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Abstract

This article focuses on numerical issues in max-
imum likelihood parameter estimation for Gaus-
sian process regression (GPR). This article inves-
tigates the origin of the numerical issues and pro-
vides simple but effective improvement strategies.
This work targets a basic problem but a host of
studies, particularly in the literature of Bayesian
optimization, rely on off-the-shelf GPR imple-
mentations. For the conclusions of these studies
to be reliable and reproducible, robust GPR im-
plementations are critical.

1 Introduction

Gaussian process regression (GPR; see, e.g., Rasmussen
and Williams, 2006), also known as kriging (see, e.g., Stein,
1999), has gained significant popularity in statistics and ma-
chine learning as a non-parametric Bayesian approach for
the prediction of unknown functions. The need for func-
tion prediction arises not only in supervised learning tasks,
but also for building fast surrogates of time-consuming
computations—e.g., in the assessment of the performance
of a learning algorithm as a function of tuning parameters
or, more generally, in the design and analysis computer ex-
periments (Santner et al., 2003). The interest for GPR has
also raised considerably due to the development of Bayesian
optimization (Mockus, 1975; Jones et al., 1998; Emmerich
et al., 2006; Villemonteix et al., 2009; Srinivas et al., 2010,
. . . ).

This context has fostered the development of a fairly large
number of open-source packages to facilitate the use of
GPR. Some of the popular choices are the Python modules
scikit-learn (Pedregosa et al., 2011), GPy (GPy authors,
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2019), GPflow (Matthews et al., 2017), GPyTorch (Gard-
ner et al., 2018), OpenTURNS (Baudin et al., 2015); the R
package DiceKriging (Roustant et al., 2012); and the MAT-
LAB/Octave toolboxes GPML (Rasmussen and Nickisch,
2010), STK (Bect et al., 2019) and GPstuff (Vanhatalo et al.,
2012).

Table 1: Inconsistencies in the results across different python
packages. The results were obtained by fitting a GPR model,
with constant mean and a Matérn kernel (ν = 5/2), to the Branin
function, using the default settings for each package. We used
50 training points and 500 test points sampled from a uniform
distribution on [−5,10]× [0,15]. The table reports the estimated
variance and length scale parameters of the kernel, along with the
empirical root mean squared prediction error (ERMSPE). The last
line shows the improvement using the recommendations in this
study.

LIBRARY Variance Length scales ERMSPE

SCIKIT-LEARN 0.23.2 9.9 ·104 (13, 43) 1.482
GPY 1.9.9 1.8 ·109 (100, 590) 0.237
GPYTORCH 1.2.1 1.7 ·100 (2, 2) 12.770
GPFLOW 1.3.0 1.3 ·109 (95, 540) 0.245
OPENTURNS 1.13 1.1 ·102 (8, 19) 3.301

GPY “IMPROVED” 9.4 ·1010 (220, 1500) 0.175

In practice, all implementations require the user to specify
the mean and covariance functions of a Gaussian process
prior under a parameterized form. Out of the various meth-
ods available to select the model parameters, we can safely
say that the most popular approach consists is the maximum
likelihood estimation (MLE) method—thus, GPR involves
an optimization task. However, a simple numerical exper-
iment summarized in Table 1 shows that different MLE
implementations from different Python packages produce
dramatically dispersed numerical results, even when the
same data and Gaussian process prior are used. (Moreover,
it turns out that none of the standard results in Table 1 are
really satisfactory compared to the result using the recom-
mendations in this study.) These stark differences were also
observed by Erickson et al. (2018).

In this article, our first objective is to understand the origin
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of the inconsistencies across available implementations. Our
second objective is to provide simple but effective strategies
for improving these implementations, with a focus on the
well-established GPy package. We shall propose solutions
and recommendations concerning several optimization set-
tings: initialization and restart strategies, parameterization
of the covariance, etc. By anticipation of our numerical
results, the reader is invited to refer to Figure 1 and Table 2,
which show that significant improvement in terms of esti-
mated parameter values and leave-one-out mean squared
error (LOO-MSE) can be obtained over default settings
using better optimization schemes.

Even though this work targets a seemingly prosaic issue,
and advocates somehow simple solutions, we feel that the
contribution is nonetheless of significant value considering
the widespread use of GPR. Indeed, a host of studies, par-
ticularly in the literature of Bayesian optimization, rely on
off-the-shelf GPR implementations: for the conclusions of
these studies to be reliable and reproducible, robust GPR
implementations are critical.

The article is organized as follows. Section 2 provides a
brief review of GPR and MLE. Section 3 describes some
numerical aspects of the evaluation and optimization of the
likelihood function, with a focus on GPy’s implementation.
Section 4 provides an analysis of factors influencing the
accuracy of numerical MLE procedures. Finally, Section 5
assesses the effectiveness of our solutions through numerical
experiments and Section 6 concludes the article.

Table 2: Improved (cf. Section 6) vs default setups in GPy for
the Borehole function with n ∈ {5d, 10d, 20d} data points (input
space dimension is d = 8). The columns report the LOO-MSE
values, and parentheses give the ratio of the LOO-MSE to the total
standard deviation of the data.

METHOD n = 5d n = 10d n = 20d

DEFAULT 6.04 (0.12) 2.84 (0.06) 1.59 (0.03)
IMPROVED 0.87 (0.017) 0.23 (0.005) 0.12 (0.002)

2 Background

2.1 Gaussian processes

Let us consider a Gaussian process ξ ∼ GP(m, k) indexed
by Rd , d ≥ 1, specified by a mean function m : Rd → R

and a covariance function k :Rd×Rd →R.

In the GPR framework, the objective is to predict ξ (x) at a
given location x ∈Rd given a data set D = {(xi, zi) ∈Rd×
R, 1 ≤ i ≤ n}, where the observations zis are assumed to
be the outcome of an additive-noise model: Zi = ξ (xi)+ εi,
1≤ i≤ n. In most applications, it is assumed that the εis are
zero-mean Gaussian i.i.d. random variables with variance
σ2

ε ≥ 0, independent of ξ . (In rarer cases, heteroscedasticity

is assumed.)

Knowing m and k, recall (see, e.g. Rasmussen and Williams,
2006) that the posterior distribution of ξ is such that

ξ | Z1, . . . , Zn, m, k ∼ GP(ξ̂n, kn) ,

where ξ̂n and kn stand respectively for the posterior mean
and posterior covariance. The posterior mean at x ∈Rd can
be written as

ξ̂n(x) = m(x)+
n

∑
i=1

wi(x;xn)(Zi−m(xi)) , (1)

where xn denotes observation points (x1, . . . , xn) and the
weights wi(x;xn) are solutions of the linear system:

(K(xn,xn)+σ
2
ε In)w(x;xn) = K(xn,x) , (2)

with K(xn, xn) the n× n covariance matrix with entries
k(xi, x j), In the identity matrix of size n, and w(x;xn)
(resp. K(xn,x)) the column vector with entries wi(x;xn)
(resp. k(xi,x)), 1 ≤ i ≤ n. The posterior covariance at
x, y ∈Rd may be written as

kn(x,y) = k(x,y)−w(y;xn)
TK(xn,x) . (3)

It is common practice in GPR to assume a zero mean func-
tion m = 0—a reasonable choice if the user has taken care to
center data—but most GPR tools also provide an option for
setting a constant mean function m( ·) = c ∈R. In this arti-
cle, we will include such a constant in our models, and treat
it as an additional parameter to be estimated by MLE along
with the others. (Alternatively, c could be endowed with
a Gaussian or improper-uniform prior, and then integrated
out; see, e.g., O’Hagan (1978).)

The covariance function, aka covariance kernel, models
similarity between data points and reflects the user’s prior
belief about the function to be learned. Most GPR numerical
implementations provide a couple of stationary covariance
functions taken from the literature (e.g., Wendland, 2004;
Rasmussen and Williams, 2006). The squared exponential
covariance function is often seen as a “default” covariance
function, especially when the function to be learned is be-
lieved to be very smooth, but rational quadratic or Matérn
covariance functions are also popular choices (see Table 3).
These covariance functions include a number of parame-
ters: a variance parameter σ2 > 0 corresponding to the
variance of ξ , and a set of range (or length scale) parameters
ρ1, . . . , ρd , such that

k(x,y) = σ
2r(h) , (4)

with h2 = ∑
d
i=1(x[i]− y[i])2/ρ2

i , where x[i] and y[i] denote
the elements of x and y. The function r : R→ R in (4) is
the stationary correlation function of ξ , which may also be
simply called kernel.

From now on, the vector of model parameters will be de-
noted by θ = (σ2, ρ1, . . . , ρd , . . . ,σ

2
ε )

T ∈Θ⊂Rp, and the
corresponding covariance matrix K(xn,xn)+σ2

ε In by Kθ .
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Figure 1: Improved (cf. Section 6) vs default setups in GPy on the Borehole function with n = 20d = 160 random training points. We
remove one point at a time to obtain (a) the distribution of the differences of negative log-likelihood (NLL) values between the two setups;
(b) the CDFs of the prediction errors at points removed; (c) pairs of box-plots for the estimated range parameters (for each dimension, the
box-plot for improved setup is on the left and the box-plot for default setup is on the right; horizontal red lines correspond to the estimated
values for the whole data set). Notice that the parameter distributions of the default setup are more spread out.

Table 3: Some kernel functions available in GPy. The Matérn
kernel is recommended by Stein (1999). Γ denotes the gamma
function, Kν is the modified Bessel function of the second kind
(Abramowitz and Stegun, 1964).

KERNEL r(h), h ∈ [0,+∞)

SQUARED EXPONENTIAL exp(− 1
2 r2)

RATIONAL QUADRATIC (1+ r2)−ν

MATÉRN WITH PARAM. ν > 0 21−ν

Γ(ν)

(√
2νr
)ν

Kν

(√
2νr
)

2.2 Maximum likelihood parameter estimation

In this article, we focus on GPR implementations where
the parameters (θ ,c) ∈ Θ×R of the process ξ are esti-
mated by maximizing the likelihood L(Zn|θ ,c) of Zn =
(Z1, . . . ,Zn)

T, or equivalently, by minimizing the negative

log-likelihood (NLL)

− log(L(Zn|θ ,c)) =
1
2
(Zn− c1n)

>K−1
θ
(Zn− c1n)

+
1
2

log|Kθ |+
n
2

log(2π). (5)

This optimization is typically performed by gradient-based
methods, although local maxima can be of significant con-
cern as the likelihood is often non-convex. Computing the
likelihood and its gradient w.r.t. (θ ,c) has a

O(n3 +dn2)

computational cost (Rasmussen and Williams, 2006; Petit
et al., 2020).

3 Numerical noise on the likelihood

The evaluation of the likelihood as well as its gradient is
subject to numerical noise, which can prevent proper conver-
gence of the optimization algorithms. To illustrate this fact,
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we show a typical situation on Figure 2 where the gradient-
based optimization algorithm stops before converging to a
good minimum. Numerical noise stems from both terms
of the likelihood, namely 1

2 Z>n K−1
θ

Zn and 1
2 log|Kθ |. (For

simplification, we assume c = 0 in this section.)

It is quite common, as in the case of GPy, to compute the first
term by solving the linear system of equations Kθ a = Zn
using a Cholesky decomposition of Kθ . Recall that the con-
dition number κ(Kθ ) of Kθ , defined as the ratio |λmax/λmin|
of the largest eigenvalue to the smallest eigenvalue is a key
element for analyzing numerical noise (Press et al., 1992).
In double-precision floating-point approximations of num-
bers, Zn is corrupted by an error ε whose magnitude is such
that ‖ε‖/‖Zn‖ ' 10−16. Worst-case alignment of Zn and ε

with the eigenvectors of Kθ gives

‖K−1
θ

ε‖
‖K−1

θ
Zn‖
' κ(Kθ )×10−16 , (6)

which shows how the numerical noise is amplified when the
covariance matrix becomes ill-conditioned.

The term log|Kθ | is nonlinear in Kθ , but observe, using the
identity d log|Kθ |/dKθ = K−1

θ
, that the differential of log| · |

at Kθ is given by H 7→ Trace(K−1
θ

H). Thus, the induced
operator norm with respect to the Frobenius norm ‖·‖F is
‖K−1

θ
‖F . We can then apply results from Trefethen and

Bau (1997) to get a local condition number of the mapping
A 7→ log|A| at Kθ :

κ( log| · |, Kθ )

, lim
ε→0

sup
‖δA‖F≤ε

∣∣log|Kθ +δA|− log|Kθ |
∣∣/∣∣log|Kθ |

∣∣
‖δA‖F/‖Kθ‖F

=

√
∑

n
i=1

1
λ 2

i

√
∑

n
i=1 λ 2

i

|∑n
i=1 log(λi)|

(7)

where λ1, · · · ,λn are the positive eigenvalues of Kθ . Then,
we have

κ(Kθ )

|∑n
i=1 log(λi)|

≤ κ(log| · |, Kθ )≤
nκ(Kθ )

|∑n
i=1 log(λi)|

, (8)

which shows that numerical noise on log|Kθ | is linked again
to the condition number of Kθ .

The local condition number of the quadratic form
1
2 ZT

n K−1
θ

Zn as a function of Zn can also be computed an-
alytically. Some straightforward calculations show that it
can be bounded by κ(Kθ ).

(When the optimization algorithm stops in the example of
Figure 2, we have κ(Kθ )' 1011 and κ(log| · |, Kθ )' 109.5.
The empirical numerical fluctuations were measured as the
residues of a local second-order polynomial best fit, giving
noise levels 10−7, 10−8 and 10−7.5 for K−1

θ
Zn, 1

2 ZT
n K−1

θ
Zn

and log|Kθ | respectively. These values are consistent with
the above first-order analysis.)
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Figure 2: Noisy likelihood profile along a particular direction
in the parameter space, with a best linear fit (orange line). This
example was obtained with GPy while estimating the parameters
of a Matérn-ν = 5/2 covariance, using 20 data points sampled
from a Branin function, and setting σ2

ε = 0. The red vertical line
indicates the location where the optimization of the likelihood
stalled.

Thus, when κ(Kθ ) becomes large in the course of the opti-
mization procedure, numerical noise on the likelihood and
its gradient may trigger an early stopping of the optimiza-
tion algorithm (supposedly when the algorithm is unable to
find a proper direction of improvement). It is well-known
that κ(Kθ ) becomes large when σ2

ε = 0 and one of the fol-
lowing conditions occurs: 1) data points are close, 2) the
covariance is very smooth (as for instance when consider-
ing the squared exponential covariance), 3) when the range
parameters ρi are large. These conditions arise more often
than not. Therefore, the problem of numerical noise in the
evaluation of the likelihood and its gradient is a problem
that should not be neglected in GPR implementations.

The most classical approach to deal with ill-conditioned
covariance matrices is to add a small positive number on
the diagonal of the covariance matrix, called jitter, which
is equivalent to assuming a small observation noise with
variance σ2

ε > 0. In GPy for instance, the strategy consists
in always setting a minimal jitter of 10−8, which is auto-
matically increased by an amount ranging from 10−6σ2 to
10−1σ2 whenever the Cholesky factorization of the covari-
ance matrix fails (due to numerical non-positiveness). The
smallest jitter making Kθ numerically invertible is kept and
an error is thrown if no jitter allows for successful factor-
ization. However, note that large values for the jitter may
yield smooth, non-interpolating approximations, with pos-
sible unintuitive and undesirable effects (see Andrianakis
and Challenor, 2012), and causing possible convergence
problems in Bayesian optimization.

Table 4 illustrates the behaviour of GPR when σ2
ε is in-

creased. It appears that finding a satisfying trade-of between
good interpolation properties and low numerical noise level
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can be difficult. (Table 4 also supports the connection in (6)
and (8) between noise levels and κ(Kθ ).)

In view of the results of Figure 1 based on the default set-
tings of GPy and Table 4, we believe that adaptive jitter
cannot be considered as a do-it-all solution.

4 Simple strategies for improving
implementations of MLE

In this section we present simple but hopefully efficient
levers / strategies to improve available implementations of
MLE for GPR, beyond the control of the numerical noise
on the likelihood using jitter. We mainly focus on 1) initial-
ization methods of the optimization procedure, 2) the stop-
ping criterion for the optimization, 3) the effect of “restart”
strategies and 4) the effect of the parameterization of the
covariance.

4.1 Initialization strategies

Most GPR implementations use a gradient-based local op-
timization algorithm to maximize the likelihood, which
requires the specification of starting/initial values for the
parameters. In the following, we consider different initial-
ization strategies.

4.1.1 Moment-based initialization

A first strategy consists in setting the parameters using em-
pirical moments of the data. More precisely, assuming a
constant mean m = c, and a stationary covariance k with
variance parameter σ2 and range parameters ρ1, . . . , ρd , set

cinit = mean(Z1, . . . , Zn) (9)
σ

2
init = var(Z1, . . . , Zn) (10)

ρk, init = std(x1, [k], . . . , xn, [k]), k = 1, , . . . , d, (11)

where mean, var and std stand for the empirical mean, vari-
ance and standard deviation, and xi, [k]s denotes the kth co-
ordinate of the point xi ∈ Rd . The rationale behind (11)
(following, e.g., Rasmussen and Williams, 2006) is that the
range parameters can be thought of as the distance one has
to move in the input space before the function value changes
significantly and we assume, a priori, that this distance is
linked to the dispersion of data points.

In GPy for instance, the default initialization consists in
setting c = 0, σ2 = 1 and ρk = 1 for all k = 1, . . . , d. This
is equivalent to the moment-based initialization scheme
when the data (both inputs and outputs) are centered and
standardized.

4.1.2 Profiled initialization

Assume the range parameters ρ1, . . . , ρd (and more gener-
ally, all parameters different from σ2, σ2

ε and c) are fixed,

and set σ2
ε = ασ2, with a prescribed multiplicative factor

α ≥ 0. In this case, the NLL can be optimized analytically
w.r.t. c and σ2. Optimal values turn out to be the generalized
least squares solutions

cGLS = (1Tn K−1
θ̃
1n)
−11Tn K−1

θ̃
Zn , (12)

σ
2
GLS =

1
n
(Zn− ĉ1n)

TK−1
θ̃
(Zn− ĉ1n) , (13)

where θ̃ = (σ2, ρ1, . . . , ρd , . . . , σ2
ε )

T ∈Θ, with σ2 = 1 and
σ2

ε = α .

Under the profiled initialization scheme, ρ1, . . . ,ρd are set
using (11), α is prescribed according to user’s preference,
and c and σ2 are initialized using (12) and (13).

4.1.3 Grid-search initialization

Grid-search initialization is a profiled initialization with
the addition of a grid-search optimization for the range
parameters.

Define a nominal range vector as

ρ0 =
√

d(max
1≤i≤n

xi,[1]− min
1≤i≤n

xi,[1], ..., max
1≤i≤n

xi,[d]− min
1≤i≤n

xi,[d])
T.

Then, define a one-dimensional grid of size L (e.g., L= 5) by
taking range vectors proportional to ρ0: {α1ρ0, . . . , αLρ0},
where the αis range, in logarithmic scale, from a “small”
value (e.g., α1 = 1/50) to a “large” value (e.g., αL = 2).

For each point of the grid, the likelihood is optimized with
respect to c and σ2 using (12) and (13). The range vector
with the best likelihood value is selected. (Note that this
initialization procedure is the default initialization procedure
in the MATLAB/GNU Octave toolbox STK.)

4.2 Stopping condition

Most GPR implementations rely on well-tested gradient-
based optimization algorithms. For instance, a popular
choice in Python implementations is to call the limited-
memory BFGS with box constraints (L-BFGS-B; see Byrd
et al., 1995) of the SciPy ecosystem. (Other popular op-
timization algorithms include the ordinary BFGS, Trun-
cated Newton Constrained, SQP, etc.; see, e.g. Nocedal
and Wright (2006).) The L-BFGS-B algorithm, which be-
longs to the class of quasi-Newton algorithms, uses limited-
memory Hessian approximations and shows good perfor-
mance on non-smooth functions (Curtis and Que, 2015).

Regardless of which optimization algorithm is chosen, the
user usually has the possibility to tune the behavior of the
optimization, and in particular to set the stopping condition.
Generally, the stopping condition is met when a maximum
number of iterations is reached or when a norm on the steps
or the gradient become smaller than a threshold.

By increasing the strictness of the stopping condition during
the optimization of the likelihood, one would expect better
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Table 4: Influence of the jitter on the GPR model. σ̂quad and σ̂log| · | stand for the empirical standard deviations of the numerical
noise on ZT

n K−1
θ

Zn and log|Kθ | respectively, measured using second-order polynomial regressions. The table also reports the condition

numbers κ(Kθ ) and κ(log| · |, Kθ ), the interpolation error
√

SSR/SST=
√

1
n ∑

n
j=1(Z j− ξ̂n(x j))2/std(Z1, ...,Zn), and the NLL. Reducing

numerical noise while keeping good interpolation properties requires careful attention in practice.

σ2
ε / σ2 0.0 10−8 10−6 10−4 10−2

σ̂quad / ZT
n K−1

θ
Zn 10−8 10−9.5 10−10.5 10−12 10−14

σ̂log| · | / log|Kθ | 10−7.5 10−9 10−11 10−13.5 10−15.5

κ(log| · |, Kθ ) 109.5 108.5 106.5 104.5 102.5

κ(Kθ ) 1011 109 107.5 105.5 103.5√
SSR/SST 3.3 ·10−10 1.2 ·10−3 0.028 0.29 0.75
− log(L(Zn|θ)) 40.69 45.13 62.32 88.81 124.76

parameter estimations, provided the numerical noise on the
likelihood does not interfere too much.

4.3 Restart and multi-start strategies

Due to numerical noise and possible non-convexity of the
likelihood with respect to the parameters, gradient-based
optimization algorithms may stall far from the global opti-
mum.

A common approach to circumvent the issue is to carry out
several optimization runs with different initialization points.
Two simple strategies can be compared.

Restart— In the view of Figure 2, a first simple strategy
is to restart the optimization algorithm to clear its memory
(Hessian approximation, step sizes. . . ), hopefully allowing
it to escape a possible problematic location using the last
best parameters as initial values for the next optimization
run. The optimization can be restarted a number of times,
until a budget Nopt of restarts is spent or the best value for
the likelihood does not improve.

Multi-start— Given an initialization point (θinit,cinit) ∈
Θ×R, a multi-start strategy consists in running Nopt > 1 op-
timizations with different initialization points corresponding
to perturbations of the initial point (θinit,cinit). In practice,
we suggest the following rule for building the perturbations:
first, move the range parameters around (ρ1, init, . . . , ρd, init)

T

(refer to Section 5 for an implementation); then, propagate
the perturbations on c and σ2 using (12) and (13). The pa-
rameter with the best likelihood value over all optimization
runs is selected.

4.4 Parameterization of the covariance function

The parameters of the covariance functions are generally
positive real numbers (σ2, ρ1,ρ2 . . .) and are related to scal-
ing effects that act “multiplicatively” on the predictive dis-
tributions. Since it is easier to carry out optimization on
unbounded domains, most GPR implementations introduce
a reparameterization using a monotonic one-to-one mapping
δ :R?

+→R, acting component-wise on the positive param-

eters of θ , resulting in a mapping ∆ : Θ→ Θ′. Thus, for
carrying out MLE, the actual criterion J that is optimized in
most implementations may then be written as

J : θ
′ ∈Θ

′ 7→ − log(L(Zn|∆−1(θ ′),c)) . (14)

Table 5 lists two popular reparameterization mappings δ .

The effect of reparameterization is to “reshape” the like-
lihood. Typical likelihood profiles using the log and the
so-called invsoftplus reparameterizations are shown on Fig-
ure 3. Notice that the NLL may be almost flat in some
regions depending on the reparameterization. Changing the
shape of the optimization criterion, combined with numeri-
cal noise, may or may not facilitate the convergence of the
optimization.

Table 5: Two popular reparameterization mappings δ , as imple-
mented, for example, in GPy and STK respectively. For invsoftplus,
notice parameter s > 0, which is introduced when input standard-
ization is considered (see Section 5).

REPARAM. δ :R?
+→R δ−1 :R→R?

+

INVSOFTPLUS(s) log(exp(θ/s)−1) s log(exp(δ )+1)
LOG log(θ) exp(δ )

5 Numerical study

In this section we empirically quantify the effects of the
levers of Section 4.

5.1 Methodology

The main metric used in this numerical study is based on
empirical cumulative distributions (ECDFs) of differences
on NLL values.

More precisely, consider N + 1 optimization schemes
S0,S1, . . . ,SN . S0 is a “bruteforce” optimization scheme
based on a very large number of multi-starts which
is assumed to provide a very robust MLE. S1, . . . ,SN
are optimization schemes to be tested, corresponding
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Figure 3: Profiles of the NLL along a linear path through the
profiled initialization point (at zero, blue vertical line) and the
optimum (at one, black vertical line). Orange (resp. blue) line
corresponds to the log (resp. invsoftplus) reparameterization.

to different combinations for the levers of Section 4.
Each optimization scheme is run on M data sets D j ={
(xi,zi) ∈Rd j ×R; i = 1, . . . ,n j

}
, j = 1, . . . ,M.

Denote by NLLi, j the estimation of the optimal NLL value
obtained by optimization scheme Si on data set D j, and let
ei, j, i = 1, . . . , N, j = 1, . . . , M, be the difference

ei, j = NLLi, j−NLL0, j .

A good scheme Si should concentrate the empirical dis-
tribution of the sample Ei = {ei, j, j = 1, . . . , M} around
zero—in other words, the ECDF is close to the ideal CDF
e 7→ 1[0,∞[(e). Using ECDF also provides a convenient way
to compare performances: a strategy with a “steeper” ECDF,
or larger area under the ECDF, is better.

5.2 Optimization schemes

All experiments are performed using GPy version 1.9.9,
with the default L-BFGS-B algorithm. We use a common
setup and vary the configurations of the optimization levers
as detailed below.

Common setup— All experiments use an estimated con-
stant mean-function, an anisotropic Matérn covariance func-
tion with regularity parameter ν = 5/2, and assumes no
observation noise (but we use the adaptive jitter of GPy
ranging from 10−6σ2 to 102σ2).

Initialization schemes— The three initialization proce-
dures detailed in Section 4.1 are considered.

Stopping criteria— We consider two settings for the stop-
ping condition of the L-BFGS-B algorithm called soft (the
default setting) and strict. Details are given in Table 6.

Table 6: Soft and Strict settings for the stopping of the L-BFGS-B
optimizer.

CONFIGURATION SOFT (DEFAULT) STRICT

Max. # steps (maxiter) 1000 1000
Step size param. (factr) 107 10
Gradient threshold (pgtol) 10−5 10−20

Restart and multi-start— The two strategies of Sec-
tion 4.3 are implemented using a log reparameterization
and initialization points (θinit,cinit) determined using a
grid-search strategy. For the multi-start strategy the ini-
tial range parameters are perturbed according to the rule
ρ← 10log10(ρ)+η where η is drawn from a N (0,σ2

η) distri-
bution with σ2

η = 3.

Reparameterization— We study the log reparameteriza-
tion and two variants of the invsoftplus. The first version
called no-input-standardization simply corresponds to tak-
ing s = 1 for each component of the range parameters. The
second version called input-standardization consists in scal-
ing the inputs to a unit standard deviation on each dimension
(by taking the corresponding values for s).

5.3 Data sets

The data sets are generated from six well-known test func-
tions in the literature of Bayesian optimization: the Branin
function (d = 2; see, e.g. Surjanovic and Bingham, 2013),
the Borehole function (d = 8; see, e.g. Worley, 1987), the
WeldedBeam Design function (d = 4; see Chafekar et al.,
2003), the g10 function (d = 8; see Ahmed, 2004, p. 128),
along with two modified versions, g10mod and g10modmod
(see Feliot, 2017).

Each function is evaluated on Latin hypercube samples
with a multi-dimensional uniformity criterion (LHS-MDU;
Deutsch and Deutsch, 2012), with varying sample size
n ∈ {3d, 5d, 10d, 20d}, resulting in a total of 6× 4 = 24
data sets.

5.4 Results and findings

Figure 4 shows the effect of reparameterization and the ini-
tialization method. Observe that the log reparameterization
performs significantly better than the invsoftplus reparame-
terizations. For the log reparameterization, observe that the
grid-search strategy brings a moderate but not negligible
gain with respect to the two other initialization strategies,
which behave similarly.

Next, we study the effect of the different restart strategies
and the stopping conditions, on the case of the log reparam-
eterization and grid-search initialization. The metric used
for the comparison is the area under the ECDFs of the differ-
ences of NLLs. Since the multi-start strategy is stochastic,



Maximum likelihood issues in Gaussian process regression

0 200 400 600 800
NLL differences

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

softplus_moment
softplus_std_grid
log_grid

(a) effect of reparameterization

0 20 40 60 80
NLL differences

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

moment
profiled
grid

(b) effect of initialization

Figure 4: Initialization and reparameterization methods. (a) ECDFs corresponding to the best initialization method for each of the
three reparameterizations—red line: log reparam. with grid-search init.; green line: invsoftplus with input-standardization reparam.
and grid-search init; blue line: invsoftplus with no-input-standardization reparam. and moment-based init. (b) ECDFs for different
initialization methods for the log reparameterization.
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(a) restart with Nopt = 1, . . . , 20
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(b) multi-start with Nopt = 1, . . . , 20, σ2
η = 3.0

Figure 5: Area under the ECDF against run time: (a) restart strategy; (b) multi-start strategy. The y-axes in (a) and (b) are normalized
w.r.t the maximum area 387.01.

results are averaged over 50 repetitions of the optimization
procedures (for each Nopt value, the optimization strategy is
repeated 50 times). To make comparisons easier, the areas
are normalized, with a normalizing factor equal to the area
under the ECDF of the best strategy, namely, the multi-start
strategy with Nopt = 20. The areas are plotted against the
computational run time. Run times are averaged over the
repetitions in the case of the multi-start strategy.

Figure 5 shows that the soft stopping condition seems uni-
formly better. The restart strategy yields better improve-
ments than the multi-start strategy for small computational
budgets, but the multi-start strategy is able to achieve the
best results at the price of higher computational costs.

6 Conclusions and recommendations

Our numerical study has shown that the parameterization
of the covariance function has the most significant impact
on the accuracy of MLE in GPy. Using restart / multi-start
strategies is also very beneficial to mitigate the effect of
the numerical noise on the likelihood. The two other levers
have second-order but nonetheless measurable influence.

These observations make it possible to devise a recom-
mended combination of improvement levers—for GPy at
least, but hopefully transferable to other software packages
as well. When computation time matters, an improved
optimization procedure for MLE consists in choosing the
combination of a log reparameterization, with a grid-search
initialization, the soft (GPy’s default) stopping condition,
and a small number, say Nopt = 5, of restarts.

Figure 1 and Table 2 are based on the above optimization
procedure, which results in significantly better likelihood
values and smaller prediction errors. The multi-start strategy
can be used when accurate results are sought.

As a conclusion, we believe that this elementary empirical
study is a worthwhile contribution, since it tackles a ba-
sic building block of sometimes very elaborate GPR-based
methods (in Bayesian optimization or elsewhere). Our rec-
ommendations are not intended to be universal, but will
hopefully encourage researchers and users to develop and
use more reliable and more robust GPR implementations.
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