DCE Reading Group @ ATI

Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation

Subhasish Basak¹, Sébastien Petit^{1,2}, Julien Bect¹ & Emmanuel Vazquez¹

March 10, 2021

Laboratoire des Signaux et Systèmes, CNRS, CentraleSupeléc, Univ. Paris-Saclay
 Safran Aircraft Engines, France

This work is licensed under a Creative Commons BY-NC-ND 4.0 license.

©()\$)=

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

DOI: 10.5281/zenodo.4653846

Motivation & Scope

- Gaussian processes (GP): Popular tool for regression/interpolation, widely used in the Statistics and ML community
 - Geostatistics (Stein, 1999),
 - Design & analysis of computer experiments (Santner et al., 2003),
 - Machine Learning (Rasmussen & Williams, 2006),
 - Bayesian optimization (Mockus, 1975; Jones, 1998; Emmerich et al., 2006; ...).
- Applications rely highly on off-the-shelf GP implementations.
- Problem: Lack of consistency and robustness (see Erickson et al., 2018) among available software packages (Python, R, Matlab).

GP modelling with Python packages

• Consider the Branin function; $(x_1, x_2) \in [-5, 10] \times [0, 15]$

$$f(x_1, x_2) = (x_2 - \frac{5 \cdot 1}{4\pi^2} x_1^2 + \frac{5}{\pi} x_1 - 6)^2 + 10(1 - \frac{1}{8\pi})\cos(x_1) + 10$$

- $\xi \sim GP(0, k)$ with k a Matérn kernel ($\nu = 5/2$).
- Training (testing) on dataset of size 50 (500), sampled from a uniform grid.

Optimized negative log likelihood (NLL) & prediction error (ERMSPE).

Estimates	scikit-learn	OpenTURNS	GPy	GPflow	GPy improved
NLL ERMSPE	$132.421 \\ 1.482$	$163.125 \\ 3.301$	$113.707 \\ 0.259$	$113.223 \\ 0.236$	$112.050 \\ 0.175$

- Efficient optimization of NLL is crucial for robust and reliable applications.
- The objective of our article is two-fold
 - Investigate the origin of these inconsistencies.
 - Propose effective strategies for improvement.

Contents

- 1 Background : GP & MLE
- 2 Numerical noise
- 3 Improvement strategies
- 4 Numerical study
- 5 Concluding remarks

1 GP & Maximum likelihood estimation

• Consider a data set $D = \{(x_i, z_i) \in \mathbb{R}^d \times \mathbb{R}, 1 \le i \le n\}$ and an additive-noise model

$$Z_i = \xi(x_i) + \varepsilon_i,$$

where

- ξ is a Gaussian process GP(m, k)

- mean function $m : \mathbb{R}^d \to \mathbb{R}$, kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ - $\varepsilon_i \stackrel{iid}{\sim} \mathbb{N}(0, \sigma_{\varepsilon}^2)$, independent of ξ .

• Model parameters (to be estimated):

-
$$c \rightsquigarrow$$
 scalar for constant $m \ (c \in \mathbb{R})$

-
$$\rho_i \rightsquigarrow$$
 lengthscales of $k \ (1 \le i \le d)$

-
$$\sigma^2 \rightsquigarrow$$
 variance of $k \ (> 0)$

-
$$\sigma_{\varepsilon}^2 \rightsquigarrow$$
 noise variance (≥ 0)

• The predictive posterior distribution of ξ is then obtained as

$$\xi \mid \underline{Z}_n, m, k \sim GP(\widehat{\xi}_n, k_n),$$

The posterior mean $\hat{\xi}_n$ and covariance k_n is computed by solving a system of linear equations (see Rasmussen and Williams, 2006).

Parameter estimation with MLE

- Let $K_{\theta} = (k(x_i, x_j))_{n \times n} + \sigma_{\varepsilon}^2 I_n$, $x_i \in \underline{x}_n$, be the covariance matrix with parameters $\theta = (\sigma^2, \rho_1, \ldots, \rho_d, \sigma_{\varepsilon}^2)^{\mathsf{T}}$.
- The likelihood of \underline{Z}_n is given by

$$\mathcal{L}(\underline{Z}_n|\theta,c) = \frac{1}{(2\pi)^{\frac{n}{2}}\sqrt{|\mathbf{K}_{\theta}|}} \exp(-\frac{1}{2}(\underline{Z}_n - c\mathbb{1}_n)^{\top}\mathbf{K}_{\theta}^{-1}(\underline{Z}_n - c\mathbb{1}_n)).$$
(1)

• The negative log likelihood (NLL) is

$$-\log(\mathcal{L}(\underline{Z}_n|\theta,c)) = \frac{1}{2}(\underline{Z}_n - c\mathbb{1}_n)^{\top} \mathbf{K}_{\theta}^{-1}(\underline{Z}_n - c\mathbb{1}_n) + \frac{1}{2}\log|\mathbf{K}_{\theta}| + \text{ constant.}$$
(2)

Most GP packages estimate the parameters by minimizing the NLL.

Figure 1: Contour of NLL along with estimated lengthscales.

Optimizing the NLL

- The optimization is typically performed by gradient-based algorithms.
 - GPyTorch uses ADAM (Kingma and Ba, 2015)
 - OpenTURNS uses TNC (Nash, 1984)
 - others generally use L-BFGS-B (Byrd et al., 1995).
- Associated computational cost $O(n^3 + dn^2)$ (Rasmussen and Williams, 2006; Petit et al., 2020).
- In this approach the non-convexity of the likelihood can be of significant concern.

2 Numerical noise

- Evaluation of the likelihood is susceptible to numerical noise
- Prevents proper convergence (early stopping) of the optimizer

$\rightarrow~$ here the optimizer stalls at 0.

- Numerical noise stems from both, $\frac{1}{2}\underline{Z}_{n}^{\top}K_{\theta}^{-1}\underline{Z}_{n}$ and $\frac{1}{2}\log|K_{\theta}|$.
- Our paper details that this noise is directly linked to the condition number $\kappa(K_{\theta})$.
- Even when $\kappa(K_{\theta})$ is standard, the noise can prevent proper convergence of the optimizer.

A standard solution : using jitter

• A high condition number (equivalantly an ill-conditioned matrix) can occur if

-
$$\sigma_{\varepsilon}^2 = 0$$
 (for an interpolating model)

- very smooth covariance function (e.g. squared exponential)
- high lengthscale values
- very close datapoints
- Jitter: small positive quantity, added to the diagonal of $K_{\boldsymbol{\theta}}.$
- Lowers $\kappa(K_{\theta})$, but produces non interpolating model.
- Example: GPy uses iterative jitter ranging from $10^{-6}\sigma^2$ to $10^{-1}\sigma^2$.
- The literature includes other standard ways to choose and implement jitter (see Ranjan et al.).

Effect of jitter

$\sigma_{arepsilon}^2$ / σ^2	0.0	10^{-8}	10^{-6}	10^{-4}	10^{-2}
$\kappa(K_{\theta})$	10^{11}	10^{9}	$10^{7.5}$	$10^{5.5}$	$10^{3.5}$
$\sqrt{\text{SSR}/\text{SST}}$	$3.3\cdot10^{-10}$	$1.2\cdot 10^{-3}$	0.028	0.29	0.75
NLL	40.69	45.13	62.32	88.81	124.76

- Model's predictive performance deteriorates, causing possible convergence problems in Bayesian optimization.
- Conclusion: Jitter is not a satisfactory solution to numerical noise.

3 Improvement strategies

- Goal: Prevent early stopping of the optimizer and robust estimation of parameters.
- Strategies considered for improving the optimizer
 - parameter initialization methods
 - stopping criterion for optimization
 - "restart" strategies
 - parameterization of the covariance

Initialization strategies

The choice of good initialization point seems important.

• Moment-based: empirical moments of the data used to initialize the parameters

$$c_{\text{init}} = \text{mean}(Z_1, \dots, Z_n), \tag{3}$$

$$\sigma_{\text{init}}^2 = \operatorname{var}(Z_1, \dots, Z_n), \tag{4}$$

$$\rho_{k, \text{ init}} = \operatorname{std}(x_{1, [k]}, \dots, x_{n, [k]}), \quad k = 1, \dots, d,$$
(5)

 \rightarrow Available in GPy.

• Profiled: Initialize lengthscales using (5) then take the generalized least square (GLS) solutions for (c, σ^2)

$$c_{\text{GLS}} = (\mathbb{1}_n^{\mathsf{T}} \mathbf{K}_{\theta}^{-1} \mathbb{1}_n)^{-1} \mathbb{1}_n^{\mathsf{T}} \mathbf{K}_{\theta}^{-1} \underline{Z}_n, \qquad (6)$$

$$\sigma_{\text{GLS}}^2 = \frac{1}{n} (\underline{Z}_n - c_{\text{GLS}} \,\mathbb{1}_n)^{\mathsf{T}} \mathrm{K}_{\theta}^{-1} (\underline{Z}_n - c_{\text{GLS}} \,\mathbb{1}_n) \,, \tag{7}$$

• Grid-search: For each point in a grid of lengthscales $\{\alpha_1\rho_0, \ldots, \alpha_L\rho_0\}$, with $\alpha_i \ge 0$ and

$$\rho_{0,[k]} = \sqrt{d} \left(\max_{1 \le i \le n} x_{i,[k]} - \min_{1 \le i \le n} x_{i,[k]} \right), \quad 1 \le k \le d.$$

the likelihood is optimized w.r.t c and σ^2 using (6) and (7). The lengthscale with the best likelihood value is selected.

 $\rightarrow\,$ Available in MATLAB/GNU Octave toolbox STK.

Stopping condition

- Tuning the stopping criterions restricts/extends the search of the optimizer.
- Criterions for L-BFGS-B algorithm in GPy
 - maxiter : Total no. of iterarions
 - bfgs_factr : Threshold for the difference in functional values for two consequtive iteration
 - gtol : Threshold for the gradient

Restarts & multi-starts

- Numerical noise and non-convexity causes early stopping of the optimizer
- Solution: Carrying out several optimization runs with different initialization points.
- Restart:
 - Runs the algorithm $N_{\rm opt}$ times iteratively
 - Clears the memory (Hessian approximations) each time
 - The last estimated parameters used as the new initial values.
- Multi-start:
 - Runs the algorithm $N_{\rm opt}$ times with different initialization points
 - Perturbations of the primary initial point are considered
 - The parameter with the best likelihood value over all runs is selected.

Parameterization of the covariance function

- $\theta \in \Theta \subset \mathbb{R}^p_+$ is optimized on a transformed domain $\Theta' \subset \mathbb{R}^p$.
- The aim is to reshape the likelihood, facilitating smoother convergence.
- A monotonic one-to-one mapping $\Delta: \Theta \to \Theta'$, is applied before optimizing NLL.

$$\theta'_{opt} = \underset{\theta' \in \Theta'}{\arg\min} - \log(\mathcal{L}(\underline{Z}_n | \Delta(\theta), c))$$
(8)

- θ'_{opt} is inverted using Δ^{-1} to obtain the true parameter values.
- Examples :
 - invsoftplus(s): $\log(\exp(\theta/s) 1)$, s = parameter for input standardization.
 - log: $\log(\theta)$

4 Numerical study

- Optimization schemes (combination of different improvement strategies) are compared to find the optimal strategies.
- Metric: empirical cumulative distributions (ECDFs) of differences of NLL values corresponding to a brute-force scheme with robust MLE.
- Data: simulated with a multi-dimensional uniformity criterion (LHS-MDU; Deutsch and Deutsch, 2012) from test functions in optimization literature.
- Common setup
 - GPy version 1.9.9 with L-BFGS-B optimizer
 - Constant mean-function
 - Anisotropic Matérn($\nu = 5/2$) kernel
 - $\sigma_{\varepsilon}^2=0$

Figure 2: Best initialization method for each of the parameterizations.

Figure 3: Different initializations for the log parameterization.

Figure 4: Area under the ECDF against run time for restart strategy with $N_{\rm opt} = 1, \ldots, 20.$

Figure 5: Area under the ECDF against run time for multi-restart strategy with $N_{\rm opt} = 1, \ldots, 20.$

The optimal choice

- The recommended configuration consists of :
 - log parameterization
 - grid-search initialization
 - soft (GPy's default) stopping condition
 - small number $N_{\rm opt} = 5$ of restarts
- This improved setup is compared with GPy's default setup, with Leave One Out metrics (LOO) on the Borehole function (160 data points).

$$f(x) = \frac{2\pi T_u(H_u - H_l)}{\ln(\frac{r}{r_w}) \left[1 + \frac{2LT_u}{\ln(\frac{r}{r_w})r_w^2 K_w} + \frac{T_u}{T_l}\right]}$$

Figure 6: Distribution of the differences of NLL values.

Figure 7: ECDFs of the prediction errors at points removed.

5 Concluding remarks

- Off-the-shelf GP implementations should be implemented carefully.
- The numerical noise on the likelihood should not be overlooked.
- Adaptive jitter cannot be considered as a do-it-all solution.
- The ML estimation can be significantly improved using some simple and effective strategies.
- This study intends to encourage practitioners to develop more robust GP implementations.

DCE Reading Group @ ATI

Numerical issues in maximum likelihood parameter estimation for Gaussian process interpolation

Subhasish Basak¹, Sébastien Petit^{1,2}, Julien Bect^1 & Emmanuel Vazquez¹

March 10, 2021

Laboratoire des Signaux et Systèmes, CNRS, CentraleSupeléc, Univ. Paris-Saclay
 2. Safran Aircraft Engines, France