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In-domain stabilization of block diagonal infinite-dimensional
systems with time-varying input delays

Hugo Lhachemi, Christophe Prieur, Robert Shorten

Abstract—This paper is concerned with the in-domain stabilization of
a class of block diagonal infinite-dimensional systems in the presence
of an uncertain and time-varying delay in the distributed control input.
Two actuation schemes are considered. The first one assumes a control
input that is fully distributed over the domain. The second one assumes
that the control input is finite-dimensional, acting over the domain via a
bounded operator. In both cases, the control design strategy consists in
a predictor feedback law synthesized on a finite-dimensional truncated
LTI model capturing the unstable dynamics of the original infinite-
dimensional system. The predictor feedback law is designed based on
the knowledge of the nominal value of the uncertain and time-varying
input delay. In the second actuation scheme, the case of distinct input
delays in the different scalar control input channels is considered.

Index Terms—Delayed distributed actuation, partial differential equa-
tions, predictor feedback law.

I. INTRODUCTION

Stabilization of open-loop unstable partial differential equations
(PDEs) in the presence of delays, either in the control input [5],
[10], [12], [13], [16], [19]–[23] or in the state [4], [6]–[9], [15],
[26], is an active topic of research. In this paper, we are focused
on the first class of problems. Two types of approaches have been
developed for the boundary stabilization of PDEs in the presence
of arbitrarily large delays in the control input. The first approach
relies on backstepping transformations. Such a control design strategy
was reported in [10] for the boundary feedback stabilization of an
unstable reaction-diffusion equation under a constant input delay.
More recently, a second approach taking advantage of the predictor
feedback strategy for finite-dimensional LTI systems was reported
in [22]. In this work, the predictor feedback law is designed on
a finite-dimensional truncated model capturing the unstable modes
of the distributed parameter system. The stability analysis of the
resulting closed-loop infinite-dimensional system was carried out via
a Lyapunov-based argument. The same approach was reused in [5] for
the boundary stabilization of a linear Kuramoto-Sivashinsky equation
under constant input delay. This approach was then generalized to
a class of diagonal infinite-dimensional systems in [12], [16] for
constant input delays and then in [13] for fast time-varying input
delays. While the above approaches apply for boundary control
inputs, very few reported works deal with the in-domain stabilization
of PDEs in the presence of a long input delay. The recent work [23]
tackles this problem for an unstable reaction-diffusion equation with
Dirichlet boundary conditions and a constant delay in the in-domain
control input. The control scheme assumes that the control input is
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fully distributed. The proposed control design strategy employs a
backstepping transformation that leads to the kernel functions pre-
senting singular points inducing technical challenges in the analysis.

In this work, we consider a class of block-diagonal infinite-
dimensional systems presenting a finite number of unstable modes
(counted with multiplicity) while the infinite-dimensional stable part
of the system is assumed to be exponentially stable. The former
assumption (finite number of unstable modes) is generally seen as
a necessary condition to achieve the robust stabilization of the plant.
In this context, our objective is to develop a control strategy for the
stabilization of the aforementioned class of block-diagonal infinite-
dimensional systems in the presence of uncertain and time-varying
delays in the in-domain control input. This is motivated by the fact
that input delays are ubiquitous in practical applications. Their oc-
currence induce challenges since they introduce an infinite number of
modes which can provoke instabilities and hence cannot be neglected
during control design [25]. Two control schemes are considered. The
first one assumes a fully distributed control input, i.e. a configuration
that allows to freely impose the value of the command input at any
point of the domain. The second one assumes that the actual control
input is finite dimensional and applies to the domain via a bounded
operator. In the latter configuration, we further consider the case
of distinct uncertain and time-varying input delays in the different
scalar control inputs. In both configurations, the control design is
performed on a finite-dimensional truncated model capturing the
finite number of unstable modes of the distributed parameter system.
The subsequent controller takes the form of a predictor feedback
law designed based on the nominal value of the uncertain and time-
varying input delay [13], [14]. We assess that this control strategy
preserves the stability property of the residual infinite-dimensional
dynamics, thus achieving the exponential stabilization of the closed-
loop system. In essence, this control design procedure is similar to
early-lumping approximation methods reported for the stabilization of
autonomous infinite dimensional plants by means of a bounded input
operator [18]. In this context, our main contribution is the handling of
the impact of the input delays which introduce an infinite-dimensional
dynamics in the loop [25] while their time-varying nature induces a
non-autonomous closed-loop system. The obtained results are applied
to the in-domain stabilization of a reaction-diffusion equation with
Robin boundary conditions and also to the stabilization of a wave
equation presenting a Kelvin-Voigt damping parameter.

This paper is organized as follows. The investigated control prob-
lem setting is introduced in Section II. The case of a fully distributed
control input is discussed in Section III while the case of a finite-
dimensional control input acting via a bounded operator is described
in Section IV. Finally, concluding remarks are provided in Section V.

II. PROBLEM SETTING

A. Notation

The sets of non-negative integers, real, non-negative real, and
complex numbers are denoted by N, R, R+, and C, respectively. The
real and imaginary parts of a complex number z are denoted by Re z
and Im z, respectively. The field K denotes either R or C. The set of
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n-dimensional vectors over K is denoted by Kn and is endowed with
the Euclidean norm ‖x‖ =

√
x∗x. The set of n×m matrices over K

is denoted by Kn×m and is endowed with the induced norm denoted
by ‖ · ‖. For any symmetric matrix P ∈ Rn×n, P � 0 (resp. P � 0)
means that P is positive definite (resp. positive semi-definite). The
set of symmetric positive definite matrices of order n is denoted by
S+∗
n . For any symmetric matrix P ∈ Rn×n, λm(P ) and λM (P )

denote the smallest and largest eigenvalues of P , respectively. The
range of an operator in denoted by R(·). For any t0 > 0, we say
that ϕ ∈ C0(R;R) is a transition signal over [0, t0] if 0 ≤ ϕ ≤ 1,
ϕ|(−∞,0] = 0, and ϕ|[t0,+∞) = 1.

B. Block diagonal operators

We denote by H a separable Hilbert space over the field R.
Definition 1: (Πn)n≥1 ∈ L(H)N, with Πn 6= 0 for all n ≥

1, is said to be a (finite or infinite) family of complete orthogonal
projections if

1) (Πn)2 = Πn for all n ≥ 1;
2) 〈Πnx, y〉 = 〈x,Πny〉 for all n ≥ 1 and all x, y ∈ H;
3) ΠnΠm = 0 for all n 6= m;
4) z =

∑
n≥1 Πnz for all z ∈ H.

We say that (An)n≥1 ∈ L(H)N is compatible with the family of
complete orthogonal projections (Πn)n≥1 if

AnΠn = ΠnAn (1)

for all n ≥ 1.
In the context of Definition 1, we have that ‖z‖2 =

∑
n≥1 ‖Πnz‖2

for all z ∈ H. In this paper, we extensively use the following lemma
which is a slight and straightforward variation of [11, Lem. 2.1].

Lemma 1: Let (An)n≥1 ∈ L(H)N which is compatible with
(Πn)n≥1 ∈ L(H)N a family of complete orthogonal projections. We
assume that there exists g ∈ C0(R+;R) such that1

‖eAntΠn‖ ≤ g(t) (2)

for all t ≥ 0 and n ≥ 1. Then T (t) defined, for all t ≥ 0 and z ∈ H,
by

T (t)z =
∑
n≥1

eAntΠnz (3)

is a C0-semigroup on H whose infinitesimal generator is given by

Az =
∑
n≥1

AnΠnz (4)

for any z ∈ D(A) with

D(A) =

z ∈ H :
∑
n≥1

‖AnΠnz‖2 <∞

 . (5)

Remark 1: We note that, for any given z ∈ H, TN (t)z =∑N
n=1 e

AntΠnz converges uniformly in t on compact intervals to
T (t) as N → +∞. This property is one of the key assumptions for
early-lumping methods as described in [18]. ◦

C. Problem setting

In this work we consider the abstract system

dX

dt
(t) = AX(t) + f(t) (6a)

X(0) = X0 (6b)

1In [11, Lem. 2.1], this assumption is replaced by ‖eAnt‖ ≤ g(t) for
all t ≥ 0 and n ≥ 1. However, as Π2

n = Πn, the proof reported in [11,
Lem. 2.1] also applies in a direct manner to the setting used in this paper.

where, under the assumptions of Lemma 1, A takes the form (4) of
the infinitesimal generator of the C0-semigroup T (t) given by (3).
The structure of function f ∈ L1

loc(R+;H), which will depend on a
delayed version of the actual control input u, will be specified later.
Here X0 ∈ H represents the initial condition. Then the mild solution
X ∈ C0(R+;H) of (6) is given by

X(t) = T (t)X0 +

∫ t

0

T (t− s)f(s)ds.

We introduce xn(t) = ΠnX(t) and we have that ‖X(t)‖2 =∑
n≥1 ‖xn(t)‖2. From (1) and as An,Πn ∈ L(H), we have

eAntΠn = Πne
Ant. Then we infer from Πn ∈ L(H) and ΠnΠm =

0 for n 6= m that

xn(t) = ΠnT (t)X0 +

∫ t

0

ΠnT (t− s)f(s) ds

=
∑
m≥1

ΠnΠme
AmtX0 +

∫ t

0

∑
m≥1

ΠnΠme
Am(t−s)f(s) ds

= eAntxn(0) +

∫ t

0

eAn(t−s)Πnf(s) ds (7)

for all n ≥ 1 and t ≥ 0.

III. FULLY DISTRIBUTED CONTROL INPUT

In this section, we consider the case of a fully distributed control
input. Specifically, we consider the abstract boundary control system
(6) with f(t) = u(t − D(t)) where u(t) ∈ H is the control input
with u(τ) = 0 for τ ≤ 0 and D(t) ∈ [D0−δ,D0 +δ] is an uncertain
and time-varying control input delay. Thus, the studied system takes
the following form:

dX

dt
(t) = AX(t) + u(t−D(t)) (8a)

X(0) = X0 (8b)

A. Main result

The main result of this section is the following theorem.
Theorem 1: Let D0, t0 > 0 be given. Let (An)n≥1 ∈ L(H)N be

compatible with (Πn)n≥1 ∈ L(H)N a family of complete orthogonal
projections. We assume that there exists N0 ≥ 1 such that2:

• dn = dim(R(Πn)) <∞ for all 1 ≤ n ≤ N0;
• there exist M ≥ 1 and σ > 0 such that ‖eAntΠn‖ ≤ Me−σt

for all n ≥ N0 + 1 and t ≥ 0.

We denote by T (t) the C0-semigroup defined by (3) and we consider
A its associated infinitesimal generator given by (4). For all 1 ≤
n ≤ N0, we define

• Bn = (en,l)1≤l≤dn an orthonormal basis of R(Πn);
• An ∈ Rdn×dn the matrix of An|R(Πn) : R(Πn) → R(Πn) in

the orthonormal basis Bn;
• A = diag(A1, . . . , AN0) ∈ Rd×d where d =

∑N0
n=1 dn.

We constrain the structure of the control law as follows:

u(t) =

N0∑
n=1

dn∑
l=1

un,l(t)en,l ∈
N0⊕
n=1

R(Πn). (9)

Introducing

x(t) =
[
x1(t)> x2(t)> . . . xN0(t)>

]> ∈ Rd,

u(t) =
[
u1(t)> u2(t)> . . . uN0(t)>

]> ∈ Rd

2This implies that we have a finite number of unstable modes (counted with
multiplicity). The same remark applies to the assumptions of Theorem 2.
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with

xn(t) =
[
xn,1(t) xn,2(t) . . . xn,dn(t)

]> ∈ Rdn ,

un(t) =
[
un,1(t) un,2(t) . . . un,dn(t)

]> ∈ Rdn

and xn(t) =
∑dn
l=1 xn,l(t)en,l, the control input takes the form

u(t) = ϕ(t)K

{
eD0Ax(t) +

∫ t

t−D0

e(t−s)Au(s) ds

}
(10)

where ϕ ∈ C0(R+;R) is an arbitrary transition signal3 over [0, t0]
and K ∈ Rd×d is a feedback gain such that Acl = A + K is
Hurwitz. Considering Θu(δ, κ) given by (15) in the Appendix with
M = Acl and N = eD0AK, let δ ∈ (0, D0) and κ ∈ (0, σ] be such
that4 the LMI Θu(δ, κ) ≺ 0 is feasible for some P1, Q ∈ S+∗

d and
P2, P3 ∈ Rd×d. Then there exists C0 > 0 such that, for any X0 ∈ H
and any D ∈ C0(R+;R+) with |D−D0| ≤ δ, the mild solutions of
(8) with command input u given by (9) satisfy

‖X(t)‖+ ‖u(t)‖ ≤ C0e
−κt‖X0‖

for all t ≥ 0.
Proof. First, since An is bounded, we have ‖eAntΠn‖ ≤ e‖An‖t

for all 1 ≤ n ≤ N0 and t ≥ 0. Since we assumed that ‖eAntΠn‖ ≤
Me−σt for all n ≥ N0 + 1 and t ≥ 0, we have the existence of a
continuous function g such that (2) holds. Thus the conclusions of
Lemma 1 apply.

As D(t) ≥ D0 − δ > 0, the well-posedness of the closed-loop
system with u ∈ C0(R+;H) is a straightforward consequence of the
application of the steps method and the fact that the solution of the
fixed-point equation (10) is uniquely defined with u ∈ C0(R;Rd)
and u(τ) = 0 for τ ≤ 0; see [1] for details.

From (7) and (9), we have for all t ≥ 0 and all 1 ≤ n ≤ N0 that

xn(t) = eAntxn(0) +

∫ t

0

eAn(t−s)un(s−D(s))ds.

As un and D are continuous, we infer that xn is continuously
differentiable and satisfies the ordinary differential equation (ODE)

ẋn(t) = Anxn(t) + un(t−D(t))

for all t ≥ 0. Thus we have

ẋ(t) = Ax(t) + u(t−D(t))

for all t ≥ 0. The application of Theorem 3 reported in Appendix
shows that ‖x(t)‖+ ‖u(t)‖ ≤ C1e

−κt‖x(0)‖ for all t ≥ 0. Noting
that

‖x(t)‖2 =

N0∑
n=1

‖xn(t)‖2 =

N0∑
n=1

dn∑
l=1

|xn,l(t)|2 =

N0∑
n=1

‖xn(t)‖2,

we infer that
N0∑
n=1

‖xn(t)‖2 ≤ C2
1e
−2κt

N0∑
n=1

‖xn(0)‖2

and

‖u(t)‖ =

√√√√ N0∑
n=1

dn∑
l=1

|un,l(t)|2 = ‖u(t)‖

≤ C1e
−κt

√√√√ N0∑
n=1

‖xn(0)‖2 ≤ C1e
−κt‖X0‖.

3See notations at the beginning of Section II
4The considered LMI is always feasible for sufficiently small values of

δ > 0 and κ > 0. See Appendix and [13, Lem. 2] for details.

Now, from (9) we see that Πnu(t) = 0 for all n ≥ N0 + 1
and all t ≥ 0. Then we have from (7) that xn(t) = eAntxn(0) =
eAntΠnxn(0) for all n ≥ N0 + 1 and all t ≥ 0, where the latter
identity holds because xn(0) ∈ R(Πn) and thus Πnxn(0) = xn(0),
hence ∑

n≥N0+1

‖xn(t)‖2 ≤M2e−2σt
∑

n≥N0+1

‖xn(0)‖2.

Introducing C2 = max(C1,M) ≥ 1 and recalling that 0 < κ ≤ σ,
we infer from the latter estimates that

‖X(t)‖2 =
∑
n≥1

‖xn(t)‖2 ≤ C2
2e
−2κt

∑
n≥1

‖xn(0)‖2

≤ C2
2e
−2κt‖X(0)‖2

for all t ≥ 0. This completes the proof. �

B. Example of application

We consider in this section the case of the following reaction-
diffusion equation with Robin boundary conditions:

yt(t, x) = ayxx(t, x) + by(t, x) + u(t−D(t), x) (11a)

cos(θ1)y(t, 0)− sin(θ1)yx(t, 0) = 0 (11b)

cos(θ2)y(t, 1) + sin(θ2)yx(t, 1) = 0 (11c)

y(0, x) = φ(x), (11d)

for t > 0 and x ∈ (0, 1). Such a problem was considered in [23]
in the case of Dirichlet boundary conditions and for a controller
designed via a backstepping transformation. Here we have a > 0,
b ∈ R, and θ1, θ2 ∈ [0, 2π). In this setting, u : [−D0 − δ,+∞) ×
(0, 1) → R with u(t, ·) = 0 for t < 0 is the control input subject
to an uncertain and time-varying input delay D ∈ C0(R+;R) with
|D − D0| ≤ δ and where D0 > 0 and δ ∈ (0, D0) are known
constants. Finally, φ ∈ L2(0, 1) represents the initial condition. This
type of setting (in-domain control of reaction-diffusion processes)
occurs, e.g., in the context of nuclear fusion with the confinement of
a hot plasma in a Tokamak [17]

The reaction-diffusion system (11) can be rewritten under the form
(8) over the state-space H = L2(0, 1) endowed with its usual inner
product 〈f, g〉 =

∫ 1

0
f(ξ)g(ξ) dξ. In this setting, X(t) = y(t, ·) ∈ H,

X0 = φ ∈ H, and Af = af ′′ + bf ∈ H defined on the
domain D(A) = {f ∈ H2(0, 1) : cos(θ1)f(0) − sin(θ1)f ′(0) =
0, cos(θ2)f(1) + sin(θ2)f ′(1) = 0}. From the Sturm-Liouville
theory (see, e.g., [24, Sec. 8.6]), it is well known that A is a self-
adjoint operator with compact resolvent whose eigenvalues (λn)n≥1

are all real and can be sorted to form a strictly decreasing sequence
with λn → −∞ when n→ +∞ and associated unit eigenvectors en
can be selected such that (en)n≥1 forms a Hilbert basis ofH. In order
to carry out the computations, we assume that hi = cot(θi) > 0. This
corresponds to the most common Robin boundary conditions encoun-
tered in practical applications (e.g., convection boundary conditions
for heat equations). Standard computations show that λn = b− ar2

n

for n ≥ 1, where (rn)n≥1 is the increasing sequence formed by
the (strictly) positive solutions r of

(
h1h2 − r2

)
sin(r) + (h1 +

h2)r cos(r) = 0. The corresponding unit eigenvectors are given by
en = ϕn/‖ϕn‖ with ϕn(x) = rn cos(rnx) + h1 sin(rnx).

Then, one can show that A is a Riesz-spectral operator [2,
Def. 2.3.4] and generates a C0-semigroup denoted by T (t) [3]. The
result reported in [2, Thm. 2.3.5] shows that T (t) and A can be
written as (3) and (4), respectively with operators An,Πn ∈ L(H)
given by Anz = λn 〈z, en〉 en and Πnz = 〈z, en〉 en for all z ∈ H.
Moreover, it is readily checked that (An)n≥1 is compatible with
the family of complete orthogonal projections (Πn)n≥1. Furthemore,
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Fig. 1. Time evolution of the closed-loop reaction-diffusion system

noting that eAntΠnz = eλnt 〈z, en〉 en, we obtain that ‖eAntΠn‖ ≤
eλ1t for all t ≥ 0. Then the conclusions of Lemma 1 apply.

We select N0 as the largest integer such that λN0 ≥ 0. Then
we have that dn = dim(R(Πn)) = 1 < +∞ for all n ≥ 1 and
that, as eAntΠnz = eλnt 〈z, en〉 en, ‖eAntΠn‖ ≤ eλN0+1t for all
n ≥ N0 + 1 with λN0+1 < 0. Hence the assumptions of Theorem 1
are satisfied for values of δ ∈ (0, D0) and κ ∈ (0, σ) such that
the LMI Θu(δ, κ) ≺ 0 with M = Acl and N = eD0AK is feasible,
assessing the exponential stability of the resulting closed-loop system.

For numerical computations, we set a = 0.05, b = 1, θ1 = π/3,
and θ2 = π/10. The nominal value of the delay is set as D0 = 1 s.
The first three eigenvalues of A are approximately given by λ1 ≈
0.8890, λ2 ≈ 0.2203, and λ3 ≈ −1.3075. Thus we take N0 = 2 and
we select the feedback gain as K = diag(−0.5,−0.75) − A such
that the closed-loop matrix Acl = A + K = diag(−0.5,−0.75) is
Hurwitz. The control input takes the form u(t, x) = u1(t)e1(x) +

u2(t)e2(x) where u(t) =
[
u1(t) u2(t)

]> is given by (10). The
application of Theorem 1 shows that the closed-loop system is
exponentially stable for δ = 0.209. We note that the structure of
the obtained controller in significantly simpler than the one reported
in [23] in the special case of Dirichlet boundary conditions. The
reason is that, in the present work, only a finite number of modes of
the original reaction-diffusion equation are actively controlled.

The numerical behavior of the closed-loop system (obtained based
on the 30 dominant modes) with the initial condition φ(x) = (1 −
2x)/2 + 20x(1− x)(x− 3/5), the time-varying delay D(t) = 1 +
0.2 sin(5t), and the transition signal ϕ over [0, t0] with t0 = 0.2 s
and linearly increasing from 0 to 1 on [0, t0], is shown in Fig. 1. The
numerical results are compliant with the theoretical predictions.

IV. FINITE DIMENSIONAL CONTROL INPUT ACTING VIA A

BOUNDED OPERATOR

We now consider the case of a finite-dimensional control input act-
ing over the domain via a bounded operator. Specifically, we consider
the abstract system (6) with f(t) =

∑m
k=1 fkuk(t − Dk(t)) where

fk ∈ H, uk(t) ∈ R is a scalar control input subject to an uncertain
and time-varying input-delay Dk(t) ∈ [D0,k − δk, D0,k + δk]. We

assume the system uncontrolled in negative times, i.e. u(τ) = 0 for
τ ≤ 0. Thus, the studied system takes the following form:

dX

dt
(t) = AX(t) +

m∑
k=1

fkuk(t−Dk(t)) (12a)

X(0) = X0 (12b)

The above setting differs from (8) because 1) the structure of the
distributed input (number of scalar inputs m and the functions fk)
is imposed a priori and hence cannot be tuned at will during control
design; 2) each scalar input uk exhibits a distinct input delay Dk.
This latter element yields a difference of treatment in the stability
analysis compared to the case of a uniform delay, inducing different
LMI conditions (see Appendix).

A. Main result

The main result of this section is the following theorem.
Theorem 2: Let D0,k, t0 > 0 be given. Let (An)n≥1 ∈ L(H)N be

compatible with (Πn)n≥1 ∈ L(H)N a family of complete orthogonal
projections. We assume that there exists N0 ≥ 1 such that:
• dn = dim(R(Πn)) <∞ for all 1 ≤ n ≤ N0;
• there exist M ≥ 1 and σ > 0 such that ‖eAntΠn‖ ≤ Me−σt

for all n ≥ N0 + 1 and t ≥ 0.
We denote by T (t) the C0-semigroup defined by (3) and we consider
A its associated infinitesimal generator given by (4). For all 1 ≤
n ≤ N0, we define
• Bn = (en,l)1≤l≤dn an orthonormal basis of R(Πn);
• An ∈ Rdn×dn the matrix of An|R(Πn) : R(Πn) → R(Πn) in

the orthonormal basis Bn;
• A = diag(A1, . . . , AN0) ∈ Rd×d where d =

∑N0
n=1 dn;

• Bn = (〈fk, en,l〉)1≤l≤dn , 1≤k≤m ∈ Rdn×m;

• B ∈ Rd×m =
[
B
>
1 . . . B

>
N0

]>
∈ Rd×m whose k-th

column is denoted by B̃k ∈ Rd.
We assume that the pair (A,B) is stabilizable. Introducing

x(t) =
[
x1(t)> x2(t)> . . . xN0(t)>

]> ∈ Rd

with

xn(t) =
[
xn,1(t) xn,2(t) . . . xn,dn(t)

]> ∈ Rdn

and xn(t) =
∑dn
l=1 xn,l(t)en,l, the control input takes the form

u(t) = ϕ(t)K

{
x(t) +

m∑
k=1

∫ t

t−D0,k

e(t−D0,k−s)AB̃ku(s) ds

}
(13)

where ϕ ∈ C0(R+;R) is an arbitrary transition signal over
[0, t0] and K ∈ Rm×d is selected such that Acl , A +∑m
k=1 e

−D0,kAB̃kKk is Hurwitz with Kk ∈ R1×d the k-th line
of K. Considering Θd(∆, κ) given by (16) in the Appendix with
∆ = (δ1, . . . , δm), M = Acl, and Nk = B̃kKk, let δk ∈ (0, D0,k)
and κ ∈ (0, σ) be such that5 the LMI Θd(∆, κ) ≺ 0 is feasible
for some P1, Qk ∈ S+∗

d and P2, P3 ∈ Rd×d. Then there exists
C0 > 0 such that, for any X0 ∈ H and any Dk ∈ C0(R+;R+)
with |Dk − D0,k| ≤ δk, the mild solutions of (12) with command
input u given by (13) satisfy

‖X(t)‖+ ‖u(t)‖ ≤ C0e
−κt‖X0‖

for all t ≥ 0.
Proof. The same argument as the one used in the proof of

Theorem 1 shows that 1) the conclusions of Lemma 1 apply; and

5We recall that the considered LMI is always feasible for sufficiently small
values of δk > 0 and κ > 0. See Appendix and [14] for details.
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2) since Dk(t) ≥ D0,k − δk > 0, the closed-loop system is well-
posed and we have u ∈ C0(R;Rm) with u(τ) = 0 for τ ≤ 0.

Setting f(t) =
∑m
k=1 fkuk(t−Dk(t)) with fk ∈ H and uk(t) ∈

R, we evaluate for 1 ≤ n ≤ N0 the following term:∫ t

0

eAn(t−s)Πnf(s) ds

=

∫ t

0

eAn(t−s)Πn

m∑
k=1

fkuk(s−Dk(s)) ds

=

∫ t

0

eAn(t−s)
m∑
k=1

(
dn∑
l=1

〈fk, en,l〉 en,l

)
uk(s−Dk(s)) ds

=

∫ t

0

eAn(t−s)
dn∑
l=1

m∑
k=1

{〈fk, en,l〉uk(s−Dk(s))} en,l ds

=

∫ t

0

eAn(t−s)
dn∑
l=1

Bn,lv(s)en,l ds

where v(t) =
[
u1(t−D1(t)) . . . um(t−Dm(t))

]> ∈ Rm and
Bn,l is the l-th line of Bn. From (7), we have for all t ≥ 0 and all
1 ≤ n ≤ N0 that

xn(t) = eAntxn(0) +

∫ t

0

eAn(t−s)
dn∑
l=1

Bn,lv(s)en,l ds

and thus

xn(t) = eAntxn(0) +

∫ t

0

eAn(t−s)Bnv(s)ds.

As v is continuous, we infer that xn is continuously differentiable
and satisfies the ODE

ẋn(t) = Anxn(t) +Bnv(t)

for all t ≥ 0. Then we have

ẋ(t) = Ax(t) +Bv(t) = Ax(t) +

m∑
k=1

B̃kuk(t−Dk(t))

for all t ≥ 0. The application of Theorem 4 reported in Appendix
shows that ‖x(t)‖+ ‖u(t)‖ ≤ C1e

−κt‖x(0)‖ for all t ≥ 0. Noting
that

‖x(t)‖2 =

N0∑
n=1

‖xn(t)‖2 =

N0∑
n=1

dn∑
l=1

|xn,l(t)|2 =

N0∑
n=1

‖xn(t)‖2,

we infer that
N0∑
n=1

‖xn(t)‖2 ≤ C2
1e
−2κt

N0∑
n=1

‖xn(0)‖2

and

‖u(t)‖ ≤ C1e
−κt

√√√√ N0∑
n=1

‖xn(0)‖2 ≤ C1e
−κt‖X0‖.

Now, from (7) and recalling that Π2
n = Πn, we have for all n ≥

N0 + 1 and all t ≥ 0 that

‖xn(t)‖ ≤Me−σt‖xn(0)‖

+M

∫ t

0

e−σ(t−s)
m∑
k=1

‖Πnfk‖|uk(s−Dk(s))|ds

As u(t) = 0 for t ≤ 0, we note that

|uk(t−Dk(t))| ≤ ‖u(t−Dk(t))‖ ≤ C1e
−κ(t−Dk(t))‖X0‖

≤ C2e
−κt‖X0‖

for all t ≥ 0 with C2 = C1 exp

(
κ max

1≤k≤m
{D0,k + δk}

)
. Then we

obtain that

‖xn(t)‖

≤Me−σt‖xn(0)‖+MC2

m∑
k=1

‖Πnfk‖e−σt
∫ t

0

e(σ−κ)s ds ‖X0‖

≤Me−σt‖xn(0)‖+
MC2

σ − κ

m∑
k=1

‖Πnfk‖e−κt‖X0‖

where we used 0 < κ < σ. Consequently we have∑
n≥N0+1

‖xn(t)‖2

≤ 2M2e−2σt
∑

n≥N0+1

‖xn(0)‖2

+
2mM2C2

2

(σ − κ)2

m∑
k=1

∑
n≥N0+1

‖Πnfk‖2e−2κt‖X0‖2

≤ 2M2e−2κt
∑

n≥N0+1

‖xn(0)‖2

+
2mM2C2

2

(σ − κ)2

m∑
k=1

‖fk‖2e−2κt‖X0‖2.

Introducing the constant C3 ≥ 1 defined by

C2
3 = max

(
C2

1 , 2M
2)+

2mM2C2
2

(σ − κ)2

m∑
k=1

‖fk‖2,

we obtain that, for all t ≥ 0,

‖X(t)‖2 =
∑
n≥1

‖xn(t)‖2 ≤ C2
3e
−2κt‖X(0)‖2.

This completes the proof. �

B. Example of application

We consider a clamped flexible string described by

ytt(t, x) = (αyx + βytx)x(t, x) + γy(t, x)

+

m∑
k=1

ζk(x)uk(t−Dk(t)) (14a)

y(t, 0) = y(t, 1) = 0 (14b)

y(0, x) = φ1(x), yt(0, x) = φ2(x), (14c)

for t > 0 and x ∈ (0, 1). Here we have α, β > 0, γ ∈ R, and
ζk ∈ L2(0, 1). In this setting, uk : [−D0,k − δk,+∞) → R with
uk(t) = 0 for t < 0 is the control input subject to an uncertain and
time-varying input delay Dk ∈ C0(R+;R) with |Dk − D0,k| ≤ δk
and where D0,k > 0 and δk ∈ (0, D0,k) are known constants. Finally,
φ1 ∈ H1

0 (0, 1) and φ2 ∈ L2(0, 1) represent the initial conditions.
The flexible dynamics described by (14) can be rewritten under the

form (12) over the state-space H = H1
0 (0, 1) × L2(0, 1) endowed

with the inner product 〈(g1, h1), (g2, h2)〉 =
∫ 1

0
αg′1(ξ)g′2(ξ) +

h1(ξ)h2(ξ) dξ. In this setting, X(t) = (y(t, ·), yt(t, ·)) ∈ H,
X0 = (φ1, φ2) ∈ H, fk = (0, ζk) ∈ H, and A(g, h) =
(h, (αg′ + βh′)′ + γg) ∈ H defined on the domain:

D(A) =
{

(g, h) ∈ H : h ∈ H1
0 (0, 1), αg′ + βh′ ∈ H1(0, 1)

}
.

Introducing A0(g, h) = (h, (αg′+βh′)′) ∈ H defined on the do-
main D(A0) = D(A) and L ∈ L(H) defined by6 L(g, h) = (0, γg),
we have A = A0 + L. As β > 0, an integration by parts shows

6The bounded nature follows from Poincaré’s inequality.
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that A0 is dissipative while standard computations yield 0 ∈ ρ(A0).
Thus, by the Lümer-Phillips theorem, A0 generates a C0-semigroup
of contractions. Then A generates a C0-semigroup denoted by T (t).

For n ≥ 1 we introduce the vectors

en,1 =
1

nπ

√
2

α
(sin(nπ·), 0) ∈ D(A),

en,2 =
√

2 (0, sin(nπ·)) ∈ D(A).

It is readily checked that en,1, en,2 are unit vectors that satisfy
〈en1,l1 , en2,l2〉 = δ(n1,l1),(n2,l2) ∈ {0, 1} with δ(n1,l1),(n2,l2) = 1
if and only if (n1, l1) = (n2, l2). Then (en,l)n≥1,1≤l≤2 is an
orthonormal family of vectors of H. Let us check that this family
is also complete. Let (g, h) ∈ H be such that 〈(g, h), en,l〉 = 0 for
all n ≥ 1 and 1 ≤ l ≤ 2. We deduce that 〈g′, cos(nπ·)〉L2(0,1) = 0
and 〈h, sin(nπ·)〉L2(0,1) = 0 for all n ≥ 1. Recalling that
{1,
√

2 cos(nπ·), n ≥ 1} and {
√

2 sin(nπ·), n ≥ 1} are Hilbert
basis of L2(0, 1), we infer that g′ is a constant function while
h = 0. As g ∈ H1

0 (0, 1), we have that g = 0. We conclude that
(en,l)n≥1,1≤l≤2 is complete and thus forms a Hilbert basis of H.

Now, we note that

Aen,1 =
γ − αn2π2

√
αnπ

en,2,

Aen,2 =
√
αnπen,1 − βn2π2en,2.

Then, we can introduce (Πn)n≥1 ∈ L(H)N the family of com-
plete orthogonal projections defined by Πnz = 〈z, en,1〉 en,1 +
〈z, en,2〉 en,2 and define An = ΠnAΠn. It is readily checked that
(An)n≥1 ∈ L(H)N is compatible with the family of complete
orthogonal projections (Πn)n≥1. Furthermore, noting that R(Πn) =
vect(en,1, en,2) is a closed subspace included in D(A) that is A-
invariant, then [2, Lem. 2.5.4] ensures that R(Πn) is T (t)-invariant
and T (t)|R(Πn) = eAn|R(Πn)t = eAnt

∣∣
R(Πn)

for all n ≥ 1 and
t ≥ 0. We deduce that

T (t)z = T (t)
∑
n≥1

Πnz =
∑
n≥1

T (t)Πnz =
∑
n≥1

eAntΠnz,

which shows that T (t) takes the form of (3). Finally, since T (t)
is a C0-semigroup, there exist M ≥ 1 and ω > 0 such that
‖T (t)‖ ≤ Meωt for all t ≥ 0. In particular, ‖eAntΠn‖ =
‖T (t)Πn‖ ≤ ‖T (t)‖ ≤ Meωt for all t ≥ 0, showing that (2) holds
with g(t) = Meωt. The assumptions of Lemma 1 are satisfied and
thus, by uniqueness of the infinitesimal generator, A can be rewritten
under the form (4).

We introduce An ∈ R2×2 the matrix of An|R(Πn) : R(Πn) →
R(Πn) in the orthonormal basis (en,1, en,2):

An =

 0
√
αnπ

γ − αn2π2

√
αnπ

−βn2π2

 .
The characteristic polynomial of An is given by X2 + βn2π2X +
αn2π2−γ, showing that An is Hurwitz if and only if αn2π2−γ > 0.
Thus, introducing the integer N1 =

⌊
1
π

√
γ
α

⌋
≥ 0, An is Hurwitz for

all n ≥ N1 + 1. We now show that there exist constants M ≥ 1 and
σ > 0 such that ‖eAnt‖ ≤ Me−σt for all n ≥ N1 + 1 and t ≥ 0.
To do so, we define η = α/(2β) and the symmetric matrix

Pn =


β√
α
nπ 1

1
β√
α
nπ

 .

The eigenvalues of Pn are given by λm(Pn) = β√
α
nπ − 1 and

λM (Pn) = β√
α
nπ + 1. Then, considering integers n >

√
α/(βπ),

Pn is symmetric positive definite. The computation of

Qn = (qn,k,l)1≤k,l≤2 = A
>
nPn + PnAn + 2ηPn

yields

qn,1,1 = −
√
αnπ +

2γ√
αnπ

,

qn,2,2 = −2β2

√
α
n3π3 + 3

√
αnπ,

qn,1,2 = qn,2,1 = −βn2π2 +
βγ

α
+
α

β
.

In particular, one has

qn,1,1 ∼ −
√
αnπ < 0,

qn,1,1qn,2,2 − q2
n,1,2 ∼ β2n4π4 > 0,

when n → +∞. This shows that there exists an integer N2 >√
α/(βπ) large enough such that, for all n ≥ N2, Pn is symmetric

positive definite and Qn is symmetric negative definite. In particular,
defining zn(t) = eAntz0 for an arbitrary z0 ∈ R2, the introduction
of Vn(t) = zn(t)>Pnzn(t) yields λm(Pn)‖zn(t)‖2 ≤ Vn(t) ≤
λM (Pn)‖zn(t)‖2 and V̇n(t) ≤ −2ηVn(t) for all n ≥ N2 and t ≥ 0.
Then, we infer that

‖eAnt‖ ≤

√
λM (Pn)

λm(Pn)
e−ηt ≤

√
βN2π +

√
α

βN2π −
√
α
e−ηt

for all n ≥ N2 and t ≥ 0. Recalling that An is Hurwitz for n ≥
N1 + 1, we have for any N1 + 1 ≤ n ≤ N2 − 1 the existence
of Mn ≥ 1 and ηn > 0 such that ‖eAnt‖ ≤ Mne

−ηnt for all
t ≥ 0. Setting M = max

(
MN1+1, . . . ,MN2−1,

√
βN2π+

√
α

βN2π−
√
α

)
≥ 1

and σ = min(ηN1+1, . . . , ηN2−1, η) > 0, we obtain that ‖eAnt‖ ≤
Me−σt for all n ≥ N1 + 1 and t ≥ 0.

For control design, we select an arbitrary integer N0 ≥ N1.
In order to apply the result of Theorem 2, it remains to assess
that the pair (A,B) is stabilizable. We actually show that (A,B)
is stabilizable if and only if for any 1 ≤ n ≤ N1 there exists
1 ≤ k = k(n) ≤ m such that

∫ 1

0
ζk(ξ) sin(nπξ) dξ 6= 0. We

recall that ζk ∈ L2(0, 1) models the impact of the control input
uk on the system dynamics (14a). Such a result is closely related
to the controllability properties studied in [2, Sec. 4.2]. First, we
note that 〈fk, en,1〉 = 0 and 〈fk, en,2〉 =

√
2
∫ 1

0
ζk(ξ) sin(nπξ) dξ

for all n ≥ 1 and 1 ≤ k ≤ m. We study the existence of
possible common eigenvalues λ to An and An+m for n,m ≥ 1.
In this case, we have λ2 + βn2π2λ + αn2π2 − γ = 0 and
λ2+β(n+m)2π2λ+α(n+m)2π2−γ = 0. The difference of the two
latter identities yields λ = −α/β while the substitution of this result
in the former identity gives γ = α2/β2. Conversely, is γ = α2/β2,
then we have λ = −α/β that satisfies λ2+βn2π2λ+αn2π2−γ = 0
for all n ≥ 1. Overall, the only possible common eigenvalue λ to
An and An+m for distinct n,m ≥ 1 occurs in the configuration
γ = α2/β2 and is given by λ = −α/β < 0, which is stable. Thus,
based on the block diagonal structure of A, the Hautus test shows that
(A,B) is not stabilizable if and only if there exists 1 ≤ n ≤ N1,
λ ∈ C with Re(λ) ≥ 0, and a non-zero x =

[
x1 x2

]> ∈ C2

such that x∗An = λx∗ and x∗Bn = 0. If we assume that∫ 1

0
ζk(ξ) sin(nπξ) dξ = 0 for all 1 ≤ k ≤ m, then such a x

exists hence (A,B) is not stabilizable. Conversely, if there exists
1 ≤ k ≤ m such that

∫ 1

0
ζk(ξ) sin(nπξ) dξ 6= 0, then the latter

implies that x2 = 0 and then the former yields
√
αnπx1 = λx2 = 0,

i.e. x1 = 0. We have reached the claimed conclusion: the pair (A,B)
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Fig. 2. Time delays Dk(t)

is stabilizable if and only if for any 1 ≤ n ≤ N1 there exists
1 ≤ k = k(n) ≤ m such that

∫ 1

0
ζk(ξ) sin(nπξ) dξ 6= 0.

For numerical computations, we set α = 0.4, β = 0.05, and
γ = 2π2. We consider two (m = 2) scalar control inputs u1, u2

with corresponding distributed actuation ζ1 = 1|[1/3,1/2] and ζ2 =
1|[5/7,6/7]. The nominal values of the delays in the two control input
channels are set as D0,1 = 0.3 s and D0,2 = 0.25 s. In this numerical
setting, we have N1 = 2, showing that the matrices An are Hurwitz
for all n ≥ 3. The eigenvalues of 1) A1; 2) A2 are approximately
given by 1) 3.7347 and −4.2282; 2) 1.2316 and −3.2055. Then
we set N0 = 2 for control design. It is readily checked that the
pair (A,B) is commandable. Thus, we compute a feedback gain
K ∈ R2×4 such that the poles of the closed-loop matrix Acl =

A+
∑2
k=1 e

−D0,kAB̃kKk are located at −0.8, −1, −3.2, and −4.2.
The control input takes the form u(t, x) = u1(t) 1|[1/3,1/2] (x) +

u2(t) 1|[5/7,6/7] (x) where u(t) =
[
u1(t) u2(t)

]> is given by (13).
The application of Theorem 2 shows that the closed-loop system is
exponentially stable for δ1 = 0.053 and δ2 = 0.052.

The numerical behavior of the closed-loop system (obtained based
on the 40 dominant modes of the system) with the initial condition
φ1(x) = −x(2/3− x)(1− x) and φ2(x) = (1− exp(−x))/10, the
time-varying delays as depicted in Fig. 2, and the transition signal ϕ
over [0, t0] with t0 = 0.2 s and linearly increasing from 0 to 1 on
[0, t0], is shown in Fig. 3. The numerical results are compliant with
the theoretical predictions.

V. CONCLUSION

This paper discussed the in-domain stabilization of a class of block
diagonal infinite-dimensional systems in the presence of uncertain
and time-varying control input delays. The proposed control strategy
consists in the design of a classical predictor feedback law on a finite-
dimensional truncated LTI model capturing the unstable dynamics of
the original infinite-dimensional system. Compared to other strategies
reported in the literature, this approach offers the advantage that
only a finite number of modes of the original infinite-dimensional
system is actively controlled, yielding a control strategy with a
lower complexity. Moreover, this approach not only holds for fully
distributed control inputs, but it also applies to the case of a finite-
dimensional control input acting on the domain via a bounded
operator. Finally, this approach also allows the consideration of
uncertain and time-varying input delays, which are possibly distinct in
the different scalar control input channels. The obtained theoretical
results were successfully applied to the stabilization of a reaction-
diffusion equation with Robin boundary conditions and to a clamped
flexible string.

APPENDIX

RESULTS ON THE ROBUSTNESS OF PREDICTOR FEEDBACK LAWS

A. Uniform delay

The following result is extracted from [13].
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Fig. 3. Time evolution of the closed-loop flexible structure

Theorem 3: Let A ∈ Rn×n and B ∈ Rn×m be such that (A,B)
is stabilizable. Let D0 > 0 be a given nominal delay and let ϕ be an
arbitrary transition signal over [0, t0] with t0 > 0. Let K ∈ Rm×n
be such that Acl , A+BK is Hurwitz. Then, there exists δ ∈ (0, D0)
such that for any D ∈ C0(R+;R+) with |D −D0| ≤ δ, the closed-
loop system given for t ≥ 0 by

ẋ(t) = Ax(t) +Bu(t−D(t)),

u(t) = ϕ(t)K

{
eD0Ax(t) +

∫ t

t−D0

e(t−s)ABu(s) ds

}
,

x(0) = x0, u(τ) = 0, −(D0 + δ) ≤ τ ≤ 0

with initial condition x0 ∈ Rn is exponentially stable in the sense
that there exist constants κ,C1 > 0, independent of x0 and D, such
that ‖x(t)‖ + ‖u(t)‖ ≤ C1e

−κt‖x0‖. In particular, this conclusion
holds true (resp., with given decay rate κ > 0) for any δ ∈ (0, D0)
such that there exist P1, Q ∈ S+∗

n and P2, P3 ∈ Rn×n for which the
LMI Θu(δ, 0) ≺ 0 (resp., Θu(δ, κ) � 0) holds true with

Θu(δ, κ) = (15)2κP1 +M>P2 + P>2 M P1 − P>2 +M>P3 δP>2 N

P1 − P2 + P>3 M −P3 − P>3 + 2δQ δP>3 N

δN>P2 δN>P3 −δe−2κD0Q


where M = Acl and N = eD0ABK.
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Θd(∆, κ) =



2κP1 +M>P2 + P>2 M P1 − P>2 +M>P3 δ1P
>
2 N1 δ2P

>
2 N2 . . . δmP

>
2 Nm

P1 − P2 + P>3 M −P3 − P>3 + 2
m∑
k=1

δkQk δ1P
>
3 N1 δ2P

>
3 N2 . . . δmP

>
3 Nm

δ1N
>
1 P2 δ1N

>
1 P3 −δ1e−2κD0,1Q1 0 . . . 0

δ2N
>
2 P2 δ2N

>
2 P3 0 −δ2e−2κD0,2Q2 . . . 0

...
...

...
...

. . .
...

δmN
>
mP2 δmN

>
mP3 0 0 . . . −δme−2κD0,mQm


(16)

Note that due to the Hurwitz nature of Acl, the LMI of Theorem 3
is always feasible for sufficiently small values of δ > 0 and κ > 0.
See [13, Lem. 2] for details.

B. Distinct delays

We have the following result borrowed from [14].
Theorem 4: Let A ∈ Rn×n and B ∈ Rn×m be such that

(A,B) is stabilizable. We denote by Bk ∈ Rn the k-th column
of B. Let D0,k > 0 be given nominal delays and let ϕ be an
arbitrary transition signal over [0, t0] with t0 > 0. Let feedback
gains Kk ∈ R1×n be such that Acl , A +

∑m
k=1 e

−D0,kABkKk

is Hurwitz. We denoted by K ∈ Rm×n the feedback gain whose
k-th line is Kk. Then, there exist δk ∈ (0, D0,k) such that for any
Dk ∈ C0(R+;R+) with |Dk −D0,k| ≤ δk, the closed-loop system
given for t ≥ 0 by

ẋ(t) = Ax(t) +

m∑
k=1

Bkuk(t−Dk(t)),

u(t) = ϕ(t)K

{
x(t) +

m∑
i=1

∫ t

t−D0,i

e(t−D0,i−s)ABiui(s) s

}
,

x(0) = x0, u(τ) = 0, − max
1≤k≤m

(D0,k + δk) ≤ τ ≤ 0

with initial condition x0 ∈ Rn is exponentially stable in the sense
that there exist constants κ,C1 > 0, independent of x0 and Dk, such
that ‖x(t)‖+‖u(t)‖ ≤ C1e

−κt‖x0‖ for all t ≥ 0. In particular, this
conclusion holds true (resp., with given decay rate κ > 0) for any
δk ∈ (0, D0,k) such that there exist P1, Qk ∈ S+∗

n and P2, P3 ∈
Rn×n for which the LMI Θd(∆, 0) ≺ 0 (resp., Θd(∆, κ) � 0) holds
with Θd(∆, κ) given by (16) where ∆ = (δ1, . . . , δm), M = Acl,
and Nk = BkKk.

Similarly to the case of a uniform delay, the LMI of Theorem 4
is always feasible for sufficiently small values of δk > 0 and κ > 0.
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