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Abstract 

Allowing for the simultaneous determination of the photocarriers drift mobilities and their small-

signal recombination lifetime, the Moving photocarrier Grating Technique (MGT) is a useful 

characterization tool for photoconductive semiconductors. This technique is based on measuring the 

steady-state direct current induced by an interference pattern (IP) moving at a constant velocity 

between two coplanar ohmic contacts deposited on the semiconductor. The main drawback of the 

technique is the low level of the signal to be measured, which can be masked by noise. The 

Oscillating Photocarrier Grating technique (OPG), where the IP oscillates at constant speed, has been 

proposed as an alternating current version of MGT, providing a higher signal-to-noise ratio. The IP 

oscillation is produced by the phase modulation of one of the interfering beams. Using the multiple 

trapping model we deduce the expression of the current density generated by OPG in a 

photoconductor. We observed theoretically and experimentally that OPG is not equivalent to MGT 

for the previously used amplitude of oscillation, especially when the IP moves at high speeds. 

However, we show that the desired equivalence between both techniques could be recovered by 

increasing the amplitude of oscillation. A phase modulator capable of achieving such amplitudes is 

required for the correct implementation of OPG. 

 

1. Introduction 

The Oscillating Photocarrier Grating technique (OPG) was initially proposed by Ventosinos et al. 

[1] as an Alternating Current (AC) version of the Moving photocarrier Grating Technique (MGT). The 

latter technique is based on measuring the Direct Current (DC) induced in a photoconductor by a 

monochromatic illumination, that consist of an Interference Pattern (IP) moving at constant speed 

from one electrical contact to the other on a uniform background of higher intensity. This 

illumination is achieved by introducing a small frequency difference (∆𝜔) between two interfering 

monochromatic beams of much different intensities, being the IP speed proportional to ∆𝜔. The 

current induced between the coplanar ohmic contacts is entirely caused by the illumination and 

does not require the presence of an external electric field; for this reason, the effect is also known as 

the photo-electromotive force [2]. The current direction is determined by the charge of the majority 

carrier, which makes the technique useful for the immediate determination of the sample doping 
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type. Haken et al. [3] proposed determining the drift mobilities and the small-signal recombination 

lifetime (𝜏′), by fitting with a theoretical equation the steady-state current induced by different IP 

speeds. Later, Witt et al. [4] observed that, when the IP spatial period () is considerably larger than 

the ambipolar diffusion length of the photocarriers and their small-signal recombination lifetime (𝜏′) 

is much longer than the dielectric relaxation time1 in the material, 𝜏′ is related to the angular 

frequency difference that maximizes the current, ∆𝜔𝑚, by the simple equation, 𝜏′ = ∆𝜔𝑚
−1. 

Despite its simplicity and potential, MGT never achieved the popularity of other techniques used 

for the estimation of the mobilities, such as the Hall Effect measurements. The main drawback of 

MGT is the low level of the signal to be measured, which can be easily masked by noise at low 

temperatures or low light intensities, especially in poor photoconductors. To produce a greater 

signal-to-noise ratio, Ventosinos et al. [1] proposed OPG, which generates an AC signal in the 

material instead of a DC one. The advantage of measuring an AC signal is related to the possibility of 

using a lock-in amplifier to remove the electrical noise from the current. Hence, OPG has been used 

as a complement to MGT for low temperatures and low generation rates, when the signal induced 

by MGT is too low to be directly measured [5,6].  

In OPG the material is also illuminated with a monochromatic light that consist of a moving 

interference pattern on a uniform background of higher intensity, although its movement is periodic: 

it moves at constant velocity from one contact to the other for half a period, while during the next 

half period it moves at the same speed but in the opposite direction. The AC signal is produced 

between the coplanar contacts as a result of the IP oscillation and it does not require the presence 

of an external electric field. Note that during each half period the OPG illumination corresponds 

exactly to that of MGT. As consequence of the sample’s symmetry, the steady-state current induced 

by the movement of the interference pattern at a given constant velocity must be exactly the 

opposite of that produced with the opposite velocity. Previous works [1,5,6] assumed that the AC 

steady-state signal induced in the material by OPG consists of a square wave whose extreme values 

correspond to the steady-state current induced by MGT over each half period (which should be 

equal to each other in modulus). Therefore, the peak-to-peak amplitude of the alternating steady-

state signal induced by OPG is two times the absolute value of the steady-state signal induced by 

MGT under the same experimental conditions. This assumption allows using OPG for the estimation 

of the MGT signal. 

Recently, another technique have been proposed to produce an AC signal proportional to the DC 

signal induced by MGT: the Chopped Moving photocarrier Grating (CMG), which consist of chopping 

at a low frequency the weak beam in the standard MGT configuration [7]. Although it is simpler than 

OPG, the AC signal induced in the material by CMG is half the AC signal induced by OPG, and 

consequently it does not allow obtaining such a higher signal-to-noise ratio.  

In this work, we develop a more fundamental analysis of OPG than those previously presented 

[1,5,6], since the current density expression is obtained using the multiple trapping model without 

making further assumptions. This model is well established for photoconductive materials such as 

hydrogenated amorphous silicon (a-Si:H), especially for the high temperatures and light intensities 

used here, where hopping conduction and hopping recombination are negligible [8–10]. By means of 

                                                           
1
 The dielectric relaxation time is given by the ratio of the material permittivity and the steady-state 

conductivity.  
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a numerical simulation with parameters typical for a-Si:H we test the above-mentioned assumption 

[1,5,6], which implies the proportionality between the AC current induced by OPG and the DC 

current induced by MGT. We observe that, with the IP amplitude of oscillation used previously 

[1,5,6], the currents cease to be proportional for high IP speeds (large values of ∆𝜔). However, we 

note that increasing the oscillation amplitude allows regaining the proportionality for the entire 

range of measurable ∆𝜔 values. We perform measurements on a sample of undoped a-Si:H, 

presenting a complete description of the experimental procedure followed. Among other important 

things, we detail how to attain a precise calibration of the IP oscillation amplitude. Unfortunately, 

with the phase modulator that we have we could not achieve the amplitudes of oscillation that 

guarantee the proportionality between OPG and MGT currents in the entire range of ∆𝜔 values. 

However, the new experimental results show the expected differences and similarities between 

both currents and the same tendencies observed in the numerical simulation, validating the new 

theoretical results presented. According to the new theoretical results, OPG would produce a 

current proportional to MGT if the previously used [1,5,6] IP amplitude of oscillation is at least 

multiplied by six.  

The paper is organized as follows. A theoretical introduction to OPG is presented in Sec. 2, 

where an ideal relationship, similar to the previous one [1,5,6], is found between the steady-state 

DC signal induced by MGT and the steady-state AC signal induced by OPG. Details about MGT will be 

mostly omitted in this paper because they have been exhaustively given in Ref. [7]. Section 3 details 

the procedure followed for obtaining the expression of the current density induced by OPG in a 

photoconductor. Section 4 presents a theoretical comparison between the current induced by MGT 

and OPG in undoped a-Si:H. Section 5 describes the experimental methods, while the experimental 

results are presented and discussed in Sec. 6. The main conclusions of this work are summarized in 

Sec. 7. 

 

2. Theoretical background 

Figure 1 presents a schematic diagram of the OPG experimental configuration. A beam of 

(vertically) polarized laser light is divided in two by a Beam Splitter (BS). One of the beams is 

attenuated with a Neutral Density Filter (NDF), in order to obtain a large difference between both 

intensities. One of the beams passes through a Phase Modulator (PM), which introduces a triangular 

variation of its phase over time 𝜑(𝑡), with a period   and a peak-to-peak amplitude 𝐴𝑝𝑝:  

𝜑(𝑡) = {
2𝐴𝑝𝑝𝑡 ⁄ ,                         𝑡 ∈ [0 ; 



2
 ]

2𝐴𝑝𝑝(1 − 𝑡 ⁄  ),              𝑡 ∈ [


2
 ;   ]

 .    (1) 
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Fig. 1 Experimental setup of the Oscillating Photocarrier Grating technique (OPG). A 
laser beam is divided with a beam splitter (BS) and one of the two beams is dimmed 
with a neutral density filter (NDF), thus its intensity gets much lower than that of the 
other beam. One beam passes through a phase modulator (PM) which generates a 
triangular variation of its phase over time. The beams are focused with mirrors (M) 
to interfere between the contacts of the sample. The AC signal induced in the 
sample by the light is preamplified and its fundamental frequency component is 
measured with a lock-in amplifier  

 

The beams are made to interfere at the region between the contacts of the sample by using Mirrors 

(M). When one of the beams arrives perpendicularly to the sample as in Fig. 1, the spatial period of 

the interference pattern () is related to the angle between the incident beams (𝛿) by  =

 sin(𝛿)⁄ , where  is the wavelength of the laser light in air. Assuming spatially uniform intensity for 

each laser beam, it is obtained the following light intensity distribution as function of time and 

position between the contacts (𝑥) [1]: 

𝐼(𝑥, 𝑡) = 𝐼1 +  𝐼2 + 2𝛾0√𝐼1𝐼2 cos (2𝜋 
𝑥

𝛬
+ 𝜑(𝑡)) ,    (2) 

where 𝐼1 and 𝐼2 are the intensities of the strong and the weak beams, respectively, and 𝛾0 is the 

interference quality factor, whose value is positive and less than 1 as a consequence of light 

scattering, mechanical vibrations and partial coherence of the beams. For a given value of , the 

maximum distance that the IP travels along the 𝑥 coordinate 𝐷𝑝𝑝, is proportional to the oscillation 

amplitude of the beam phase 𝐴𝑝𝑝, more precisely, 𝐷𝑝𝑝 = 𝐴𝑝𝑝 (2𝜋)⁄ . The IP oscillation induces an 

AC signal in the sample and, after the electrical signal is preamplified, its fundamental frequency 

component is measured with a lock-in amplifier.  

The assumption of spatially uniform illumination in the direction of the current (𝑥 direction) is 

justified if the beams’ diameters on the sample are much larger than the separation between the 

coplanar electrical contacts. Figure 1 resembles the experimental configuration of the Modulated 

Photocarrier Grating technique (MPG) [11], where the weak beam goes through a polarization 
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modulator instead of a phase modulator. Unlike MPG, the modulator in OPG setup can be placed in 

the path of any of the two beams.  

When the energy of the light beam is greater than the material gap, the average generation rate 

of free carriers in the material (𝐺) is proportional to the flux of incident photons (𝐹), and the 

proportionality constant (𝐾) can be estimated from the following equation: 

𝐾~
(1−𝑟)

𝑑
(1 − 𝑒−𝛼 𝑑),                                   (3) 

where 𝑟 is the reflection coefficient of the frontal surface, 𝑑 is the thickness of the film and 𝛼 is the 

absorption coefficient of the material for the incident light energy [2]. It is not recommended to use 

light with energy much higher than the material’s gap, because in this situation, the light is totally 

absorbed near the surface of the material, and Eq. (3) is not valid anymore. In this case, the surface 

recombination cannot be neglected and the equations deduced in section 3 may need modifications 

[12,13].  

From Eq. 2 we obtain the average generation rate induced in the material by OPG: 

𝐺 = 𝐺0 + ∆𝐺0 cos(𝑘 𝑥 + 𝜑(𝑡)) = 𝐺0 + ∆𝐺0[cos(𝑘 𝑥) cos(𝜑(𝑡)) − sin(𝑘 𝑥) sin(𝜑(𝑡))] ,     (4) 

where 𝑘 = 2𝜋/. The uniform generation rate is given by 𝐺0 = 𝐺1 + 𝐺2, where 𝐺1 and 𝐺2 come 

from 𝐼1 and 𝐼2 , respectively. The amplitude of the harmonic generation rate is given by ∆𝐺0 =

2𝛾0√𝐺1 𝐺2. As consequence of the large difference between the interfering beams intensities, the 

relation ∆𝐺0 ≪ 𝐺0 is verified.  

During each half period the OPG illumination corresponds to that of MGT with a frequency 

difference between the beams given by: 

∆𝜔 = ±
𝐴𝑝𝑝𝜔𝑜

𝜋
 ,                                                                       (5) 

where the positive sign corresponds to the movement of the interference pattern in one direction, 

while the negative sign corresponds to the movement in the opposite direction, and 𝜔𝑜 is the 

fundamental angular frequency of the OPG signal, which is related with its period by 𝜔𝑜 = 2𝜋/. 

Equation 5 is obtained equating the expressions of the IP velocities in OPG technique (±2 𝐷𝑝𝑝 Γ⁄ ) 

with the expression of the IP velocity in MGT (Δ𝜔/𝑘) [7]. If ∆𝐽𝑀𝐺𝑇 corresponds to the steady-state 

current density induced by MGT in a material while the IP is moving at a given constant speed in one 

direction, the steady-state current density induced by MGT for the opposite IP velocity is equal to 

−∆𝐽𝑀𝐺𝑇. Figure 2 shows the signal induced by OPG in the material assumed in previous works 

[1,5,6], where the current induced during each half period corresponds exactly to the steady-state 

current induced by MGT. In this case, the amplitude of the first harmonic component of the signal, 

|∆𝐽𝑂𝑃𝐺
𝜔𝑜 |, is proportional to the steady state current induced by MGT with |∆𝜔| = 𝐴𝑝𝑝𝜔𝑜 𝜋⁄  under 

exactly the same experimental conditions. More precisely: 

|∆𝐽𝑀𝐺𝑇|(|∆𝜔| = 𝐴𝑝𝑝𝜔𝑜 𝜋⁄ ) =
𝜋

4
|∆𝐽𝑂𝑃𝐺

𝜔𝑜 | = √2
𝜋

4
(

|∆𝐽𝑂𝑃𝐺
𝜔𝑜 |

√2
) ,   (6) 

where (|∆𝐽𝑂𝑃𝐺
𝜔𝑜 | √2⁄ ) corresponds to the module of the RMS current density measured by the lock-in 

amplifier. Equation 6 is obtained by calculating the first harmonic amplitude of the signal plotted in 
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Fig. 2. In the previous papers [1,5,6], a fixed value is used for the oscillation amplitude of the phase, 

𝐴𝑝𝑝 = 𝜋/2. 
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Fig. 2 Idealized relation between the steady-state current densities induced by the 
Oscillating Photocarrier Grating technique (OPG) and Moving photocarrier Grating 
Technique (MGT) for the same experimental conditions and when the interference 
pattern (IP) speed is the same in both techniques. This signal is a good 
approximation to the current induced by OPG, only when the time during which the 
interference pattern moves in one direction ( / 2) is much longer than the time it 
takes the current to reach its new steady-state value after the sudden change of the 
IP direction of movement 

 

Note that the signal conjectured in Fig. 2 for the steady-state current density induced by OPG 

corresponds to an ideal case, since a macroscopic current cannot change its value instantaneously, 

due to the inertia and the finite recombination lifetime of the photocarriers. A more realistic signal 

should include some type of continuous transient from |∆𝐽𝑀𝐺𝑇| to −|∆𝐽𝑀𝐺𝑇| and vice versa, with a 

certain finite duration 𝜏𝑡. The induced signal would tend to the ideal one when the time during the 

IP is moving in one direction ( / 2) is much longer than the duration of the transient 𝜏𝑡. Therefore 

Eq. 6, which allows obtaining |∆𝐽𝑀𝐺𝑇| from the measurement of the current induced by OPG, should 

only be valid for sufficiently large periods of oscillation ( ), or equivalently, for low enough 

frequencies of oscillation (𝜔𝑜 = 2𝜋/ ). 

 

3. Deduction of the current density expression 

To obtain the expression of the current density induced by OPG, without making assumptions 

about its shape, it is necessary to make a Fourier series expansion of the sine and cosine of the 

phase 𝜑(𝑡) (given by Eq. 1), and replace them into Eq. 4, corresponding to the mean generation rate 

induced in the material by OPG. Using elementary trigonometric properties, it is possible to express 
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the non-uniform component of the generation rate as the sum of traveling harmonic waves of 

different frequencies ( ) multiples of 𝜔𝑜 ( = 𝑖𝜔𝑜). Thus, Eq. 4 can be rewritten as: 

𝐺 = 𝐺0 + 𝑅𝑒{∑ 𝑔 𝑒𝑗(𝑘𝑥+ 𝑡)} .                   (7) 

Since ∆𝐺0 ≪ 𝐺0, it can be shown that 𝑔 ≪ 𝐺0 (see appendix A), which allows discarding the 

nonlinear terms in the fundamental equations. Therefore, the free carrier densities and the induced 

electric field can be found by adding the solutions obtained separately for each term within the 

braces of Eq. 7. The densities of free electrons (𝑛) and holes (𝑝), and the electric field ( ), then 

become: 

𝑛 = 𝑛0 + ∑ 𝑅𝑒{∆𝑛 𝑒𝑗(𝑘𝑥+ 𝑡)}  ,    (8) 

𝑝 = 𝑝0 + ∑ 𝑅𝑒{∆𝑝 𝑒𝑗(𝑘𝑥+ 𝑡)}  ,    (9) 

 = 
𝑒𝑥𝑡

+ ∑ 𝑅𝑒{∆


 𝑒𝑗(𝑘𝑥+ 𝑡)}  ,    (10) 

where 𝑛0 and 𝑝0 are the concentrations of carriers generated by 𝐺0, and 
𝑒𝑥𝑡

 is the externally 

applied electric field. Note that when taking a single term from the summation in Eq. 7, the 

generation rate corresponds mathematically to that of MGT, whose steady-state solution can be 

found in the literature [1,7]. Each harmonic amplitude of Eq. 8, 9 or 10 (∆𝑛, ∆𝑝 or ∆


 , 

respectively) depends only on the generation rate’s uniform component, 𝐺0, and the same-

frequency’s harmonic amplitude, 𝑔 , but not on the rest (i.e. on 𝑔 ′ with 𝛺′ ≠ 𝛺). The precise 

expressions obtained with the multiple trapping model for a material with an arbitrary monovalent 

density of states can be found in appendix A of Ref. [7]. 

If we assume spatially periodic boundary conditions, the spatial average of the current density, 

𝐽, coincides with the spatial average of the current density in a period , 

𝐽 =
1


∫ [𝜎  + 𝑘𝑏𝑇 (𝜇𝑛

𝜕𝑛

𝜕𝑥
− 𝜇𝑝

𝜕𝑝

𝜕𝑥
)] 𝑑𝑥



0
= 𝐽0 + ∆𝐽𝑂𝑃𝐺  .         (11) 

𝑘𝑏 is the Boltzmann constant, 𝑇 is the absolute temperature, 𝜇𝑛 and 𝜇𝑝 are the mobilities of free 

electrons and free holes, respectively, and 𝜎 is the electrical conductivity,  

𝜎 = 𝑞(𝜇𝑛𝑛 + 𝜇𝑝𝑝) = 𝜎0 + ∑ 𝑅𝑒{∆𝜎 𝑒𝑗(𝑘𝑥+ 𝑡)}  ,    (12) 

where 𝜎0 and ∆𝜎 are given by: 

𝜎0 = 𝑞(𝜇𝑛𝑛0 + 𝜇𝑝𝑝0), ∆𝜎 = 𝑞(𝜇𝑛∆𝑛 + 𝜇𝑝∆𝑝) .    (13) 

The diffusion currents, given by the second term within the square brackets in Eq. 11, are cancelled 

after integration. 𝐽0 is the current density caused by the uniform generation rate, and it cancels 

when the external electric field is zero, 

𝐽0 =
1


∫ 𝜎0


0


𝑒𝑥𝑡
𝑑𝑥 = 𝜎0 

𝑒𝑥𝑡
 .     (14) 

∆𝐽𝑂𝑃𝐺 corresponds to the current density induced by the periodic generation rate, 
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∆𝐽𝑂𝑃𝐺 =
1


∫ ∑ 𝑅𝑒{∆𝜎 𝑒𝑗(𝑘𝑥+ 𝑡)} ∑ 𝑅𝑒{∆

 ´
 𝑒𝑗(𝑘𝑥+ ´𝑡)} ´ 𝑑𝑥



0
 .          (15) 

After distributing the product and integrating, it can be expressed as 

∆𝐽𝑂𝑃𝐺 = ∆𝐽𝑂𝑃𝐺
0 + 𝑅𝑒{∆𝐽𝑂𝑃𝐺

𝜔𝑜 𝑒𝑗𝜔𝑜𝑡} + 𝑅𝑒{∆𝐽𝑂𝑃𝐺
2𝜔𝑜𝑒𝑗2𝜔𝑜𝑡} + ⋯ .   (16) 

In this work, we are only interested in the amplitude of the current induced at the fundamental 

frequency, ∆𝐽𝑂𝑃𝐺
𝜔𝑜 , whose expression depends on whether the oscillation amplitude of the phase, 

𝐴𝑝𝑝, is a multiple of 𝜋 or not. The expressions obtained for each case are deduced in appendix A. 

 

4. Numerical simulations 

To numerically simulate the photoconductive behaviour of undoped a-Si:H, we use exactly the 

same density of states and material parameters of Ref. [7]. For given 𝑇 and 𝐺0 values, we initially 

obtain the uniform concentrations of free carriers, 𝑛0 and 𝑝0, by solving the continuity and the 

charge neutrality equations simultaneously [7]. We obtain then the harmonic terms’ amplitudes of 

the electron concentration (∆𝑛), hole concentration (∆𝑝) and the electric field (∆


). Replacing 

the values of ∆


 and ∆𝜎 (obtained from Eq. 13) into Eqs. A6 or A11, we obtain the modulus of the 

current density induced at the fundamental frequency. When 𝐴𝑝𝑝 is not a multiple of 𝜋, the 

expression of the current density results in an infinite summation (Eq. A11). To estimate |∆𝐽𝑂𝑃𝐺
𝜔𝑜 | we 

cut the sum at 𝑖 = 8, since we observe that with this approximation at least three significant digits of 

precision can be assured. The procedure for calculating the steady-state current density induced by 

MGT (∆𝐽𝑀𝐺𝑇) can be found in Ref. [7]. 

Figures 3 and 4 present the results obtained when the oscillation amplitudes of the phase are 

less than 𝜋 and multiples of 𝜋, respectively. These were obtained with average experimental values 

of temperature, generation rate and spatial period of the IP (𝑇 = 200 K, 𝐺0 = 5×1020 cm-3s-1 y  = 

6×10-4 cm), although we observed that the qualitative relationships between the different curves are 

independent of the particular values of these parameters. The solid line corresponds to the exact 

value of |∆𝐽𝑀𝐺𝑇|, while the dashed lines were obtained with Eq. 6 when |∆𝐽𝑂𝑃𝐺
𝜔𝑜 | is calculated from 

Eqs. A6 or A11. 
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Fig. 3 Steady-state current densities corresponding to the Moving photocarrier 
Grating Technique (MGT) as a function of the frequency difference between the 
interfering beams, obtained with a numerical simulation of undoped a-Si:H. The solid 
line corresponds to the exact values obtained with MGT, while the dashed lines were 

obtained using equation (6) with |∆𝐽𝑂𝑃𝐺
𝜔𝑜 | calculated for 𝐴𝑝𝑝 = 3𝜋/4, 𝜋/2 and 𝜋/4, 

as indicated in the caption. The arrow shows the displacement of the maximum as 
the oscillation amplitude in OPG decreases 

 

These figures allow testing the validity ranges of Eq. 6; for the different oscillation amplitudes, it 

is observed that the equality is strictly verified only in the region of low ∆𝜔. However, this region of 

low frequencies where Eq. 6 is verified becomes larger as the oscillation amplitude of the phase is 

increased. For 𝐴𝑝𝑝 = 3𝜋 (Fig. 4), it is observed just a slight mismatch at the highest frequencies; 

thus, in this case OPG is an acceptable approximation of MGT in the whole range of ∆𝜔 values that 

can be achieved experimentally (up to ~107 s-1). More precision can be gained by increasing more 

the value of 𝐴𝑝𝑝. These results are in accordance with the analysis performed in Sec. 2, according to 

which Eq. 6 should only be valid for values of   much greater than the duration of the transitory 𝜏𝑡. 

By rewriting Eq. 5, the following condition for the validity of Eq. 6 is obtained, 

 =
2𝐴𝑝𝑝

|∆𝜔|
≫ 𝜏𝑡  .         (17) 

If we assume that the time 𝜏𝑡 does not depend on 𝐴𝑝𝑝 and |∆𝜔|, we see that the range of validity of 

Eq. 6 is given by |∆𝜔| ≪ 2𝐴𝑝𝑝/𝜏𝑡, where it is observed that the range increases with the oscillation 

amplitude of the phase 𝐴𝑝𝑝, as obtained in the simulations.   
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Fig. 4 Steady-state current densities corresponding to the Moving photocarrier 
Grating Technique (MGT) as a function of the frequency difference between the 
interfering beams, obtained with a numerical simulation of undoped a-Si:H. The solid 
line corresponds to the exact value obtained with MGT, while the dotted lines were 

obtained using equation (6) with |∆𝐽𝑂𝑃𝐺
𝜔𝑜 | calculated for 𝐴𝑝𝑝 = 𝜋, 2𝜋 and 3𝜋, as 

indicated in the caption 

 

For sufficiently large values of |∆𝜔| (high speeds of the IP), Eq. 6 overestimates the value of 

|∆𝐽𝑀𝐺𝑇|. However, for the two smallest oscillation amplitudes in a region of intermediate |∆𝜔| 

values, it is observed a new behaviour that is not seen for the other oscillation amplitudes: the 

current density obtained with Eq. 6 underestimates the exact value. Thus, the shape of the transient 

current, produced after the sudden change of the IP velocity, depends on the amplitude of 

oscillation.  

The difference between the angular frequencies of the interfering beams that induces the 

highest steady-state current in MGT, ∆𝜔𝑚, corresponds to the value of ∆𝜔 for which the maximum 

occurs in the solid lines of Figs. 3 and 4. When OPG is used to obtain |∆𝐽𝑀𝐺𝑇|, it is observed that the 

value of ∆𝜔𝑚 is overestimated except for the smallest oscillation amplitude considered (𝐴𝑝𝑝 = 𝜋/

4). This behaviour is independent of the particular values of T, 𝐺0 and  chosen, except for the 

smallest amplitude of oscillation, which sometimes underestimates and sometimes overestimates 

the value of ∆𝜔𝑚. If Witt's formula, 𝜏′ = ∆𝜔𝑚
−1, is used as in [5,6], 𝜏′ would be usually 

underestimated and in the same proportion by which ∆𝜔𝑚 is overestimated. Figure 5 presents the 

relative errors obtained for ∆𝜔𝑚 at different temperatures, when ∆𝜔𝑚 is obtained from |∆𝐽𝑂𝑃𝐺
𝜔𝑜 | for 

the three largest amplitudes of oscillation considered here (𝐴𝑝𝑝 = 𝜋, 2𝜋 and 3𝜋). As expected, the 

errors are smaller as the oscillation amplitude of the phase is greater. For 𝐴𝑝𝑝 = 𝜋, the errors are 

between 45 and 280%. When the oscillation amplitude doubles (𝐴𝑝𝑝 = 2𝜋) the errors are drastically 

reduced; now being between 7 and 18%. For the greatest amplitude of oscillation considered 

(𝐴𝑝𝑝 = 3𝜋), the errors are between 4 and 10%. The points plotted in Fig. 5 were obtained with 𝐺0 = 
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1020 cm-3s-1 and  = 6×10-4 cm, although the same trend was observed for other values of these 

parameters.  

150 200 250 300 350 400
1

10

100

1000

A
pp

 = 3

A
pp

 = 2

 

 

R
e
la

ti
v
e
 e

rr
o
r 

o
f 



m
 (

%
)

T  (K)

A
pp

 = 

 

Fig. 5 ∆𝜔𝑚 is the difference between the angular frequencies of the interfering 
beams in MGT that induces the highest current for certain 𝑇, 𝐺0 and  values. The 
figure presents the relative errors obtained for ∆𝜔𝑚 by means of a numerical 
simulation of a-Si:H, when the current induced by MGT versus ∆𝜔 is obtained from 
Eq. (6) and the current induced by OPG. The errors are always positive because OPG 
overestimates the value of ∆𝜔𝑚 for these amplitudes of oscillation 

 

In appendix B, we present a formal general proof of the tendencies observed here for values of 

𝐴𝑝𝑝 multiples of 𝜋. We show that this behaviour does neither depend on the values of the material 

parameters nor on the rest of experimental parameters.  

  

5. Experimental procedure 

To test the new theoretical results, we made measurements on the same undoped a-Si:H 

sample, 490-nm-thick, used in Ref. [7]. We measured the current induced at the fundamental 

frequency with OPG for 𝐴𝑝𝑝 = 3𝜋 4⁄ , 𝜋 2⁄  and 𝜋 4⁄  at room temperature and  = 2 × 10−4 cm. The 

experimental configuration used for OPG was presented in Fig. 1. As a light source we used a linearly 

polarized He-Ne laser (633 nm / 1.96 eV) because its photon energy is slightly greater than the 

mobility gap of device-quality a-Si:H (1.8 eV). The beams’ diameters on the sample (5 mm) were 

much larger than the separation between the electrical contacts (1 mm), to ensure the spatial 

uniformity of the illumination produced by each beam in the direction of the electrical current [14]. 

To modulate the phase of the weak beam, we used a linear low voltage electro-optical 

modulator (Quantum Technology, model 28, series M00-251). The electro-optic modulator (EOM) 

acts as a phase modulator only when one of its main axes coincides with the polarization direction of 
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the incident light beam, as explained in Fig. 6. A more detailed description of the linear electro-

optical modulator is presented in Appendix C. The photon flux was measured with a calibrated 

silicon photodiode, while the rest of the parameters necessary for the estimation of the generation 

rate in the material were obtained from the reflectance and transmittance spectrum (400-1750 nm). 

 

 

Fig. 6 The perpendicular dotted lines correspond to the main directions of the 
electro-optic modulator (EOM), while the solid arrow corresponds to the direction of 
polarization of the incident light beam. In a) the EOM acts as a phase modulator of 
the incident beam, while in b) it acts as a polarization modulator of the incident 
beam. The change of phase or polarization of the incident light beam, are 
proportional to the voltage applied to the modulator  

 

In order to observe large differences between the currents induced by OPG and MGT (especially 

for 𝐴𝑝𝑝 = 3𝜋 4⁄  and 𝜋 2⁄ ) it is reasonable to make measurements for frequency differences 

between beams greater or equal than ∆𝜔𝑚 (see Fig. 3). It is known that ∆𝜔𝑚 increases with the 

generation rate [5]. The lock-in amplifier that we have (Stanford Research SR830) can only measure 

up to 102 kHz, thus to measure the current induced by OPG in the region near ∆𝜔𝑚 we had to use a 

sufficiently small photon flux of 7x1014 cm-2s-1, producing an average generation rate of 4x1018 cm-3s-

1 into the sample. The intensity of the weak beam was set at a value approximately 10 times lower 

than that of the strong beam.  

Before measuring the current induced by OPG, it was necessary to calibrate the amplitude of the 

weak beam’s phase oscillation introduced by the modulator, which is proportional to the amplitude 

of the input triangular signal produced with a wave generator (see Fig. 1). The most direct way to 

perform the calibration would be by measuring the oscillation amplitude of the interference pattern, 

for which it would be necessary to focus the interference pattern on a screen after amplifying it with 

a lens; although, we use the simpler indirect way described below.  

The EOM is initially rotated to act as a polarization modulator of the incident beam. In this case, 

the main axes of the modulator are at 45° from the direction of polarization of the incident beam 

(see Fig. 6b). Additionally, a linear polarizer is placed at the output of the modulator, which only lets 

pass the light polarized in the initial direction of polarization (or equivalently in the perpendicular 

direction, as we show below). The resulting intensity is measured with a fast photodiode. The fluxes 

of photons polarized in these directions are given respectively by: 

 

a) b) 
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𝐹∥ =
𝐹𝑇

2
[1 + cos(2𝜑(𝑡))], 𝐹⊥ =

𝐹𝑇

2
[1 − cos(2𝜑(𝑡))] = 𝐹𝑇 − 𝐹∥ ,   (18) 

where 𝐹𝑇 is the total flux of photons, 𝐹𝑇 = 𝐹∥ + 𝐹⊥. By replacing Eq. 1 into Eqs. 18, the theoretical 

time dependence of the output light intensities (𝐹∥ and 𝐹⊥) are obtained. Figure 7 presents the exit 

light intensity in the perpendicular direction, for the three measured amplitudes of oscillation. The 

parallel intensity component has exactly the same shape, but is displaced half period. Note that the 

intensities (𝐹∥ or 𝐹⊥) depend strongly on the amplitude of oscillation. Therefore, it is possible to 

determine precisely the oscillation amplitude of the phase (𝐴𝑝𝑝) by observing with an oscilloscope 

the electrical signal induced by the parallel or perpendicular light in a photodiode. In this case, the 

system integrated by the EOM and the linear polarizer act as an intensity modulator for the incident 

light beam.  
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Fig. 7 Modulated light intensity as function of time, produced with the electro-
optical modulator (EOM) acting as a polarization modulator and a linear polarizer 
placed subsequently, which only let pass the light polarized in the direction 
perpendicular to the initial one. The EOM is fed with triangular electrical signals of 
different amplitudes, 𝐴𝑝𝑝 = 𝜋/4, 𝜋/2 and 3𝜋/4. It can be observed that the 

intensity of the linearly polarized light depends strongly on the amplitude of the 
input signal 

 

For the correct determination of the current induced by OPG, it is also necessary to find out the 

sensitivity of the measurement system, to correct later the current values measured at different 

frequencies. For this purpose, the sample is replaced by a fast photodiode that is illuminated with a 

alternating illumination of variable frequency, whose intensity does not depends on the chosen 

frequency. The photocurrent of the fast photodiode is measured as a function of the frequency, 

using the same amplification factor as for OPG measurements. Figure 8 shows the resulting 

normalized photocurrent, where it can be seen that the higher the frequency, the lower the 

sensitivity of the measurement system. Correcting the current values measured by OPG with Fig. 8, 

the true current induced by OPG is obtained. The alternating illumination was produced by 
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modulating the intensity of the HeNe laser light with the EOM and the linear polarizer, in the same 

way as for the oscillation amplitude calibration of the weak beam phase.  
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Fig. 8 Sensitivity of the measurement system as a function of frequency. The 
sensitivity decreases with the frequency of the input signal 

 

6. Experimental results and discussion 

Figure 9 presents the current density induced by the moving grating, |∆𝐽𝑀𝐺𝑇|, as a function of 

the angular frequency difference between the interfering beams, |∆𝜔|. These experimental results 

were obtained with OPG for three different oscillation amplitudes (𝐴𝑝𝑝 = 𝜋/4, 𝜋/2, 3𝜋/4) and with 

MGT. While the values of |∆𝐽𝑀𝐺𝑇| vs. |∆𝜔| depend specifically on the sample and experimental 

conditions, such as temperature and generation rate, the qualitative relationships between the 

different curves are independent of these values (see Sec. 4). Note that the same trends obtained 

with the numerical simulation (Fig. 3) have been obtained experimentally (Fig. 9). As the amplitude 

of oscillation decreases in OPG the maximum current density shifts towards lower values of |∆𝜔| 

and decreases in magnitude (indicated by a dashed arrow in Figs. 3 and 9). The expected 

overestimation in the position of the maximum is clearly observed for the oscillation amplitudes 

3𝜋/4 and 𝜋/2. It can also be appreciated the expected superposition between OPG and MGT 

measurements for low enough |∆𝜔| values.  
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Fig. 9 Experimental steady-state current densities corresponding to the Moving 
photocarrier Grating Technique (MGT) as a function of the angular frequency 
difference between the interfering beams. The circles correspond to the exact values 
obtained with MGT, while the triangles were obtained using Eq. (6) and the current 
induced by OPG at fundamental frequency for three different oscillation amplitudes, 
as indicated in the caption 

 

It was impossible to achieve experimentally the 𝐴𝑝𝑝 values required to verify the equivalence 

between MGT and OPG in the complete range of |∆𝜔| values, because our EOM saturates for values 

of 𝐴𝑝𝑝 ≅ 0.9 × 𝜋. However, having found the same trends and behaviour both experimentally and 

with the numerical simulations (at least for small oscillation amplitudes) gives support to the new 

theoretical results presented in this paper.  

 

7. Conclusions 

In this work we carry out a thorough review of OPG technique, which was originally proposed as 

an AC implementation of MGT to increase the signal-to-noise ratio. Initially, we find the 

proportionality constant between the steady-state DC signal induced by MGT and the first harmonic 

component of the steady-state AC signal induced by OPG. Unlike in previous papers [1,5,6], the 

expression that we propose explicitly involves the oscillation amplitude of the phase (𝐴𝑝𝑝), and we 

argue that this relation would only be valid for low enough oscillation frequencies (𝜔𝑜). For the first 

time, we obtain the expression for the current density induced at the fundamental frequency by 

OPG using the multiple trapping model. Through a numerical simulation corresponding to undoped 

a-Si:H, it is observed that OPG and MGT currents are proportional only in the low IP speed region, 

and that this region can be enlarged by increasing the value of 𝐴𝑝𝑝. For a certain IP speed (i.e., ∆𝜔 

value), the oscillation frequency 𝜔𝑜 can be reduced by increasing the IP oscillation amplitude (i.e., 

the 𝐴𝑝𝑝 value). An acceptable approximation of MGT current, in the entire range of measurable ∆𝜔 
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values, is obtained with OPG for 𝐴𝑝𝑝 = 3𝜋, which is six times greater than the previously used value 

[1,5,6]. 

The new theoretical results are tested experimentally only for the three smallest oscillation 

amplitudes evaluated with the numerical simulations (𝐴𝑝𝑝 = 3𝜋 ⁄ 4, 𝜋 ⁄ 2 and 𝜋 ⁄ 4), because the 

used EOM saturates for 𝐴𝑝𝑝 = 0.9 × 𝜋. A remarkable difference is observed between the values of 

|∆𝐽𝑀𝐺𝑇| vs. |∆𝜔| obtained directly with MGT and those obtained from OPG measurements for the 

different oscillation amplitudes. The same trends are obtained in the numerical simulation and in the 

measurements, validating the presented analysis. Despite the limitation of the used EOM, phase 

modulators capable of easily achieving the oscillation amplitudes needed to test the equivalence 

between OPG and MGT, in the entire range of measurable ∆𝜔 values, are currently available on the 

market (see, for example, Ref. [15]). We encourage other researchers who have access to this kind 

of phase modulators to provide the final experimental proofs of the theoretical results presented.  

 

Appendix A – Deduction of the current density expression at the fundamental frequency 

It is convenient to write the oscillation amplitude of the phase as 𝐴𝑝𝑝 = 𝑙𝜋, being 𝑙 a positive 

number. It can be shown that, when 𝐴𝑝𝑝 is a multiple of 𝜋 (integer 𝑙), of the infinite terms that make 

up the generation rate (Eq. 7) no more than 6 influence the current induced at the fundamental 

frequency. These terms are given by:  

𝑔±(𝑙−1)𝜔𝑜
=

2𝑙𝑗∆𝐺0

𝜋(2𝑙−1)
 ,     (A1) 

𝑔±𝑙𝜔𝑜
=

∆𝐺0

2
 ,      (A2) 

𝑔±(𝑙+1)𝜔𝑜
=

−2𝑙𝑗∆𝐺0

𝜋(2𝑙+1)
 .     (A3) 

Note that for 𝑙 = 1 there are only five terms, since in equation A1 we have a single term 𝑔0. When 𝑙 

is integer, the obtained complex amplitude of the average current density at the fundamental 

frequency is: 

∆𝐽𝑂𝑃𝐺
𝜔𝑜 =

1

2
[

∆𝜎𝑙𝜔𝑜
∆(𝑙−1)𝜔𝑜

 ∗ + ∆𝜎−𝑙𝜔𝑜

∗ ∆
−(𝑙−1)𝜔𝑜

+ ∆𝜎−(𝑙−1)𝜔𝑜
∆

−𝑙𝜔𝑜

 ∗ + ∆𝜎(𝑙−1)𝜔𝑜

∗ ∆
𝑙𝜔𝑜

+∆𝜎−(𝑙+1)𝜔𝑜

∗ ∆
−𝑙𝜔𝑜

+ ∆𝜎(𝑙+1)𝜔𝑜
∆

𝑙𝜔𝑜

 ∗ + ∆𝜎𝑙𝜔𝑜

∗ ∆(𝑙+1)𝜔𝑜
+ ∆𝜎−𝑙𝜔𝑜

∆
−(𝑙+1)𝜔𝑜

 ∗ ] , (A4) 

where the asterisk as superscript corresponds to the complex conjugation of the number. When  


𝑒𝑥𝑡

= 0, the symmetry between the generation rates 𝑔 = 𝑔− implies the following relationships 

for the photoconductivity and the electric field amplitudes: 

∆𝜎− =
𝑔

𝑔
∗ ∆𝜎

∗  , ∆
−

= −
𝑔

𝑔
∗ ∆


 ∗   .         (A5) 

In this case, Eq. A4 simplifies to: 

∆𝐽𝑂𝑃𝐺
𝜔𝑜 = ∆𝜎𝑙𝜔𝑜

∆(𝑙−1)𝜔𝑜

 ∗ + ∆𝜎(𝑙−1)𝜔𝑜

∗ ∆
𝑙𝜔𝑜

+ ∆𝜎(𝑙+1)𝜔𝑜
∆

𝑙𝜔𝑜

 ∗ + ∆𝜎𝑙𝜔𝑜

∗ ∆(𝑙+1)𝜔𝑜
 . (A6) 
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Note that under these circumstances, we only need to solve the general equations for three 

traveling waves with different values of  to obtain the current density induced at the fundamental 

frequency. 

When 𝐴𝑝𝑝 is not a multiple of 𝜋 (𝑙 is not an integer), the expression for the amplitude of the 

average current density induced at the fundamental frequency has infinite terms, and is given by 

∆𝐽𝑂𝑃𝐺
𝜔𝑜 =

1

2
∑ [∆𝜎𝑖𝜔𝑜

∆(𝑖−1)𝜔𝑜

 ∗ + ∆𝜎−𝑖𝜔𝑜

∗ ∆(1−𝑖)𝜔𝑜
+ ∆𝜎(1−𝑖)𝜔𝑜

∆
−𝑖𝜔𝑜

 ∗ + ∆𝜎(𝑖−1)𝜔𝑜

∗ ∆
𝑖𝜔𝑜

]∞
𝑖=1  .    (A7) 

For 𝐴𝑝𝑝 = 3𝜋 4⁄ , 𝜋 2⁄  and 𝜋 4⁄ , the harmonic terms’ amplitudes of the generation rate are 

respectively given by: 

𝑔±𝑖𝜔𝑜

𝑙=3/4
=

3(−1)𝑖∆𝐺0

𝜋√2(
9

4
−4𝑖2)

(1 + 𝑗(1 + (−1)𝑖√2)) ,    (A8) 

𝑔±(2𝑖+1)𝜔𝑜

𝑙=1/2
=

2√2∆𝐺0

(4(2𝑖+1)2−1)𝜋
 , 𝑔±2𝑖𝜔𝑜

𝑙=1/2
 =

−𝑗2√2∆𝐺0

(4(2𝑖)2−1)𝜋
  ,   (A9) 

𝑔±𝑖𝜔𝑜

𝑙=1/4
=

∆𝐺0

8𝜋(
1

16
−𝑖2)

(√2(−1)𝑖 + 𝑗(2 − √2(−1)𝑖)) ,   (A10) 

where 𝑖 =  0, 1, 2, ⋯ . In these cases, is also verified that 𝑔 = 𝑔−; therefore, in the absence of an 

external electric field (
𝑒𝑥𝑡

= 0), Eqs. A5 are also verified. With these simplifications Eq. A7 reduces 

to: 

∆𝐽𝑂𝑃𝐺
𝜔𝑜 =

1

2
∑ (1 −

𝑔𝑖𝜔𝑜
∗ 𝑔(𝑖−1)𝜔𝑜

𝑔𝑖𝜔𝑜𝑔(𝑖−1)𝜔𝑜
∗ ) (∆𝜎𝑖𝜔𝑜

∆(𝑖−1)𝜔𝑜

 ∗ + ∆𝜎(𝑖−1)𝜔𝑜

∗ ∆
𝑖𝜔𝑜

)∞
𝑖=1  .       (A11) 

 

Appendix B – Equivalence between MGT and OPG for App multiple of 𝝅  

In this appendix we prove, for 𝐴𝑝𝑝 multiple of 𝜋, that Eq. 6 is strictly verified in the linear region 

of small frequencies. In the high frequency regime we show that, the better the inequality 𝐴𝑝𝑝 ≫ 𝜋 

is fulfilled, the better Eq. 6 is satisfied.  

 In appendix A of Ref. [7] are solved the general transport equations for a generation rate 

consisting of an arbitrary harmonic travelling wave on a much greater uniform background. The 

harmonic amplitudes of the photoconductivity and electric field can be rewritten in the following 

way: 

∆𝜎 = 𝑔 ∆𝜎
0 ,               ∆


= 𝑔 ∆


 0 ,                                                  (B1) 

where ∆𝜎
0 and ∆


 0 do not depends on the harmonic amplitude of the generation rate, 𝑔 . The first 

order Taylor expansion of ∆𝜎
0 and ∆


 0 at  = 0 are: 

∆𝜎
0 ≈ ∆𝜎0

0 + (∆𝜎0
0)′ , ∆


 0 ≈ ∆

0
 0 + (∆

0
 0)′ ,                                         (B2) 

where ∆𝜎0
0 and (∆

0
 0)′ are real numbers, while (∆𝜎0

0)′ and ∆
0
 0 are imaginary. Replacing Eqs. B1 in 

the expression of the MGT current density [7], it is obtained:  
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∆𝐽𝑀𝐺𝑇 =
∆𝐺0

2

2
𝑅𝑒 {∆𝜎∆𝜔

0 (∆
∆𝜔
 0 )

∗
} .                                                             (B3) 

Substituting Eqs. B2 in Eq. B3, discarding the higher order terms and after some algebra, we get the 

expression of MGT current density in the low frequency region: 

∆𝐽𝑀𝐺𝑇 ≈
∆𝐺0

2

2
∆𝜔 [∆𝜎0

0(∆
0
 0)′ − (∆𝜎0

0)′∆
0
 0] .                                                  (B4) 

Replacing Eqs. B1 in Eq. A6 and using Eqs. A1-A3, we obtain the following formula for the current 

density induced by OPG at the fundamental frequency when 𝐴𝑝𝑝 is a multiple of 𝜋: 

∆𝐽𝑂𝑃𝐺
𝜔0 =

−𝑙𝑗∆𝐺0
2

𝜋
[

∆𝜎𝑙𝜔0
0 (∆(𝑙−1)𝜔0

 0 )
∗
+(∆𝜎(𝑙−1)𝜔0

0 )
∗
∆𝑙𝜔0

 0

(2𝑙−1)
+

∆𝜎(𝑙+1)𝜔0
0 (∆𝑙𝜔0

 0 )
∗
+(∆𝜎𝑙𝜔0

0 )
∗
∆(𝑙+1)𝜔0

 0

(2𝑙+1)
] .               (B5) 

Substituting Eqs. B2 in B5, dismissing the higher order terms and after some algebra we get the 

equation for OPG current density in the low frequency region:   

∆𝐽𝑂𝑃𝐺
𝜔0 ≈

−2𝑙𝜔0𝑗∆𝐺0
2

𝜋
[∆𝜎0

0∆
0
 ′ − ∆𝜎0

′∆
0
 0] .                                                 (B6) 

Taking the modulus of Eqs. B4 and B6, and using the relationship |∆𝜔| = 𝑙𝜔0, we obtain Eq. 6.  

The inequality 𝐴𝑝𝑝 ≫ 𝜋 is equivalent to 𝑙 ≫ 1. Discarding the 1 in front of 𝑙 and 2𝑙 in Eq. B5, we 

get the formula of OPG current density in this case: 

∆𝐽𝑂𝑃𝐺
𝜔0 =

−𝑗2∆𝐺0
2

𝜋
𝑅𝑒 {∆𝜎𝑙𝜔0

0 (∆
𝑙𝜔0

 0 )
∗
} .                                                           (B7) 

Taking the modulus of Eqs. (B3) and (B7) and assuming |∆𝜔| = 𝑙𝜔0, we get Eq. 6. Note that the 

inequality 𝐴𝑝𝑝 ≫ 𝜋 or 𝑙 ≫ 1, is also equivalent to a maximum displacement of the interference 

pattern much greater than half its spatial period (𝐷𝑝𝑝 ≫  2⁄ ).   

 

Appendix C – Electro-optic modulator (EOM) 

In a typical linear EOM, the refractive indexes in the main directions of the active crystal 

(perpendicular to each other) are directly proportional to the applied voltage. The proportionality 

constant is the same in both directions, although of opposite signs. In the absence of voltage applied 

to the modulator, a linearly polarized beam of light retains its initial polarization because the 

refractive indices are equal in both directions. Therefore, its electric field written in the main 

directions of the modulator is, 

𝑬 = 𝐸0 cos(𝜃) cos(𝑘𝑧 − 𝜔𝑡) x̂ + 𝐸0 sin(𝜃) cos(𝑘𝑧 − 𝜔𝑡) ŷ ,                                     (C1) 

where 𝜃 is the angle that forms the electric field of the incident beam with the main direction x̂ of 

the EOM. By applying a potential difference to the modulator, there is an increase in the optical path 

for polarized light in one main direction and a decrease in the optical path of the same magnitude 

for polarized light in the other main direction. In this case, the electric field of the light beam at the 

output of the modulator is, 
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𝑬 = 𝐸0 cos(𝜃) cos(𝑘𝑧 − 𝜔𝑡 + 𝜑(𝑉)) x̂ + 𝐸0 sin(𝜃) cos(𝑘𝑧 − 𝜔𝑡 − 𝜑(𝑉)) ŷ ,                  (C2)  

Note that the EOM acts as a phase modulator of the light beam only when one of its main axes 

coincides with the direction of polarization of the incident light beam. On the other hand, the EOM 

acts as a polarization modulator capable of rotating 90° the initial direction of polarization only when 

the main axes of the modulator are at 45° from the polarization of the incoming light beam. In this 

case, Eq. (C2) becomes, 

𝑬 =
𝐸0

√2
cos(𝑘𝑧 − 𝜔𝑡 + 𝜑(𝑉)) x̂ +

𝐸0

√2
cos(𝑘𝑧 − 𝜔𝑡 − 𝜑(𝑉)) ŷ .                            (C3) 

When 𝜑(𝑉) = 𝜋/4, for example, we obtain a circularly polarized light at the output of the 

modulator, and for 𝜑(𝑉) = 𝜋/2 we obtain again linearly polarized light, but rotated 90 degrees from 

the input direction of polarization.  
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