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Abstract

We apply the knockoff procedure to factor selection in finance. By building fake
but realistic factors, this procedure makes it possible to control the fraction of
false discovery in a given set of factors without resorting to p-values. To show
its versatility, we apply it to fund replication and to the inference of explanatory
and prediction networks.
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1. Dedication

At a time when multi-processor desktop PCs were a rarity, there was a special
breed of physicists that had mastered massively parallel computing techniques.
Dietrich Stauffer was one of them. He also was a parallel researcher, working
simultaneously on many topics and papers. This made a durable impression on
the young researcher that I (DC) was then.

This submission required massively parallel computations (600 CPU cores
for a few days). Dietrich would not have been impressed.

2. Introduction

Factor hunting is an age-old task in Finance, either in an explanatory pursuit,
or in a prediction setting. Factor may explain risk, performance and diversifi-
cation. This endeavour can be divided into two parts: finding candidate factors
and selecting them.

The celebrated Fama-French factors [10, 11] have two precious qualities:
they are exactly a handful nowadays (5, up from 3 [11]) and make sense from a
financial point of view. Their small number is a sure way to avoid data overfit-
ting with too many factors, and their financial interpretation is straightforward
in layman’s terms. On the other hand, it is beyond doubt that they cannot
possibly capture all the subtleties of price return dynamics and that additional
factors, possibly ephemeral ones, are needed.
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Dropping the interpretability requirement, it is nowadays very easy to gener-
ate a large quantity of candidate factors from fundamental or alternative data.
Selecting them becomes a difficult task. Statistics suggests to regard factor
selection among a given set of factors as multiple hypotheses testing: to each
factor corresponds a null hypothesis that it is irrelevant. This opens the way
to methods that are able to control the error rate when one selects factors [4].
Trying to keep only relevant factors being unrealistic, one settles for a less am-
bitious aim. In finance in particular, one can tolerate a controlled fraction of
wrong choices given the amount of noise contained in the data.

Whereas the usual methods of controlling the error rate are based on p-
values, Ref. [1] introduced the so-called knockoff procedure which dispenses
with p-values altogether. It consists in creating a fake but look-alike factor
for each candidate factor, i.e., a knockoff (a copy of low quality) and to add
all knockoffs to set of candidate factors. Because one can labels at least some
factors as irrelevant, one can control the error rate in any selection. Practically,
one ranks all these factors according to some relevance metrics and the knockoff
procedure finds the relevance threshold that controls the fraction of false factors
that have a relevance larger than this threshold. Since its introduction, this
method has spanned a flurry of new methods and has been steadily improved
(see Refs. [7, 16, 12, 25] for example). Here we apply them to raw financial asset
price returns in three situations: fund replication, explanatory and prediction
networks.

3. The selection problem

Let us introduce some useful notations. Here, we are mostly interested in
explaining the price returns of a given asset, denoted by r from a matrix of N
candidate factors, denoted by R (which may include a shifted r in a predictive
context). In a regression setting, one writes

reRT
I{GIRNXT ’

r=RB+2z with { (1)

where 8 € RY are the factor loadings and z € R” the residuals. In this paper,
the candidate factors only consist of price returns of a collection of assets. More
generally, one can write » = F(R) 4+ z where F is a non-linear function, for
example a Random Forest [6].

A given factor 7 is selected whenever 8; # 0. It is highly likely that a least-
squares optimization yields 3; # 0 for all values of i even if N > T', which results
in overfitting. A well-known way to restrict the number of selected factors is
to add an L, penalization to the least-square problem. The LASSO [27] in
particular can be written as

603 = avguin { 51~ X818 + A3l }. )
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where the penalization constant A controls the number of selected components,
i.e., non-null elements of B . More precisely, each factor i is selected when A <
Ai; intuitively, relevant factors should be selected for larger values of A than
irrelevant ones. Thus choosing a value of A yields a selection of factors S(\) =
{is. th. A\; < A}. The whole question is how to choose A and according to which
criterion. Fixing the number of selected factors does not offer any statistical

guarantee.
Let us denote the set of index of the relevant factors, or equivalently, the
selection set of the true factors by S C {1,---, N} and a given factor selection

(obtained by whatever method) by S such that such i € § < §; # 0 and
inversely. The False Discovery Proportion (FDP henceforth) of a given selection

B is defined by:

#{j:j €5\ 5}
#{j:jes}
with the convention that FDP = 0 when no factor is selected. By definition,
the False Discovery Rate is FDR = E(FDP). Then, a selection rule controls the
FDR at level ¢q if FDR < ¢. Note that this does not control the false rejection
rate, i.e., the falsely rejected factors. The canonical way to control the FDR

rests on correcting the threshold of p-values (see [3] for a review).

FDP = (3)

3.1. Knockoffs

Ref. [1] proposes a completely different approach to solve the problem of
controlling the FDR of selected factors by adding N irrelevant but specially
crafted factors to R. This means that any factor ranking method yields a
mixture of some factors known to be irrelevant and some possibly relevant.
This, in essence, makes it possible to control the FDR without resorting to p-
values. The power of knockoffs is similar or better to the canonical FDR control
way according to [1].

More specifically, the quality of each factor is assessed with some method,
which essentially yields a statistics (a real number) denoted by Z; we assume
that a larger Z is more likely to be associated with a relevant factor. Let us
denote by X the matrix of knockoff factors, and Z; and Z; the quality statistics
of factor i and of its knockoff. Clearly, both distributions of Z; and Z; are the
same if i is irrelevant, while one expects that F(Z;) > E(Z;) otherwise. Then
the FDR is controlled according to the fraction of candidate factors such that
Z; < Z;in a given selection set S. For more details, the reader is referred to
[1, 7].

For example, in the context of the LASSO problem, on average, relevant
factors will be selected for larger values of A than their knockoffs, while there is
no such ordering for irrelevant factors. Thus Z; can be the maximal value of A
such that factor ¢ has 8; # 0. Other possibilities include the feature importance
of factor ¢ in tree-based machine learning methods, which will be used later in
this paper.



4 RESULTS 4

There are several ways to build knockoffs. Here, we use the so-called model-
X method [7], which can be used in the high dimensional case N > T. It
rests on two assumptions: r is independent from the irrelevant features and the
distribution of [R, R] is invariant under the exchange of a factor and its knockoff.

Constructing knockoffs that respect these two conditions is generally hard.
For the sake of computational speed, we use an approximate second order mo-
ment matching method from the knockoff R package [24]. More powerful meth-
ods, based on deep learning [19, 25, 26] and reversible Markovian chains [2], deal
better with heavy tailed data and more complex dependencies. Given its addi-
tional computational burden and the already considerable computation power
needed to produce our results, we leave the inclusion of these methods to a
future study.

4. Results

4.1. Fund replication

Among some notable applications of this method to finance, fund replication
is obtained by regressing the performance of the latter to the returns of strategies
that it may potentially use, given the constraints of its prospectus (see e.g. [30]).

A straightforward application of knockoffs is to find out what sparse combi-
nation of assets can explain (and reproduce) the price returns of a given fund,
rs. We consider returns between adjusted daily close prices of 4400 US equi-
ties in the 2005-2016 period, with a calibration window of 252 days (about a
year). In each calibration window, we remove assets which have any missing
value. Even if the knockoff model-X method allows for having more assets than
timesteps, T = 252 and N = 4400 would be quite ambitious. Thus, we perform
200 sampling without replacement of 500 assets each, which is still in the high
dimensional regime.

As a simple illustration, we select an ETF which attempts to replicate the
performance of the energy sector, XLE. For each calibration window, we com-
pute the ratio between the number of selected assets that belong to the energy
sector according to the GICS classification [20] and the total number selected
assets. In principle, if there are no correlations between the energy sector ETF
and assets not classified as in the energy sector, this ratio should equal 1 — q,
where ¢ is the chosen FDR level. We ran computations for various values of
q to check that knockoffs are consistent. Figure 1 reports that the realized
FDR is close to ¢ for ¢ € [0.12,0.35]. We note that in principle, the knockoffs
guarantee that the realized FDR is smaller than gq. The problem here is that
financial assets are not independent from each other, thus that the returns of
XLE may be explained by many other tickers that do not belong in the energy
sector. For example, the average correlation between XLE and Ford (F) in the
2007—2021 period is about 0.5. As a consequence, a false positive (according
to the industrial sector) does not qualify as a false positive from a statistical
point of view. This explains the increase of realized FDR for g > 0.4, as assets
with decreasing correlation with XLE, thus more likely not to belong in the
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Figure 1: Realized FDR versus chosen FDR when replicating the performance of XLE, an
energy sector ETF. 200 samples of 500 assets, 252 days of calibration length, average over 12
years.

energy sector, are included in the selection made by the knockoff procedure.
The discrepancy for small FDR comes from the fact that the typical number of
assets belonging to the energy sector selected by the knockoff procedure reaches
1 and is therefore a finite investment universe effect. In short, this simple test
case confirms that knockoffs give meaningful results in a context in which the
success rate is roughly testable.

4.2. Ezxplanatory networks

Knockoffs can be used to build statistically validated explanatory networks
of price returns, where there is a directed link from asset j to asset i (i # j) if

r;+ contributes to explain r;;, Let us denote by Ni(t“tl) the set of assets that
explain the price returns of asset 7 in a given calibration window [to,¢1] at a
given FDR level. In contrast to many other clustering methods based on sym-
metric measures (e.g. correlations [18, 15] or anomalous synchronization as in
Statistically Validated Networks (SVNs) [29]), knockoff explanatory networks
are directed: if asset 2 and 3 explain asset 1, it may happen that asset 1 does
not belong to Nz(to’tl). This implies that the knockoffs explanatory networks are
more flexible than correlation-based methods and may contain more informa-
tion. The downside is that more work is needed to extract clusters from these
results, for example by performing network clustering, known as community
detection in this stream of literature (see [13] for a review).

Here we focus on the time evolution of network properties especially between
industries as defined by the GICS classification. Because computing time scales
as N2 where N is the number of assets to test, we focus on 200 US equities from
2000 to the end of 2017, which leads to reasonable computing time on several
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hundred CPU cores. We repeat the knockoff generation and selection process a
given number of times (100 here) for each asset and for each calibration window
and consider the union of all the selected factors. This is because the selection is
empty for a sizable fraction of times, a known instability of knockoff generation
(see e.g. [16]). We found that the knockoff selection using feature importance
of candidate factors and knockoffs determined by random forests produced the
most factors at a given level of FDR.

Figure 2 reports the time evolution of four network synthetic measures. The
link density, defined as the number of observed links divided by the all possi-
ble directed links (IV(N — 1)), is relatively high on average and has clear dips
during the 2008-2009 and subsequent crises. To understand the origin of this
phenomenon, we plot the reciprocity, i.e., the fraction of links that are bidi-
rectional, which shows a similar behavior. The assortativity of links between
sectors, which measures the propensity to establish links between nodes of the
same sector (see [21]) is clearly significant, which is not surprising. It is note-
worthy that it behaves in an opposite way from reciprocity [22]. During times of
crisis, links from the same industrial sectors are more likely to remain relevant.
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Figure 2: Upper left panel shows the link density; upper right panel shows the assortativity
of links between sectors and assortativity of a configuration model that preserves the in- and
out-degree of the nodes; lower left panel shows the link reciprocity, the figure also reports
the reciprocity of a configuration model that preserves in and out degree of the node and the
adjusted estimator [14]; lower right panel shows the Pearson correlation between the in-degree
and out-degree of the nodes. FDR= 0.1, calibration windows of T},, = 300 timesteps.

4.3. Prediction networks

Using knockoffs to explain current returns by lagged ones yields statistically
validated prediction networks, as shown in Fig 3. Such networks are directed:
for each asset ¢ and time ¢, a collection of predictive assets P; ; links to ¢. We note
that the in- out-links degrees is asymmetric: the number of out-going links is
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Figure 3: Examples of prediction network inferred with knockoffs. T3, = 300 trading days,
period ending on 2006-03-13. Left plot: FDR= 0.3 and 100 runs per asset; right plot: FDR=
0.2 and 10 runs per asset. Selection via random forest variable importance.

usually much smaller than the incoming links. What we call prediction networks
here are also called lead-lag networks, obtained for example by Granger causality
with multiple hypothesis correction (see e.g. [23] for a recent example among
many), by the asymmetry of lagged correlations [28, 17, 9], or by extending SVNs
to lagged time series [8]. The difference here is that we do not need to make any
assumption about the Gaussianity of price returns as in Granger causality, and
that we do not use a correction on p-values: the ranking of factors is obtained
by Random Forests, an inherently non-linear and distribution agnostic method.
Note also that the method here also works in the high-dimensional regime (as
do SVNs).

We use exactly the same numerical setup as in the explanatory networks part
except for the lag of the predictors. Figure 3 shows two examples of prediction
networks obtained in the same calibration window, but with a different level
FDR. The influence of that choice on the link density is very large: it is much
more difficult to control an FDR set to 0.2 than 0.3 and hence much fewer
links are found; almost no links are found for FDR= 0.1, which means that
it is almost impossible to guarantee a small FDR in a price return prediction
context. However, it does not matter too much: as long as method is able to
extract some information, it will still yield a predictive power. However, the
larger the FDR, the more the predictions will be potentially affected by noise.

At time ¢, for each asset ¢ such that P;; # (), we apply a robust linear fit
of 7;+4+1 with real returns of P;; over the last T;, days in-sample, and then
predict the out-of-sample return for the next §7° = 5 days from the previous
daily returns of each predictive assets. We first check the hit ratio of the sign of
the prediction as a function of the number of elements in P;;, denoted by k;,
(Fig. 4): quite remarkably, it decreases as a function of k;,, in a similar way for
FDR= 0.2 and 0.3.

While prediction networks can be used to build a trading strategy, the per-
formance we report in the following cannot be considered as a proper back-test,
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Figure 4: Prediction hit ratio (out-of-sample) as a function of the number of assets k;, that
belong in predictors’ set. Left plot: FDR=0.3; right plot: FDR= 0.2. T}, = 300; 200 assets.
Blue curve: local average; gray area: standard error on the local average.
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Figure 5: Cumulative performance from prediction networks computed for predicted assets
with equally weighted portfolios either long-short (predicted), or long-only (long). T;, = 300
Left plot: FDR= 0.3; right plot FDR= 0.2.

as we use closing price both for computing returns and to open virtual positions,
and because we do not include transaction costs. The point of this section is to
show the information gain provided by filtering factors with knockoffs, not to
suggest a trading strategy. We thus ran two experiments to assess the out-of-
sample performance of the predicted assets: first we take the predicted assets,
take a position according to the signs of their predicted returns, and compute
the performance of equally-weighted portfolios, rebalanced at every timestep; in
order to compare the information contained in the sign of the returns, we also
add the performance of equally-weighed portfolios of long positions on predicted
assets, which gives a performance similar to that of the market. Both levels of
FDR have acceptable performance before a saturation later on (2012-2017); this
is in part because they provide long-short predictions, which worked better be-
fore 2015. We note however that FDR= 0.2 leads to a better performance before
2015, as the signal provided by more trustworthy (and fewer) factors is better.

We then use the knockoffs selection and predictors in a more subtle way:
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Figure 6: Cumulative performance from prediction networks with mean-variance portfolios
with target daily return equal to 0.005, blue curve uses the knockoff prediction for the returns,
the orange curve uses the average in-sample returns over the past 300 days. Left plot: FDR=
0.3; right plot FDR=0.2.

for each day, we first compute the covariance matrix of all predicted assets over
the last Tjy,, filtered with the BAHC method [5]. We then compute optimal
long-short mean-variance portfolios at each time step with a fixed net leverage
of 1. An interesting variation consists in using the predicted returns as the
expected returns instead of using the historical averaged returns. Figure 6
shows the information gain provided by predicted returns. The difference of the
gain profile with respect to equally weighted portfolios of Fig. 5 comes from the
fact that fixing a net leverage to 1 induces a bias towards long positions, which
is detrimental in bear markets.

5. Conclusion

Factor selection with knockoffs holds many promises in finance. This contri-
bution only skims the surface by using price returns as factors. The originality
of the knockoff method is that they define directed networks where the presence
of links is statistically controlled. Further work includes a better way to gen-
erate knockoffs, knockoffs with proper covariance matrix cleaning and applying
knockoffs to other kinds of factors.
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