's input.

In this differential inequality, the dissipation rate α involves the whole LKF V . In [START_REF] Chaillet | Is a point-wise dissipation rate enough to show ISS for time-delay systems[END_REF], we have recently conjectured that ISS would hold also under the less stringent condition that

V ≤ -α(|x(t)|) + γ(|u|), (2) 
meaning with a dissipation rate that involves only the current instantaneous value of the state norm (what we call a point-wise dissipation rate). Such a formulation would simplify the ISS analysis of time-delay systems. It would also homogenize ISS theory with the Lyapunov-Krasovskii theory of input-free systems, as global asymptotic stability of such systems is guaranteed under a point-wise dissipation rate, namely V ≤ -α(|x(t)|) [START_REF] Hale | Theory of functional differential equations[END_REF]. Although this simpler characterization of ISS has been established for particular classes of systems in [START_REF] Chaillet | Is a point-wise dissipation rate enough to show ISS for time-delay systems[END_REF], the conjecture has not yet been proved or disproved.

In the present paper, we prove this conjecture for a weaker robustness property, namely integral input-to-state stability (iISS). This property was introduced in [START_REF] Sontag | Comments on integral variants of ISS[END_REF] for finitedimensional systems. It imposes that solutions are bounded A. Chaillet is with Laboratoire des Signaux et Systèmes, CentraleSupélec, Univ. Paris Saclay, Gif sur Yvette, France and with Institut Universitaire de France antoine.chaillet@centralesupelec.fr
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Pepe is with University of L'Aquila, Italy pierdomenico.pepe@univaq.it by a decaying term of the initial state plus a term depending on the energy brought by the input. iISS of time-delay systems can be established in a similar way as ISS: it was shown in [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF] that if a dissipation inequality like (1) holds with a positive definite α then iISS holds. A similar result was proposed in [START_REF] Mironchenko | Characterizations of integral input-tostate stability for bilinear systems in infinite dimensions[END_REF] in a wider infinite-dimensional context.

Here, we show that a point-wise dissipation rate like in (2) (with α merely positive definite) is enough to establish iISS. The proof of this result requires generalizations, that may be of interest on their own, of existing finite-dimensional results to time-delay systems. More precisely, we show that if a time-delay system is globally asymptotically stable in the absence of inputs (0-GAS), then a dissipation inequality like (1) holds (with α positive definite), but with a LKF V that may not be radially unbounded. We also show that 0-GAS implies iISS provided that the system is zero-output dissipative. These two properties were originally established in [START_REF] Angeli | A characterization of integral input to state stability[END_REF] for finite-dimensional systems. Finally, we show that iISS holds under the even less conservative assumption that

V ≤ -σ(|x(t)|, x t )+γ(|u|), where σ ∈ KL and γ ∈ K ∞ .
The outline of the paper is as follows. We start by presenting the class of systems considered here and by recalling iISS for time-delay systems and the existing LKF sufficient conditions to establish it. Then, in Section III, we state our main results. An academic example is provided in Section IV. All proofs are provided in Section V. We conclude with some perspective for future work.

Notations. Given x ∈ R n , |x| denotes its Euclidean norm. Given a set I ⊂ R and a measurable signal u : I → R m , u := ess sup t∈I |u(t)|. U denotes the set of all signals u : R ≥0 → R m that are measurable and locally essentially bounded. Given θ > 0 and n ∈ N ≥1 , the set

C([-θ; 0], R n ) of all continuous functions φ : [-θ; 0] → R n is denoted by X . A function α : R ≥0 → R ≥0 is said to be of class PD if is continuous and positive definite. α ∈ K if α ∈ PD and it is increasing. α ∈ K ∞ if α ∈ K and it is unbounded. A function β : R ≥0 × R ≥0 → R ≥0 is of class KL if β(•, t) ∈ K for each t ∈ R ≥0
and, for each s ∈ R ≥0 , β(s, •) is continuous, non-increasing and tends to zero as its argument tends to infinity.

II. CONTEXT AND DEFINITIONS

A. Time-delay systems

The paper considers nonlinear delayed systems of the form

ẋ(t) = f (x t , u(t)), ∀t ≥ 0 a.e. (3) 
x(t) ∈ R n is the instantaneous value of the state at time t ≥ 0. x t ∈ X denotes its history over the time interval [t -θ; t], where θ is larger than, or equal to, the maximum delay involved in the dynamics. On its domain of existence, x t ∈ X is defined as

x t : [-θ; 0] → R n s → x(t + s).
The input u is assumed to be in the set U. The function f : X × R m → R n is assumed to be Lipschitz on any bounded subset of X ×R m → R n . These assumptions ensure that, given any x 0 ∈ X , system (3) admits a unique and locally absolutely continuous solution on a maximal time interval [0, b), b ∈ (0; +∞]. Moreover, if b < +∞, then the solution is unbounded on [0, b). See [START_REF] Hale | Theory of functional differential equations[END_REF]. We also assume that f (0, 0) = 0.

B. iISS

iISS of such time-delay systems was introduced in [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]. It is a natural extension the iISS property that was originally introduced in a finite-dimensional context [START_REF] Sontag | Comments on integral variants of ISS[END_REF].

Definition 1 (iISS, [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]) The delay system (3) is integral input-to-state stable (iISS) if there exist β ∈ KL and δ 1 , δ 2 ∈ K ∞ such that, given any x 0 ∈ X and any u ∈ U, the corresponding solution x(•)

:= x( • ; x 0 , u) satisfies |x(t)| ≤ β( x 0 , t) + δ 1 t 0 δ 2 (|u(τ )|)dτ , ∀t ≥ 0.
Note iISS imposes that the system is forward complete for each u ∈ U, meaning that x t exists for all t ≥ 0, as the above state estimate impedes any finite escape time. Moreover, just like its finite-dimensional counterpart, iISS guarantees not only that the origin of the input-free system ẋ(t) = f (x t , 0) is globally asymptotically stable (GAS), but also induces some robustness with respect to the disturbance u. In particular, it can be seen that, in response to any input with finite energy (as measured through the function δ 2 ), the state eventually converges to the origin:

∞ 0 δ 2 (|u(τ )|)dτ < ∞ ⇒ lim t→∞ x t = 0.

C. iISS functionals

We consider two kinds of iISS Lyapunov-Krasovskii functionals: those whose dissipation rate involves the functional itself (here referred to as "strict iISS LKF") and those whose dissipation rate involves merely the present value of the state norm ("relaxed iISS LKF").

We start by recalling Driver's derivative [START_REF] Driver | Existence and stability of solutions of a delay-differential system[END_REF]. Given any continuous function V : X → R, its Driver's derivative along (3) is defined, for all φ ∈ X and all v ∈ R m , as

D + (3) V (φ, v) := lim sup h→0 + V (φ * h,v ) -V (φ) h , (4) 
where, for all h ∈ (0; θ) and all v ∈ R m , φ * h,v ∈ X is defined as

φ * h,v (s) := φ(s + h) if s ∈ [-θ; -h) φ(0) + f (φ, v)(s + h) if s ∈ [-h; 0]. (5) 
It was shown in [START_REF] Pepe | On Liapunov-Krasovskii functionals under Caratheodory conditions[END_REF] that, if V is Lipschitz on any bounded set of X , then, under the assumptions made above on the vector field f , Driver's derivative of V computed at (x t , u(t)) coincides almost everywhere (on the domain of existence of x t ) with the upper-right Dini derivative of t → V (x t ):

D + (3) V (x t , u(t)) = lim sup h→0 + V (x t+h ) -V (x t ) h , ∀t ≥ 0 a.e.
Definition 2 (Strict/Relaxed iISS LKF) Let V : X → R ≥0 be Lipschitz on any bounded subset of X . Assume there exists α, α ∈ K ∞ such that

α(|φ(0)|) ≤ V (φ) ≤ α( φ ), ∀φ ∈ X . ( 6 
)
Then V is said to be a strict iISS Lyapunov-Krasovskii functional (LKF) for (3) if there exist α ∈ PD and γ ∈ K ∞ such that, for all φ ∈ X and all v ∈ R m ,

D + (3) V (φ, v) ≤ -α(V (φ)) + γ(|v|). (7) 
It is called a relaxed iISS LKF for (3) if it satisfies (6) and, for all φ ∈ X and all v ∈ R n ,

D + (3) V (φ, v) ≤ -α(|φ(0)|) + γ(|v|). (8) 
In both cases, α and γ are respectively referred to as a dissipation rate and a supply rate.

The key difference between these two iISS LKF lies in the nature of the dissipation: a strict iISS LKF dissipates in terms of the whole LKF itself, whereas a relaxed iISS LKF dissipates only in terms of the current instantaneous value of the state norm. In view of (6), any strict iISS LKF is also a relaxed iISS. Note that this distinction between relaxed and strict iISS LKF is irrelevant in a finite-dimensional context.

D. Problem statement

It is known from [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF] that, if the system (3) admits a strict iISS LKF, then it is iISS. That result extended the Lyapunov sufficient condition for iISS of finite-dimensional systems. For non-delayed systems, this Lyapunov condition turns out to be also necessary for iISS 1 [START_REF] Angeli | A characterization of integral input to state stability[END_REF].

The sufficient condition for iISS in [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF] provides a handy way to establish iISS of time-delay systems. However, in order to obtain a dissipation rate that involves the whole LKF, some mathematical tricks are often needed that complicate the analysis. More crucially, such a strict LKF is not required in the absence of inputs. To make this more precise recall that global asymptotic stability of time-delay systems is defined as follows.

Definition 3 (GAS) The input-free system

ẋ(t) = f (x t ) (9) 
is said to be globally asymptotically stable (GAS) if there exists β ∈ KL such that, for all x 0 ∈ X , its solution satisfies

|x(t)| ≤ β( x 0 , t), ∀t ≥ 0. (10) 
The classical Lyapunov-Krasovskii condition, recalled in [4, Theorem 2.1, p.105], states that global asymptotic stability (GAS) of the input-free system (9) is guaranteed if there exists a functional V : X → R ≥0 , Lipschitz on all bounded subsets of X , such that, for all φ ∈ X ,

α(|φ(0)|) ≤ V (φ) ≤ α( φ ) (11) D + (9) V (φ) ≤ -α(|φ(0)|), (12) 
where α, α ∈ K ∞ , and α ∈ PD.

It is clear from ( 12) that a point-wise dissipation rate is enough to show GAS. In order to simplify the analysis and to homogenize theory with input-free systems, we here address the question whether a point-wise dissipation rate (namely, a relaxed iISS LKF) is also enough to establish iISS.

MAIN RESUTS

A. A relaxed condition for GAS

We start by observing that GAS can be established by a weaker requirement than ( 11)- [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF].

Proposition 1 (GAS characterization) The system (9) is GAS if and only if there exist a functional V : X → R ≥0 , Lipschitz on all bounded subsets of X , K ∞ functions α and α, and a KL function σ such that, for all φ ∈ X ,

α(|φ(0)|) ≤ V (φ) ≤ α( φ ) (13) D + (9) V (φ) ≤ -σ(|φ(0)|, φ ). (14) 
The proof lines of this result are provided in Section V-A. As we will see through an example in Section IV, this characterization may be handy for instance in situations where the employed LKF is of the form V = ln(1 + Ṽ ), where Ṽ denotes another LKF.

B. iISS by point-wise dissipation

Our main result establishes that a point-wise dissipation rate is enough to guarantee iISS.

Theorem 1 (Relaxed iISS LKF ⇒ iISS) If the system (3) admits a relaxed iISS LKF, then it is iISS and admits a strict iISS LKF.

As detailed in Section V-E, this result is actually a corollary of the following more general statement.

Theorem 2 (Sufficient condition for iISS) Assume that there exist a functional V : X → R ≥0 , Lipschitz on each bounded subset of X , α, α ∈ K ∞ , and σ ∈ KL such that, for all φ ∈ X and all v ∈ R m ,

α(|φ(0)|) ≤ V (φ) ≤ α( φ ) (15) D + (3) V (φ, v) ≤ -σ(|φ(0)|, φ ) + γ(|v|). ( 16 
)
Then the system (3) is iISS and admits a strict iISS LKF.

The proof is provided in Section V-D. It is made of two steps. The first one characterizes the internal stability of the system in terms of a semi-proper iISS LKF. The second one shows that this characterization combined with a dissipativity condition is enough to establish iISS. Each of these two steps lead to results that may be of interest on their own: we treat them in the following two sections.

C. 0-GAS characterization

Recall that the system ẋ(t) = f (x t , u(t)) is said to be 0-GAS if the input-free system ẋ(t) = f (x t , 0) is GAS. The following result establishes that 0-GAS is equivalent to the existence of a semi-proper iISS LKF. The finite-dimensional counterpart of this result was originally established in [1, Proposition II.5].

Proposition 2 (0-GAS characterization) The delay system (3) is 0-GAS if and only if there exist a functional V : X → R ≥0 , Lipschitz on each bounded subset of X , a continuously differentiable class K function π satisfying π (s) > 0 for all s ∈ R ≥0 , α, α, γ ∈ K ∞ , and α ∈ PD such that

α( φ ) ≤ V (φ) ≤ α( φ ), ∀φ ∈ X , (17) 
and the functional W := π • V satisfies, for all φ ∈ X and all v ∈ R m ,

D + (3) W (φ, v) ≤ -α( φ ) + γ(|v|). (18) 
The proof of this result is provided in Section V-B. It is worth stressing that, in the above statement, W might not be radially unbounded (as π might not be a K ∞ function), which is why (18) does not readily guarantee iISS (otherwise any 0-GAS system would be iISS, which is not true even in a finite-dimensional context [START_REF] Angeli | A characterization of integral input to state stability[END_REF]).

It is also important to notice that the dissipation rate in (18) involves the supremum norm of the state history and that V is both upper and lower bounded by functions of φ . In particular, using the terminology of e.g. [START_REF] Mironchenko | Global converse Lyapunov theorems for infinite-dimensional systems[END_REF], V is a coercive LKF. These two features are instrumental in establishing Theorem 1.

D. Link with dissipativity

It turns out that Theorems 1 and 2 are direct consequences of the result presented next, which establishes iISS based on the internal stability of the system and a dissipativity property with respect to the input. Definition 4 (Zero-output dissipativity) The system (3) is said to be zero-output dissipative if there exist a functional V : X → R ≥0 , Lipschitz on each bounded subset of X , and class K ∞ functions α, α, and µ such that, for all φ ∈ X and all v ∈ R m ,

α(|φ(0)|) ≤ V (φ) ≤ α( φ ) D + (3) V (φ,v) ≤ µ(|v|).
This property is a natural extension of its finitedimensional counterpart, originally introduced in [START_REF] Angeli | A characterization of integral input to state stability[END_REF]. It imposes that V grows at most linearly in time for any bounded input u. We underline the fact that, in the above definition, we do not impose coerciveness on V : it just needs to be lower bounded by a function of |φ(0)| rather than the whole supremum norm of the state history φ . Here again, this allows to make use of standard LKF employed in stability analysis of autonomous systems.

It was shown in [START_REF] Angeli | A characterization of integral input to state stability[END_REF] that, for finite-dimensional systems, iISS is guaranteed by zero-output dissipativity, provided that the system is 0-GAS 2 . The following result extends this to time-delay systems.

Theorem 3 (0-GAS + dissipativity ⇒ iISS) If the system (3) is 0-GAS and zero-output dissipative, then it is iISS and admits a strict iISS LKF.

The proof is provided in Section V-C. As compared to Theorem 1, this result allows to conclude iISS for systems whose internal stability is established by other means than the construction of a Lyapunov-Krasovskii functional, such as through Krasovskii-LaSalle invariance principle arguments [4, Theorem 3.1, p. 119].

IV. EXAMPLE We provide an academic example in order to illustrate our findings. Consider the scalar system

ẋ(t) = -x(t) + c x(t + θ) + x(t)u(t), (19) 
with c ≥ 0. In the absence of an input, the system is linear:

ẋ(t) = -x(t) + c x(t + θ) (20) 
and its stability can be assessed by the following LKF:

W (φ) = φ(0) 2 + c 0 -θ φ(τ ) 2 dτ,
which can be bounded as in [START_REF] Karafyllis | Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations[END_REF]:

|φ(0)| 2 ≤ W (φ) ≤ (1 + c θ) φ 2 .
Moreover, using the fact that ab ≤ (a 2 + b 2 )/2 for all a, b ∈ R, it holds that

D + (20) W (φ, 0) = 2φ(0) -φ(0) + c φ(-θ) + c φ(0) 2 -φ(-θ) 2 ≤ -2(1 -c)φ(0) 2 .
If c ∈ [0; 1), 0-GAS of (19) follows from [4, Theorem 2.1, p.105]. However, this LKF is not a strict iISS LKF, as it dissipates in a point-wise manner, and therefore cannot be used to invoke existing iISS tools such as [START_REF] Pepe | A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems[END_REF]. Nevertheless, it can easily be employed to construct a relaxed iISS LKF. Indeed, in the presence of an input, it holds that

D + (19) W (φ, v) ≤ -2(1 -c)φ(0) 2 + φ(0) 2 |v|. Consequently, the functional V := ln(1 + W ) satisfies D + (19) V (φ, v) = D + (19) W (φ, v) 1 + W (φ) ≤ -2(1 -c) φ(0) 2 1 + (1 + c) φ 2 + |v|.
2 iISS is actually equivalent to 0-GAS plus zero-output dissipativity for delay-free systems [START_REF] Angeli | A characterization of integral input to state stability[END_REF].

Theorem 2 then ensures that (19) is iISS and admits a strict (hence, a relaxed) iISS LKF.

V. PROOFS A. Proof of Proposition 1 (sketch)

The necessity part of this statement follows readily from converse LKF results such as [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF]Lemma A.8] 3 . So we now focus on showing that ( 13)-( 14) implies GAS. First observe that stability and boundedness readily hold since D + (9) V (φ) ≤ 0, which ensures from (13) that, for all x 0 ∈ X ,

|x(t)| ≤ α -1 • α( x 0 ), ∀t ≥ 0. (21) 
In view of Lemma 2.4 and Corollary 2.6 in [START_REF] Karafyllis | Lyapunov theorems for systems described by retarded functional differential equations[END_REF], GAS as defined in terms of a KL estimate (Definition 3) follows if we manage to show that, for all ε > 0 and all R ≥ 0, there exists a time τ ≥ 0 such that x t ≤ ε for all t ≥ τ provided that x 0 ≤ R (this is the formulation of Property P3 in [START_REF] Karafyllis | Lyapunov theorems for systems described by retarded functional differential equations[END_REF] for autonomous disturbance-free systems). This attractiveness property can be established following the lines of the proof for GAS using Lyapunov-Krasovskii approach: see [4, Theorem 2.1, p. 105]. We do not include details here due to space limitations.

B. Proof of Proposition 2

We start by showing that (17)-( 18) guarantee 0-GAS. This is done by showing that V is a proper LKF for the input-free system

ẋ(t) = f (x t , 0). (22) 
In view of ( 4) and (18), it holds that

D + (22) W (φ) = lim sup h→0 + W (φ * h ) -W (φ) h = lim sup h→0 + π • V (φ * h ) -π • V (φ) h ≤ -α( φ ).
This shows in particular that V (φ * h ) ≤ V (φ) for h small enough. Since π is continuously differentiable, the mean value theorem guarantees the existence of c(φ, h) ∈

[V (φ * h ); V (φ)] such that π • V (φ * h ) -π • V (φ) = π c(φ, h) V (φ * h ) -V (φ) . In view of (5), lim h→0 + V (φ * h ) = V (φ). Consequently, lim h→0 + π c(φ, h) = π • V (φ). It follows that D + (22) W (φ) = π • V (φ) lim sup h→0 + V (φ * h ) -V (φ) h ≤ -α( φ ).
Recalling that π (s) > 0 for all s ∈ R ≥0 , we conclude that

D + (22) V (φ) = lim sup h→0 + V (φ * h ) -V (φ) h ≤ - α( φ ) π • V (φ) ≤ - α(|φ(0)|) π • α( φ )
for all φ ∈ X , where we used (17). Let ξ(s) := 1 + s + max r∈[0;s] π • α(r) for all s ∈ R ≥0 . Then ξ is a positive continuous unbounded function satisfying ξ(•) ≥ π • α(•).

It follows that (r, s) → α(r)/ξ(s) is a KL function and

D + (22) V (φ) ≤ - α(|φ(0)|) ξ( φ ) .
Unlike W , V is radially unbounded (the functions α and α in (17) are of class K ∞ ). GAS of (22) (hence, 0-GAS of (3)) then follows from Proposition 1.

We now proceed to establish the converse. Assume the delay system (3) is 0-GAS, meaning that the input-free system (22) is GAS. Then, it holds from [START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF]Lemma A.8] that there exists a functional V : X → R ≥0 , Lipschitz on each bounded subset of X such that, for all φ ∈ X ,

α( φ ) ≤ V (φ) ≤ α( φ ) (23) D + (22) V (φ) ≤ -η( φ ). (24) 
for some α, α, η ∈ K ∞ . Proceeding as in the proof of the main result in [START_REF] Yeganefar | Input-to-state stability of time-delay systems: a Link with exponential stability[END_REF], the derivative of this functional along the solutions of the perturbed system (3) reads

D + (3) V (φ, v) = lim sup h→0 + 1 h V (φ * h,v ) -V (φ) = lim sup h→0 + 1 h V (φ * h,0 ) -V (φ) + V (φ * h,v ) -V (φ * h,0 ) ≤ D + (22) V (φ) + lim sup h→0 + 1 h V (φ * h,v ) -V (φ * h,0 ) ≤ -η( φ ) + lim sup h→0 + 1 h V (φ * h,v ) -V (φ * h,0 ) . ( 25 
)
As observed in e.g. [START_REF] Karafyllis | Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations[END_REF], since f and V are Lipschitz on bounded sets, there exist continuous nondecreasing functions V , f : R ≥0 → R ≥0 such that, for all φ, ϕ ∈ X and all

u, v ∈ R m , |V (φ) -V (ϕ)| ≤ V ( φ + ϕ ) φ -ϕ (26) |f (φ, v) -f (ϕ, u)| ≤ f ( φ + ϕ + |u| + |v|) × ( φ -ϕ + |v -u|). (27) 
Note that f and V can be chosen greater than 1 with no loss of generality. Based on this, we have the following:

V (φ * h,v )-V (φ * h,0 ) ≤ V φ * h,v + φ * h,0 φ * h,v -φ * h,0 .
In view of (5), φ * h,v ≤ φ + |f (φ, v)|h. Consequently, from (27) and the fact that f (0, 0) = 0, it holds that φ

* h,v ≤ φ + f ( φ + |v|)( φ + |v|)h. It follows that V (φ * h,v ) -V (φ * h,0 ) ≤ (28) V 2 φ + 2 f ( φ + |v|)( φ + |v|)h φ * h,v -φ * h,0 .
In view of [START_REF] Karafyllis | Lyapunov theorems for systems described by retarded functional differential equations[END_REF] Plugging this into (25), we obtain that

D + (3) V (φ, v) ≤ -η( φ ) + V (2 φ ) f (2 φ + |v|)|v|.
Since f is nondecreasing, it holds that f (a+b) ≤ f (2a)+ f (2b) for all a, b ∈ R ≥0 . Consequently, recalling that f was chosen not smaller than 1,

D + (3) V ≤ -η( φ ) + V (2 φ ) f (4 φ ) + f (2|v|) |v| ≤ -η( φ ) + V (2 φ ) f (4 φ ) + 1 f (2|v|)|v|.
For future reference, we summarize these findings in the following statement 4 , which is an extension of [1, Lemma IV.10] to time-delay systems.

Proposition 3 (0-GAS characterization) The system (3) is 0-GAS if and only if there exist a functional V : X → R ≥0 , Lispchitz on each bounded subset of X , a nondecreasing continuous function : R ≥0 → R ≥0 , and α, α, η, γ ∈ K ∞ such that, for all φ ∈ X and all v ∈ R m , α( φ ) ≤ V (φ) ≤ α( φ ) ,

D + ( 
where α ∈ K ∞ is the lower bound on V (see ( 23)). Note that π (s) > 0 for all s ∈ R ≥0 . Letting W := π • V , we get

D + (3) W (φ, v) = π (V (φ))D + (3) V (φ, v) ≤ -η( φ ) + ( φ )γ(|v|) 1 + • α -1 (V (φ)) ≤ -α( φ ) + γ(|v|),
where the functions α is defined as α(s) := η(s)

1 + • α -1 • α(s)
.

The conclusion follows since α ∈ PD and γ ∈ K ∞ .

3 ) 0 dr 1 +

 301 V (φ, v) ≤ -η( φ ) + ( φ )γ(|v|).Now, consider the continuously differentiable class K function defined asπ(s) := s • α -1 (r)

  (2 φ + |v|)|v|(h + s) (29) ≤ f (2 φ + |v|)|v|h. ) ≤ V (2 φ ) f (2 φ +|v|)|v|.

	Using again (27), we get that
	φ * h,v -φ * h,0 ≤ sup
			s∈[-h;0]
			(30)
	It then follows from (28) that
	lim sup h→0 +	1 h	V (φ * h,v )-V (φ * h,0

, φ * h,v and φ * h,0 coincide on [-θ; -h). Hence,

φ * h,v -φ * h,0 = sup s∈[-h;0] φ * h,v (s) -φ * h,0 (s) ≤ sup s∈[-h;0] |f (φ, v) -f (φ, 0)| (h + s).

f

We are not aware of any extension of such converse results for timedelay systems, except for particular classes of systems[START_REF] Mironchenko | Characterizations of integral input-tostate stability for bilinear systems in infinite dimensions[END_REF].

[START_REF] Pepe | Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hale's form[END_REF] deals with neutral delay systems, but includes systems like (22) as special cases.

C. Proof of Theorem 3

The zero-output dissipativity assumption means that there exist a functional V : X → R ≥0 , Lipschitz on all bounded subsets of X , and class K ∞ functions α, α, and µ such that, for all φ ∈ X and all v ∈ R m ,

Moreover, since the system is assumed to be 0-GAS, Proposition 2 guarantees that there exist η ∈ PD, η, η ∈ K, γ ∈ K ∞ , and a functional W : X → R ≥0 , Lipschitz on all bounded subsets of X , such that, for all φ ∈ X and all v ∈ R m ,

Let Ṽ := V + W . Then, Ṽ is Lipschitz on bounded sets of X and we get from (31) and (33) that

where α := η + α. Moreover, (32) and (34) give that

Observing that α, α, and γ + µ are K ∞ functions and that η • α-1 ∈ PD, we conclude from ( 35)-( 36) that Ṽ is a strict iISS LKF for (3) and iISS follows from [10, Theorem 3.7].

D. Proof of Theorem 2

By assumption, there exist a functional V : X → R ≥0 , Lipschitz on all bounded subsets of X , α, α, γ ∈ K ∞ , and σ ∈ KL such that, for all φ ∈ X and all v ∈ R m ,

For v = 0, it holds in particular that D + (3) V (φ, 0) ≤ -σ(|φ(0)|, φ ). In view of Proposition 1, we conclude that the input-free system ẋ(t) = f (x t , 0) is GAS; in other words, the system (3) is 0-GAS. Moreover, it readily holds from (37) that D +

(3) V (φ, v) ≤ γ(|v|), so the system (3) is zero-ouptut dissipative. The conclusion then follows from Theorem 3.

E. Proof of Theorem 1

Let V : X → R ≥0 be a relaxed iISS LKF, meaning that there exist α, α, γ ∈ K ∞ , and α ∈ PD such that, for all φ ∈ X and all v ∈ R m ,

Let σ(r, s) := α(r) 1+s for all r, s ≥ 0. Then σ ∈ KL and

We can then invoke Theorem 2 to conclude.

VI. CONCLUSION AND PERSPECTIVES

We have shown that a point-wise dissipation rate is enough to guarantee iISS of time-delay systems. We believe that this result will simplify the iISS analysis in specific scenarios. Moreover, it makes the iISS framework more conform to the existing theory of disturbance-free systems. In establishing this result, we have in turn provided a relaxed Lyapunov-Krasovskii characterization of global asymptotic stability and extended the link between iISS and 0-GAS plus zero-output dissipativity to time-delay systems.

To the best of our knowledge, the possibility to establish ISS through a point-wise dissipation rate remains an open question. Moreover, we are not aware of any result stating iISS guarantees the existence of a (relaxed) iISS LKF. These two points would deserve further exploration.