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This paper is concerned with the in-domain stabilization of a class of block diagonal infinite-dimensional systems in the presence of an uncertain and time-varying delay in the distributed control input. Two actuation schemes are considered. The first one assumes a control input that is fully distributed over the domain. The second one assumes that the control input is finite-dimensional, acting over the domain via a bounded operator. In both cases, the control design strategy consists in a predictor feedback law synthesized on a finite-dimensional truncated LTI model capturing the unstable dynamics of the original infinitedimensional system. The predictor feedback law is designed based on the knowledge of the nominal value of the uncertain and time-varying input delay. In the second actuation scheme, the case of distinct input delays in the different scalar control input channels is considered.

I. INTRODUCTION

Stabilization of open-loop unstable partial differential equations (PDEs) in the presence of delays, either in the control input [START_REF] Guzmán | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control[END_REF], [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF], [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF], [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF], [START_REF] Lhachemi | Control law realification for the feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF], [START_REF] Nicaise | Stabilization of the wave equation with boundary or internal distributed delay[END_REF]- [START_REF] Qi | Stabilization of reaction-diffusions PDE with delayed distributed actuation[END_REF] or in the state [START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF], [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF]- [START_REF]Boundary constrained control of delayed nonlinear Schrödinger equation[END_REF], [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and statedelay[END_REF], [START_REF] Solomon | Stability and passivity analysis of semilinear diffusion PDEs with time-delays[END_REF], is an active topic of research. In this paper, we are focused on the first class of problems. Two types of approaches have been developed for the boundary stabilization of PDEs in the presence of arbitrarily large delays in the control input. The first approach relies on backstepping transformations. Such a control design strategy was reported in [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF] for the boundary feedback stabilization of an unstable reaction-diffusion equation under a constant input delay. More recently, a second approach taking advantage of the predictor feedback strategy for finite-dimensional LTI systems was reported in [START_REF] Prieur | Feedback stabilization of a 1-D linear reactiondiffusion equation with delay boundary control[END_REF]. In this work, the predictor feedback law is designed on a finite-dimensional truncated model capturing the unstable modes of the distributed parameter system. The stability analysis of the resulting closed-loop infinite-dimensional system was carried out via a Lyapunov-based argument. The same approach was reused in [START_REF] Guzmán | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control[END_REF] for the boundary stabilization of a linear Kuramoto-Sivashinsky equation under constant input delay. This approach was then generalized to a class of diagonal infinite-dimensional systems in [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF], [START_REF] Lhachemi | Control law realification for the feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] for constant input delays and then in [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF] for fast time-varying input delays. While the above approaches apply for boundary control inputs, very few reported works deal with the in-domain stabilization of PDEs in the presence of a long input delay. The recent work [START_REF] Qi | Stabilization of reaction-diffusions PDE with delayed distributed actuation[END_REF] tackles this problem for an unstable reaction-diffusion equation with Dirichlet boundary conditions and a constant delay in the in-domain control input. The control scheme assumes that the control input is H. Lhachemi and R. Shorten acknowledge the support of Science Foundation Ireland (Grant numbers 16/RC/3872 and 16/IA/4610) and I-Form industry partners. C. Prieur acknowledges the support from MIAI@Grenoble Alpes, (ANR-19-P3IA-0003).
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In this work, we consider a class of block-diagonal infinitedimensional systems presenting a finite number of unstable modes (counted with multiplicity) while the infinite-dimensional stable part of the system is assumed to be exponentially stable. The former assumption (finite number of unstable modes) is generally seen as a necessary condition to achieve the robust stabilization of the plant. In this context, our objective is to develop a control strategy for the stabilization of the aforementioned class of block-diagonal infinitedimensional systems in the presence of uncertain and time-varying delays in the in-domain control input. This is motivated by the fact that input delays are ubiquitous in practical applications. Their occurrence induce challenges since they introduce an infinite number of modes which can provoke instabilities and hence cannot be neglected during control design [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF]. Two control schemes are considered. The first one assumes a fully distributed control input, i.e. a configuration that allows to freely impose the value of the command input at any point of the domain. The second one assumes that the actual control input is finite dimensional and applies to the domain via a bounded operator. In the latter configuration, we further consider the case of distinct uncertain and time-varying input delays in the different scalar control inputs. In both configurations, the control design is performed on a finite-dimensional truncated model capturing the finite number of unstable modes of the distributed parameter system. The subsequent controller takes the form of a predictor feedback law designed based on the nominal value of the uncertain and timevarying input delay [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF], [START_REF]Robustness of constant-delay predictor feedback with respect to distinct uncertain time-varying input delays[END_REF]. We assess that this control strategy preserves the stability property of the residual infinite-dimensional dynamics, thus achieving the exponential stabilization of the closedloop system. In essence, this control design procedure is similar to early-lumping approximation methods reported for the stabilization of autonomous infinite dimensional plants by means of a bounded input operator [START_REF] Morris | Control of systems governed by partial differential equations[END_REF]. In this context, our main contribution is the handling of the impact of the input delays which introduce an infinite-dimensional dynamics in the loop [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF] while their time-varying nature induces a non-autonomous closed-loop system. The obtained results are applied to the in-domain stabilization of a reaction-diffusion equation with Robin boundary conditions and also to the stabilization of a wave equation presenting a Kelvin-Voigt damping parameter.

This paper is organized as follows. The investigated control problem setting is introduced in Section II. The case of a fully distributed control input is discussed in Section III while the case of a finitedimensional control input acting via a bounded operator is described in Section IV. Finally, concluding remarks are provided in Section V.

II. PROBLEM SETTING

A. Notation

The sets of non-negative integers, real, non-negative real, and complex numbers are denoted by N, R, R+, and C, respectively. The real and imaginary parts of a complex number z are denoted by Re z and Im z, respectively. The field K denotes either R or C. The set of n-dimensional vectors over K is denoted by K n and is endowed with the Euclidean norm x = √ x * x. The set of n × m matrices over K is denoted by K n×m and is endowed with the induced norm denoted by • . For any symmetric matrix P ∈ R n×n , P 0 (resp. P 0) means that P is positive definite (resp. positive semi-definite). The set of symmetric positive definite matrices of order n is denoted by S + * n . For any symmetric matrix P ∈ R n×n , λm(P ) and λM (P ) denote the smallest and largest eigenvalues of P , respectively. The range of an operator in denoted by R(•). For any t0 > 0, we say that ϕ ∈ C 0 (R; R) is a transition signal over [0, t0] if 0 ≤ ϕ ≤ 1, ϕ| (-∞,0] = 0, and ϕ| [t 0 ,+∞) = 1.

B. Block diagonal operators

We denote by H a separable Hilbert space over the field R. Definition 1: (Πn) n≥1 ∈ L(H) N , with Πn = 0 for all n ≥ 1, is said to be a (finite or infinite) family of complete orthogonal projections if 1) (Πn)2 = Πn for all n ≥ 1;

2) Πnx, y = x, Πny for all n ≥ 1 and all x, y ∈ H;

3) ΠnΠm = 0 for all n = m; 4) z = n≥1 Πnz for all z ∈ H.

We say that (An) n≥1 ∈ L(H) N is compatible with the family of complete orthogonal projections (Πn) n≥1 if

AnΠn = ΠnAn (1)
for all n ≥ 1.

In the context of Definition 1, we have that z 2 = n≥1 Πnz 2 for all z ∈ H. In this paper, we extensively use the following lemma which is a slight and straightforward variation of [START_REF] Leiva | A lemma on C 0 -semigroups and applications[END_REF]Lem. 2.1].

Lemma 1: Let (An) n≥1 ∈ L(H) N which is compatible with (Πn) n≥1 ∈ L(H) N a family of complete orthogonal projections. We assume that there exists g ∈ C 0 (R+; R) such that1 e Ant Πn ≤ g(t)

(2) for all t ≥ 0 and n ≥ 1. Then T (t) defined, for all t ≥ 0 and z ∈ H, by

T (t)z = n≥1 e Ant Πnz (3) 
is a C0-semigroup on H whose infinitesimal generator is given by

Az = n≥1 AnΠnz (4) 
for any z ∈ D(A) with

D(A) =    z ∈ H : n≥1 AnΠnz 2 < ∞    . ( 5 
)
Remark 1: We note that, for any given z ∈ H, TN (t)z = N n=1 e Ant Πnz converges uniformly in t on compact intervals to T (t) as N → +∞. This property is one of the key assumptions for early-lumping methods as described in [START_REF] Morris | Control of systems governed by partial differential equations[END_REF].

•

C. Problem setting

In this work we consider the abstract system

dX dt (t) = AX(t) + f (t) (6a) 
X(0) = X0 (6b)
where, under the assumptions of Lemma 1, A takes the form (4) of the infinitesimal generator of the C0-semigroup T (t) given by (3). The structure of function f ∈ L 1 loc (R+; H), which will depend on a delayed version of the actual control input u, will be specified later. Here X0 ∈ H represents the initial condition. Then the mild solution X ∈ C 0 (R+; H) of ( 6) is given by

X(t) = T (t)X0 + t 0 T (t -s)f (s)ds.
We introduce xn(t) = ΠnX(t) and we have that X(t) 2 = n≥1 xn(t) 2 . From (1) and as An, Πn ∈ L(H), we have e Ant Πn = Πne Ant . Then we infer from Πn ∈ L(H) and ΠnΠm = 0 for n = m that

xn(t) = ΠnT (t)X0 + t 0 ΠnT (t -s)f (s) ds = m≥1 ΠnΠme Amt X0 + t 0 m≥1
ΠnΠme Am(t-s) f (s) ds = e Ant xn(0) + t 0 e An(t-s) Πnf (s) ds [START_REF] Kang | Boundary control of delayed ODE-heat cascade under actuator saturation[END_REF] for all n ≥ 1 and t ≥ 0.

III. FULLY DISTRIBUTED CONTROL INPUT

In this section, we consider the case of a fully distributed control input. Specifically, we consider the abstract boundary control system [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF] with f (t) = u(t -D(t)) where u(t) ∈ H is the control input with u(τ ) = 0 for τ ≤ 0 and D(t) ∈ [D0 -δ, D0 +δ] is an uncertain and time-varying control input delay. Thus, the studied system takes the following form:

dX dt (t) = AX(t) + u(t -D(t)) (8a) 
X(0) = X0 (8b) 

A. Main result

The main result of this section is the following theorem. Theorem 1: Let D0, t0 > 0 be given. Let (An) n≥1 ∈ L(H) N be compatible with (Πn) n≥1 ∈ L(H) N a family of complete orthogonal projections. We assume that there exists N0 ≥ 1 such that 2 :

• dn = dim(R(Πn)) < ∞ for all 1 ≤ n ≤ N0; • there exist M ≥ 1 and σ > 0 such that e Ant Πn ≤ M e -σt
for all n ≥ N0 + 1 and t ≥ 0. We denote by T (t) the C0-semigroup defined by (3) and we consider A its associated infinitesimal generator given by ( 4). For all 1 ≤ n ≤ N0, we define

• Bn = (e n,l ) 1≤l≤dn an orthonormal basis of R(Πn); • An ∈ R dn×dn the matrix of An| R(Πn) : R(Πn) → R(Πn) in the orthonormal basis Bn; • A = diag(A1, . . . , AN 0 ) ∈ R d×d where d = N 0
n=1 dn. We constrain the structure of the control law as follows:

u(t) = N 0 n=1 dn l=1 u n,l (t)e n,l ∈ N 0 n=1 R(Πn). (9) 
Introducing

x(t) = x1(t) x2(t) . . . xN 0 (t) ∈ R d , u(t) = u1(t) u2(t) . . . uN 0 (t) ∈ R d with xn(t) = xn,1(t) xn,2(t) . . . x n,dn (t) ∈ R dn , un(t) = un,1(t) un,2(t) . . . u n,dn (t) ∈ R dn
and xn(t) = dn l=1 x n,l (t)e n,l , the control input takes the form

u(t) = ϕ(t)K e D 0 A x(t) + t t-D 0 e (t-s)A u(s) ds (10) 
where ϕ ∈ C 0 (R+; R) is an arbitrary transition signal 3 over [0, t0] and K ∈ R d×d is a feedback gain such that A cl = A + K is Hurwitz. Considering Θu(δ, κ) given by ( 15) in the Appendix with M = A cl and N = e D 0 A K, let δ ∈ (0, D0) and κ ∈ (0, σ] be such that 4 the LMI Θu(δ, κ) ≺ 0 is feasible for some P1, Q ∈ S + * d and P2, P3 ∈ R d×d . Then there exists C0 > 0 such that, for any X0 ∈ H and any D ∈ C 0 (R+; R+) with |D -D0| ≤ δ, the mild solutions of ( 8) with command input u given by ( 9) satisfy

X(t) + u(t) ≤ C0e -κt X0 for all t ≥ 0.
Proof. First, since An is bounded, we have e Ant Πn ≤ e An t for all 1 ≤ n ≤ N0 and t ≥ 0. Since we assumed that e Ant Πn ≤ M e -σt for all n ≥ N0 + 1 and t ≥ 0, we have the existence of a continuous function g such that (2) holds. Thus the conclusions of Lemma 1 apply.

As D(t) ≥ D0 -δ > 0, the well-posedness of the closed-loop system with u ∈ C 0 (R+; H) is a straightforward consequence of the application of the steps method and the fact that the solution of the fixed-point equation ( 10) is uniquely defined with u ∈ C 0 (R; R d ) and u(τ ) = 0 for τ ≤ 0; see [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF] for details.

From ( 7) and ( 9), we have for all t ≥ 0 and all 1 ≤ n ≤ N0 that

xn(t) = e Ant xn(0) + t 0
e An(t-s) un(s -D(s))ds.

As un and D are continuous, we infer that xn is continuously differentiable and satisfies the ordinary differential equation (ODE)

ẋn(t) = Anxn(t) + un(t -D(t))
for all t ≥ 0. Thus we have

ẋ(t) = Ax(t) + u(t -D(t))
for all t ≥ 0. The application of Theorem 3 reported in Appendix shows that x(t) + u(t) ≤ C1e -κt x(0) for all t ≥ 0. Noting that

x(t) 2 = N 0 n=1 xn(t) 2 = N 0 n=1 dn l=1 |x n,l (t)| 2 = N 0 n=1 xn(t) 2 ,
we infer that

N 0 n=1 xn(t) 2 ≤ C 2 1 e -2κt N 0 n=1 xn(0) 2 and u(t) = N 0 n=1 dn l=1 |u n,l (t)| 2 = u(t) ≤ C1e -κt N 0 n=1 xn(0) 2 ≤ C1e -κt X0 .
3 See notations at the beginning of Section II 4 The considered LMI is always feasible for sufficiently small values of δ > 0 and κ > 0. See Appendix and [13, Lem. 2] for details. Now, from [START_REF]Boundary constrained control of delayed nonlinear Schrödinger equation[END_REF] we see that Πnu(t) = 0 for all n ≥ N0 + 1 and all t ≥ 0. Then we have from [START_REF] Kang | Boundary control of delayed ODE-heat cascade under actuator saturation[END_REF] that xn(t) = e Ant xn(0) = e Ant Πnxn(0) for all n ≥ N0 + 1 and all t ≥ 0, where the latter identity holds because xn(0) ∈ R(Πn) and thus Πnxn(0) = xn(0), hence

n≥N 0 +1 xn(t) 2 ≤ M 2 e -2σt n≥N 0 +1 xn(0) 2 .
Introducing C2 = max(C1, M ) ≥ 1 and recalling that 0 < κ ≤ σ, we infer from the latter estimates that

X(t) 2 = n≥1 xn(t) 2 ≤ C 2 2 e -2κt n≥1 xn(0) 2 ≤ C 2 2 e -2κt X(0) 2
for all t ≥ 0. This completes the proof.

B. Example of application

We consider in this section the case of the following reactiondiffusion equation with Robin boundary conditions:

yt(t, x) = ayxx(t, x) + by(t, x) + u(t -D(t), x) (11a) cos(θ1)y(t, 0) -sin(θ1)yx(t, 0) = 0 (11b) cos(θ2)y(t, 1) + sin(θ2)yx(t, 1) = 0 (11c) y(0, x) = φ(x), (11d) 
for t > 0 and x ∈ (0, 1). Such a problem was considered in [START_REF] Qi | Stabilization of reaction-diffusions PDE with delayed distributed actuation[END_REF] in the case of Dirichlet boundary conditions and for a controller designed via a backstepping transformation. Here we have a > 0, b ∈ R, and θ1, θ2 ∈ [0, 2π). In this setting, u : [-D0 -δ, +∞) × (0, 1) → R with u(t, •) = 0 for t < 0 is the control input subject to an uncertain and time-varying input delay D ∈ C 0 (R+; R) with |D -D0| ≤ δ and where D0 > 0 and δ ∈ (0, D0) are known constants. Finally, φ ∈ L 2 (0, 1) represents the initial condition. This type of setting (in-domain control of reaction-diffusion processes) occurs, e.g., in the context of nuclear fusion with the confinement of a hot plasma in a Tokamak [START_REF] Mavkov | Distributed control of coupled inhomogeneous diffusion in tokamak plasmas[END_REF] The reaction-diffusion system (11) can be rewritten under the form (8) over the state-space H = L 2 (0, 1) endowed with its usual inner product f, g = 1 0 f (ξ)g(ξ) dξ. In this setting, X(t) = y(t, •) ∈ H, X0 = φ ∈ H, and Af = af + bf ∈ H defined on the domain D(A) = {f ∈ H 2 (0, 1) : cos(θ1)f (0) -sin(θ1)f (0) = 0, cos(θ2)f (1) + sin(θ2)f (1) = 0}. From the Sturm-Liouville theory (see, e.g., [START_REF] Renardy | An introduction to partial differential equations[END_REF]Sec. 8.6]), it is well known that A is a selfadjoint operator with compact resolvent whose eigenvalues (λn) n≥1 are all real and can be sorted to form a strictly decreasing sequence with λn → -∞ when n → +∞ and associated unit eigenvectors en can be selected such that (en) n≥1 forms a Hilbert basis of H. In order to carry out the computations, we assume that hi = cot(θi) > 0. This corresponds to the most common Robin boundary conditions encountered in practical applications (e.g., convection boundary conditions for heat equations). Standard computations show that λn = b -ar 2 n for n ≥ 1, where (rn) n≥1 is the increasing sequence formed by the (strictly) positive solutions r of h1h2 -r 2 sin(r) + (h1 + h2)r cos(r) = 0. The corresponding unit eigenvectors are given by en = ϕn/ ϕn with ϕn(x) = rn cos(rnx) + h1 sin(rnx).

Then, one can show that A is a Riesz-spectral operator [2, Def. 2.3.4] and generates a C0-semigroup denoted by T (t) [START_REF] Delattre | Sturm-Liouville systems are Riesz-spectral systems[END_REF]. The result reported in [2, Thm. 2.3.5] shows that T (t) and A can be written as ( 3) and ( 4), respectively with operators An, Πn ∈ L(H) given by Anz = λn z, en en and Πnz = z, en en for all z ∈ H. Moreover, it is readily checked that (An) n≥1 is compatible with the family of complete orthogonal projections (Πn) n≥1 . Furthemore, noting that e Ant Πnz = e λnt z, en en, we obtain that e Ant Πn ≤ e λ 1 t for all t ≥ 0. Then the conclusions of Lemma 1 apply. We select N0 as the largest integer such that λN 0 ≥ 0. Then we have that dn = dim(R(Πn)) = 1 < +∞ for all n ≥ 1 and that, as e Ant Πnz = e λnt z, en en, e Ant Πn ≤ e λ N 0 +1 t for all n ≥ N0 + 1 with λN 0 +1 < 0. Hence the assumptions of Theorem 1 are satisfied for values of δ ∈ (0, D0) and κ ∈ (0, σ) such that the LMI Θu(δ, κ) ≺ 0 with M = A cl and N = e D 0 A K is feasible, assessing the exponential stability of the resulting closed-loop system.

For numerical computations, we set a = 0.05, b = 1, θ1 = π/3, and θ2 = π/10. The nominal value of the delay is set as D0 = 1 s. The first three eigenvalues of A are approximately given by λ1 ≈ 0.8890, λ2 ≈ 0.2203, and λ3 ≈ -1.3075. Thus we take N0 = 2 and we select the feedback gain as K = diag(-0.5, -0.75) -A such that the closed-loop matrix A cl = A + K = diag(-0.5, -0.75) is Hurwitz. The control input takes the form u(t, x) = u1(t)e1(x) + u2(t)e2(x) where u(t) = u1(t) u2(t) is given by [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF]. The application of Theorem 1 shows that the closed-loop system is exponentially stable for δ = 0.209. We note that the structure of the obtained controller in significantly simpler than the one reported in [START_REF] Qi | Stabilization of reaction-diffusions PDE with delayed distributed actuation[END_REF] in the special case of Dirichlet boundary conditions. The reason is that, in the present work, only a finite number of modes of the original reaction-diffusion equation are actively controlled.

The numerical behavior of the closed-loop system (obtained based on the 30 dominant modes) with the initial condition φ(x) = (1 -2x)/2 + 20x(1 -x)(x -3/5), the time-varying delay D(t) = 1 + 0.2 sin(5t), and the transition signal ϕ over [0, t0] with t0 = 0.2 s and linearly increasing from 0 to 1 on [0, t0], is shown in Fig. 1. The numerical results are compliant with the theoretical predictions.

IV. FINITE DIMENSIONAL CONTROL INPUT ACTING VIA A BOUNDED OPERATOR

We now consider the case of a finite-dimensional control input acting over the domain via a bounded operator. Specifically, we consider the abstract system [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF] with

f (t) = m k=1 f k u k (t -D k (t)) where f k ∈ H, u k (t) ∈ R is a scalar control input subject to an uncertain and time-varying input-delay D k (t) ∈ [D 0,k -δ k , D 0,k + δ k ].
We assume the system uncontrolled in negative times, i.e. u(τ ) = 0 for τ ≤ 0. Thus, the studied system takes the following form:

dX dt (t) = AX(t) + m k=1 f k u k (t -D k (t)) (12a) X(0) = X0 (12b) 
The above setting differs from (8) because 1) the structure of the distributed input (number of scalar inputs m and the functions f k ) is imposed a priori and hence cannot be tuned at will during control design; 2) each scalar input u k exhibits a distinct input delay D k . This latter element yields a difference of treatment in the stability analysis compared to the case of a uniform delay, inducing different LMI conditions (see Appendix).

A. Main result

The main result of this section is the following theorem. Theorem 2: Let D 0,k , t0 > 0 be given. Let (An) n≥1 ∈ L(H) N be compatible with (Πn) n≥1 ∈ L(H) N a family of complete orthogonal projections. We assume that there exists N0 ≥ 1 such that:

• dn = dim(R(Πn)) < ∞ for all 1 ≤ n ≤ N0;
• there exist M ≥ 1 and σ > 0 such that e Ant Πn ≤ M e -σt for all n ≥ N0 + 1 and t ≥ 0. We denote by T (t) the C0-semigroup defined by (3) and we consider A its associated infinitesimal generator given by ( 4). For all 1 ≤ n ≤ N0, we define

• Bn = (e n,l ) 1≤l≤dn an orthonormal basis of R(Πn);

• An ∈ R dn×dn the matrix of An| R(Πn) : R(Πn) → R(Πn) in the orthonormal basis Bn;

• A = diag(A1, . . . , AN 0 ) ∈ R d×d where d = N 0 n=1 dn; • Bn = ( f k , e n,l ) 1≤l≤dn , 1≤k≤m ∈ R dn×m ; • B ∈ R d×m = B 1 . . . B N 0 ∈ R d×m whose k-th
column is denoted by Bk ∈ R d . We assume that the pair (A, B) is stabilizable. Introducing x n,l (t)e n,l , the control input takes the form

x(t) = x1(t) x2 ( 
u(t) = ϕ(t)K x(t) + m k=1 t t-D 0,k e (t-D 0,k -s)A Bk u(s) ds (13) where ϕ ∈ C 0 (R+; R) is an arbitrary transition signal over [0, t0] and K ∈ R m×d is selected such that A cl A + m k=1 e -D 0,k A Bk K k is Hurwitz with K k ∈ R 1×d the k-th line of K. Considering Θ d (∆, κ)
given by ( 16) in the Appendix with ∆ = (δ1, . . . , δm), M = A cl , and N k = Bk K k , let δ k ∈ (0, D 0,k ) and κ ∈ (0, σ) be such that5 the LMI Θ d (∆, κ) ≺ 0 is feasible for some P1, Q k ∈ S + * d and P2, P3 ∈ R d×d . Then there exists C0 > 0 such that, for any X0 ∈ H and any D k ∈ C 0 (R+; R+) with |D k -D 0,k | ≤ δ k , the mild solutions of [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] with command input u given by (13) satisfy

X(t) + u(t) ≤ C0e -κt X0
for all t ≥ 0.

Proof. The same argument as the one used in the proof of Theorem 1 shows that 1) the conclusions of Lemma 1 apply; and 2) since D k (t) ≥ D 0,k -δ k > 0, the closed-loop system is wellposed and we have u ∈ C 0 (R; R m ) with u(τ ) = 0 for τ ≤ 0.

Setting

f (t) = m k=1 f k u k (t -D k (t)
) with f k ∈ H and u k (t) ∈ R, we evaluate for 1 ≤ n ≤ N0 the following term: As v is continuous, we infer that xn is continuously differentiable and satisfies the ODE ẋn(t) = Anxn(t) + Bnv(t) for all t ≥ 0. Then we have

ẋ(t) = Ax(t) + Bv(t) = Ax(t) + m k=1 Bk u k (t -D k (t))
for all t ≥ 0. The application of Theorem 4 reported in Appendix shows that x(t) + u(t) ≤ C1e -κt x(0) for all t ≥ 0. Noting that

x(t) 2 = N 0 n=1 xn(t) 2 = N 0 n=1 dn l=1 |x n,l (t)| 2 = N 0 n=1 xn(t) 2 ,
we infer that

N 0 n=1 xn(t) 2 ≤ C 2 1 e -2κt N 0 n=1 xn(0) 2 and u(t) ≤ C1e -κt N 0 n=1 xn(0) 2 ≤ C1e -κt X0 .
Now, from [START_REF] Kang | Boundary control of delayed ODE-heat cascade under actuator saturation[END_REF] and recalling that Π 2 n = Πn, we have for all n ≥ N0 + 1 and all t ≥ 0 that xn(t) ≤ M e -σt xn(0)

+ M t 0 e -σ(t-s) m k=1 Πnf k |u k (s -D k (s))| ds
As u(t) = 0 for t ≤ 0, we note that

|u k (t -D k (t))| ≤ u(t -D k (t)) ≤ C1e -κ(t-D k (t)) X0 ≤ C2e -κt X0 for all t ≥ 0 with C2 = C1 exp κ max 1≤k≤m {D 0,k + δ k } . Then we obtain that xn(t) ≤ M e -σt xn(0) + M C2 m k=1 Πnf k e -σt t 0 e (σ-κ)s ds X0 ≤ M e -σt xn(0) + M C2 σ -κ m k=1
Πnf k e -κt X0

where we used 0 < κ < σ. Consequently we have

n≥N 0 +1 xn(t) 2 ≤ 2M 2 e -2σt n≥N 0 +1 xn(0) 2 + 2mM 2 C 2 2 (σ -κ) 2 m k=1 n≥N 0 +1 Πnf k 2 e -2κt X0 2 ≤ 2M 2 e -2κt n≥N 0 +1 xn(0) 2 + 2mM 2 C 2 2 (σ -κ) 2 m k=1 f k 2 e -2κt X0 2 .
Introducing the constant C3 ≥ 1 defined by

C 2 3 = max C 2 1 , 2M 2 + 2mM 2 C 2 2 (σ -κ) 2 m k=1 f k 2 ,
we obtain that, for all t ≥ 0,

X(t) 2 = n≥1 xn(t) 2 ≤ C 2 3 e -2κt X(0) 2 .
This completes the proof.

B. Example of application

We consider a clamped flexible string described by ytt(t, x) = (αyx + βytx)x(t, x) + γy(t, x)

+ m k=1 ζ k (x)u k (t -D k (t)) (14a) y(t, 0) = y(t, 1) = 0 (14b) y(0, x) = φ1(x), yt(0, x) = φ2(x), (14c) 
for t > 0 and x ∈ (0, 1). Here we have α, β > 0, γ ∈ R, and

ζ k ∈ L 2 (0, 1). In this setting, u k : [-D 0,k -δ k , +∞) → R with u k (t) = 0 for t < 0 is the control input subject to an uncertain and time-varying input delay D k ∈ C 0 (R+; R) with |D k -D 0,k | ≤ δ k
and where D 0,k > 0 and δ k ∈ (0, D 0,k ) are known constants. Finally, φ1 ∈ H 1 0 (0, 1) and φ2 ∈ L 2 (0, 1) represent the initial conditions. The flexible dynamics described by ( 14) can be rewritten under the form (12) over the state-space H = H 1 0 (0, 1) × L 2 (0, 1) endowed with the inner product (g1, h1), (g2, h2) andA(g, h) = (h, (αg + βh ) + γg) ∈ H defined on the domain:

= 1 0 αg 1 (ξ)g 2 (ξ) + h1(ξ)h2(ξ) dξ. In this setting, X(t) = (y(t, •), yt(t, •)) ∈ H, X0 = (φ1, φ2) ∈ H, f k = (0, ζ k ) ∈ H,
D(A) = (g, h) ∈ H : h ∈ H 1 0 (0, 1), αg + βh ∈ H 1 (0, 1) .
Introducing A0(g, h) = (h, (αg + βh ) ) ∈ H defined on the domain D(A0) = D(A) and L ∈ L(H) defined by 6 L(g, h) = (0, γg), we have A = A0 + L. As β > 0, an integration by parts shows that A0 is dissipative while standard computations yield 0 ∈ ρ(A0). Thus, by the Lümer-Phillips theorem, A0 generates a C0-semigroup of contractions. Then A generates a C0-semigroup denoted by T (t).

For n ≥ 1 we introduce the vectors

en,1 = 1 nπ 2 α (sin(nπ•), 0) ∈ D(A), en,2 = √ 2 (0, sin(nπ•)) ∈ D(A).
It is readily checked that en,1, en,2 are unit vectors that satisfy e n 1 ,l 1 , e n 2 ,l 2 = δ (n 1 ,l 1 ),(n 2 ,l 2 ) ∈ {0, 1} with δ (n 1 ,l 1 ),(n 2 ,l 2 ) = 1 if and only if (n1, l1) = (n2, l2). Then (e n,l ) n≥1,1≤l≤2 is an orthonormal family of vectors of H. Let us check that this family is also complete. Let (g, h) ∈ H be such that (g, h), e n,l = 0 for all n ≥ 1 and 1 ≤ l ≤ 2. We deduce that g , cos(nπ•) L 2 (0,1) = 0 and h, sin(nπ•) L 2 (0,1) = 0 for all n ≥ 1. Recalling that {1, √ 2 cos(nπ•), n ≥ 1} and { √ 2 sin(nπ•), n ≥ 1} are Hilbert basis of L 2 (0, 1), we infer that g is a constant function while h = 0. As g ∈ H 1 0 (0, 1), we have that g = 0. We conclude that (e n,l ) n≥1,1≤l≤2 is complete and thus forms a Hilbert basis of H. Now, we note that

Aen,1 = γ -αn 2 π 2 √ αnπ en,2, Aen,2 = √ αnπen,1 -βn 2 π 2 en,2.
Then, we can introduce (Πn) n≥1 ∈ L(H) N the family of complete orthogonal projections defined by Πnz = z, en,1 en,1 + z, en,2 en,2 and define An = ΠnAΠn. It is readily checked that (An) n≥1 ∈ L(H) N is compatible with the family of complete orthogonal projections (Πn) n≥1 . Furthermore, noting that R(Πn) = vect(en,1, en,2) is a closed subspace included in D(A) that is Ainvariant, then [2, Lem. 2.5.4] ensures that R(Πn) is T (t)-invariant and T (t)| R(Πn) = e An| R(Πn ) t = e Ant R(Πn) for all n ≥ 1 and t ≥ 0. We deduce that

T (t)z = T (t) n≥1 Πnz = n≥1 T (t)Πnz = n≥1 e Ant Πnz,
which shows that T (t) takes the form of (3). Finally, since T (t) is a C0-semigroup, there exist M ≥ 1 and ω > 0 such that T (t) ≤ M e ωt for all t ≥ 0. In particular, e Ant Πn = T (t)Πn ≤ T (t) ≤ M e ωt for all t ≥ 0, showing that (2) holds with g(t) = M e ωt . The assumptions of Lemma 1 are satisfied and thus, by uniqueness of the infinitesimal generator, A can be rewritten under the form (4).

We introduce An ∈ R 2×2 the matrix of An| R(Πn) : R(Πn) → R(Πn) in the orthonormal basis (en,1, en,2):

An =   0 √ αnπ γ -αn 2 π 2 √ αnπ -βn 2 π 2   .
The characteristic polynomial of An is given by X 2 + βn 2 π 2 X + αn 2 π 2 -γ, showing that An is Hurwitz if and only if αn 2 π 2 -γ > 0. Thus, introducing the integer N1 = 1 π γ α ≥ 0, An is Hurwitz for all n ≥ N1 + 1. We now show that there exist constants M ≥ 1 and σ > 0 such that e Ant ≤ M e -σt for all n ≥ N1 + 1 and t ≥ 0. To do so, we define η = α/(2β) and the symmetric matrix

Pn =    β √ α nπ 1 1 β √ α nπ    .
The eigenvalues of Pn are given by λm(Pn)

= β √ α nπ -1 and λM (Pn) = β √ α nπ + 1. Then, considering integers n > √ α/(βπ), Pn is symmetric positive definite. The computation of Qn = (q n,k,l ) 1≤k,l≤2 = A n Pn + PnAn + 2ηPn yields qn,1,1 = - √ αnπ + 2γ √ αnπ , qn,2,2 = - 2β 2 √ α n 3 π 3 + 3 √ αnπ, qn,1,2 = qn,2,1 = -βn 2 π 2 + βγ α + α β .
In particular, one has

qn,1,1 ∼ - √ αnπ < 0, qn,1,1qn,2,2 -q 2 n,1,2 ∼ β 2 n 4 π 4 > 0,
when n → +∞. This shows that there exists an integer N2 > √ α/(βπ) large enough such that, for all n ≥ N2, Pn is symmetric positive definite and Qn is symmetric negative definite. In particular, defining zn(t) = e Ant z0 for an arbitrary z0 ∈ R 2 , the introduction of Vn(t) = zn(t) Pnzn(t) yields λm(Pn) zn(t) 2 ≤ Vn(t) ≤ λM (Pn) zn(t) 2 and Vn(t) ≤ -2ηVn(t) for all n ≥ N2 and t ≥ 0. Then, we infer that

e Ant ≤ λM (Pn) λm(Pn) e -ηt ≤ βN2π + √ α βN2π - √ α e -ηt
for all n ≥ N2 and t ≥ 0. Recalling that An is Hurwitz for n ≥ N1 + 1, we have for any N1 + 1 ≤ n ≤ N2 -1 the existence of Mn ≥ 1 and ηn > 0 such that e Ant ≤ Mne -ηnt for all t ≥ 0. Setting M = max MN 1 +1, . . . , MN 2 -1,

βN 2 π+ √ α βN 2 π- √ α ≥ 1
and σ = min(ηN 1 +1, . . . , ηN 2 -1, η) > 0, we obtain that e Ant ≤ M e -σt for all n ≥ N1 + 1 and t ≥ 0.

For control design, we select an arbitrary integer N0 ≥ N1. In order to apply the result of Theorem 2, it remains to assess that the pair (A, B) is stabilizable. We actually show that (A, B) is stabilizable if and only if for any 1 ≤ n ≤ N1 there exists 1 ≤ k = k(n) ≤ m such that 1 0 ζ k (ξ) sin(nπξ) dξ = 0. We recall that ζ k ∈ L 2 (0, 1) models the impact of the control input u k on the system dynamics (14a). Such a result is closely related to the controllability properties studied in [START_REF] Curtain | An Introduction to Infinite-Dimensional Linear Systems Theory[END_REF]Sec. 4.2]. First, we note that f k , en,1 = 0 and f k , en,2 = √ 2 1 0 ζ k (ξ) sin(nπξ) dξ for all n ≥ 1 and 1 ≤ k ≤ m. We study the existence of possible common eigenvalues λ to An and An+m for n, m ≥ 1. In this case, we have λ 2 + βn 2 π 2 λ + αn 2 π 2 -γ = 0 and λ 2 +β(n+m) 2 π 2 λ+α(n+m) 2 π 2 -γ = 0. The difference of the two latter identities yields λ = -α/β while the substitution of this result in the former identity gives γ = α 2 /β 2 . Conversely, is γ = α 2 /β 2 , then we have λ = -α/β that satisfies λ 2 +βn 2 π 2 λ+αn 2 π 2 -γ = 0 for all n ≥ 1. Overall, the only possible common eigenvalue λ to An and An+m for distinct n, m ≥ 1 occurs in the configuration γ = α 2 /β 2 and is given by λ = -α/β < 0, which is stable. Thus, based on the block diagonal structure of A, the Hautus test shows that (A, B) is not stabilizable if and only if there exists 1 ≤ n ≤ N1, λ ∈ C with Re(λ) ≥ 0, and a non-zero x = x1 x2 ∈ C 2 such that x * An = λx * and x * Bn = 0. If we assume that 

(t, x) = u1(t) 1| [1/3,1/2] (x) + u2(t) 1| [5/7,6/7] (x)
where u(t) = u1(t) u2(t) is given by [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF]. The application of Theorem 2 shows that the closed-loop system is exponentially stable for δ1 = 0.053 and δ2 = 0.052.

The numerical behavior of the closed-loop system (obtained based on the 40 dominant modes of the system) with the initial condition φ1(x) = -x(2/3 -x)(1 -x) and φ2(x) = (1 -exp(-x))/10, the time-varying delays as depicted in Fig. 2, and the transition signal ϕ over [0, t0] with t0 = 0.2 s and linearly increasing from 0 to 1 on [0, t0], is shown in Fig. 3. The numerical results are compliant with the theoretical predictions.

V. CONCLUSION

This paper discussed the in-domain stabilization of a class of block diagonal infinite-dimensional systems in the presence of uncertain and time-varying control input delays. The proposed control strategy consists in the design of a classical predictor feedback law on a finitedimensional truncated LTI model capturing the unstable dynamics of the original infinite-dimensional system. Compared to other strategies reported in the literature, this approach offers the advantage that only a finite number of modes of the original infinite-dimensional system is actively controlled, yielding a control strategy with a lower complexity. Moreover, this approach not only holds for fully distributed control inputs, but it also applies to the case of a finitedimensional control input acting on the domain via a bounded operator. Finally, this approach also allows the consideration of uncertain and time-varying input delays, which are possibly distinct in the different scalar control input channels. The obtained theoretical results were successfully applied to the stabilization of a reactiondiffusion equation with Robin boundary conditions and to a clamped flexible string.

APPENDIX RESULTS ON THE ROBUSTNESS OF PREDICTOR FEEDBACK LAWS

A. Uniform delay

The following result is extracted from [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF]. Theorem 3: Let A ∈ R n×n and B ∈ R n×m be such that (A, B) is stabilizable. Let D0 > 0 be a given nominal delay and let ϕ be an arbitrary transition signal over [0, t0] with t0 > 0. Let K ∈ R m×n be such that A cl A+BK is Hurwitz. Then, there exists δ ∈ (0, D0) such that for any D ∈ C 0 (R+; R+) with |D -D0| ≤ δ, the closedloop system given for t ≥ 0 by ẋ(t) = Ax(t) + Bu(t -D(t)), u(t) = ϕ(t)K e D 0 A x(t) + 

Note that due to the Hurwitz nature of A cl , the LMI of Theorem 3 is always feasible for sufficiently small values of δ > 0 and κ > 0. See [13, Lem. 2] for details.

B. Distinct delays

We have the following result borrowed from [START_REF]Robustness of constant-delay predictor feedback with respect to distinct uncertain time-varying input delays[END_REF]. Theorem 4: Let A ∈ R n×n and B ∈ R n×m be such that (A, B) is stabilizable. We denote by B k ∈ R n the k-th column of B. Let D 0,k > 0 be given nominal delays and let ϕ be an arbitrary transition signal over [0, t0] with t0 > 0. Let feedback gains K k ∈ R 1×n be such that A cl A + m k=1 e -D 0,k A B k K k is Hurwitz. We denoted by K ∈ R m×n the feedback gain whose k-th line is K k . Then, there exist δ k ∈ (0, D 0,k ) such that for any D k ∈ C 0 (R+; R+) with |D k -D 0,k | ≤ δ k , the closed-loop system given for t ≥ 0 by ẋ(t) = Ax(t) + with initial condition x0 ∈ R n is exponentially stable in the sense that there exist constants κ, C1 > 0, independent of x0 and D k , such that x(t) + u(t) ≤ C1e -κt x0 for all t ≥ 0. In particular, this conclusion holds true (resp., with given decay rate κ > 0) for any δ k ∈ (0, D 0,k ) such that there exist P1, Q k ∈ S + * n and P2, P3 ∈ R n×n for which the LMI Θ d (∆, 0) ≺ 0 (resp., Θ d (∆, κ) 0) holds with Θ d (∆, κ) given by [START_REF] Lhachemi | Control law realification for the feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF] where ∆ = (δ1, . . . , δm), M = A cl , and

N k = B k K k .
Similarly to the case of a uniform delay, the LMI of Theorem 4 is always feasible for sufficiently small values of δ k > 0 and κ > 0.
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In[START_REF] Leiva | A lemma on C 0 -semigroups and applications[END_REF] Lem. 

2.1],this assumption is replaced by e Ant ≤ g(t) for all t ≥ 0 and n ≥ 1. However, as Π 2 n = Πn, the proof reported in [11, Lem. 2.1] also applies in a direct manner to the setting used in this paper.

This implies that we have a finite number of unstable modes (counted with multiplicity). The same remark applies to the assumptions of Theorem 2.

We recall that the considered LMI is always feasible for sufficiently small values of δ k > 0 and κ > 0. See Appendix and[START_REF]Robustness of constant-delay predictor feedback with respect to distinct uncertain time-varying input delays[END_REF] for details.

The bounded nature follows from Poincaré's inequality.