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Analysis and Design of Output Feedback PD Controllers for
Time-Delay Systems

Pieter Appeltans1, Silviu-Iulian Niculescu2 and Wim Michiels1

Abstract— In this paper we analyze proportional-derivative
output feedback control for single-input single-output linear
time-invariant dynamical systems with discrete state delays.
The main focus of the presented work is the analysis of the
effect of arbitrarily small implementation errors, such as a
feedback delay or a finite-difference approximation of the
derivative, on the stability of the closed loop. More specifically,
it will be shown that the classical notion of stability does not
suffice to adequately describe the asymptotic behavior of the
closed loop system in the presence of these implementation
errors, as stability might be lost even when these errors are
made arbitrarily small. This paper therefore considers strong
stability, which eliminates this well-posedness problem by not
only requiring stability but by also enforcing that stability
is preserved for sufficiently small perturbations. To conclude
this paper, a controller design methodology for proportional-
derivative output feedback controllers that strongly stabilize
the system, is proposed.

I. INTRODUCTION

Even for systems without state delays, it is well-known
that the stability properties of derivative feedback controllers
might be sensitive to infinitesimal perturbations [1]. In such
a context it thus not suffices to only guarantee stability,
as arbitrarily small implementation errors might render the
real-life realization of the system unstable. Both [2] and
[1] therefore introduced a robustified notion of stability, w-
stability in [2] and p-stability in [1], which not only requires
the stability of the closed-loop system, but also that stability
is preserved under sufficiently small perturbations. Another
common feature of both works, is that they both suggest
that the stability of the closed loop system can be preserved
under sufficiently small implementation errors by adding a
high frequency roll-off to the control loop, given that certain
conditions on the nominal closed loop system are fulfilled.
In this work, we will examine similar sensitivity of stability
effects for proportional-derivative (PD) output feedback con-
trol of linear time-invariant (LTI), single-input single-output
(SISO) systems with state delays. An extended version of
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the theoretical part of this paper, discussing proportional-
integral-derivative (PID) output feedback control of multiple-
input multiple-output (MIMO) time-delay systems, can be
found in [3].

The effect of arbitrarily small implementation errors on
the stability of dynamical systems is widely studied in the
field of systems and control theory. For example, [4, p. 87-
101] examines the effect of introducing small time delays in
the control loop on the stability of the closed loop system.
Inspired by that work, this effect is further examined in [5],
[6] and [7]. Another example are delay differential equations
of neutral type for which it is well-known that the stability
of the null solution might be sensitive to arbitrarily small
perturbations on the delays. The authors of [8] therefore
introduced the notion of strong stability, which requires
that stability is preserved under sufficiently small delay
changes. Next, [9] and [10] examine the effect of sufficiently
small perturbations on the closed loop stability of singularly
perturbed systems. Finally, [11] discusses the effect of an
arbitrarily close derivative approximation on gradient play
dynamics.

Our choice for PD controllers is motivated by their
improved transient performance compared to proportional
controllers. Such PD controllers are therefore frequently used
in teleoperation [12] and haptics [13].

As mentioned above, in this work we restrict our attention
to LTI SISO systems of the following form ẋ(t) =A0 x(t) +

K∑
k=1

Ak x(t− τk) + b u(t),

y(t) = cT x(t)

(1)

with x ∈ Rn the internal state, u ∈ R the input, y ∈ R the
output, 0 < τ1 < · · · < τK < +∞ discrete delays, b ∈ Rn
the input vector, c ∈ Rn the output vector, and A0, A1, . . . ,
AK−1 and AK ∈ Rn×n the state matrices. The goal is to
design a PD output feedback controller,

u(t) = kp y(t) + kd ẏ(t), (2)

with kp, kd ∈ R, that (asymptotically) stabilizes the system.
By transforming (1) and (2) to the Laplace domain, we can
examine the asymptotic behavior of the closed loop system
using the following (non-linear) characteristic function

∆(λ) := det
(

(In − kd bcT )λ−A0

−
K∑
k=1

Ak e
−λτk − kp bcT

)
.

(3)



More specifically, the closed loop system of (1) and (2) is
asymptotically stable if (and only if) all roots of (3) lie in
the open left half-plane.

However, as shown in the next section, the stability of
this closed loop system might be sensitive to arbitrarily
small implementation errors such as feedback delay, a fi-
nite difference approximation of the derivative or low-pass
filtering of the feedback signal. To address this sensitivity
of stability problem, [3] introduced the notion of strong
stability, inspired by the notion of strong stability for delay
differential equations of neutral type, which requires that
stability is preserved for sufficiently small implementation
errors. Note that this definition for strong stability differs
from the one introduced in [14, Section 5.3], which refers to
stabilization using a controller that is itself stabilizing.

The remainder of this work is structured as follows.
Section II examines several implementation errors that render
a stable closed loop system unstable even when made arbi-
trarily small. In Section III, we recall the definition of strong
stability from [3] and give conditions on the feedback gains
for which this can be achieved. In Section IV the presented
results are illustrated using two small dimensional time-
delay systems. Section V discusses a design methodology for
PD output feedback controllers that are strongly stabilizing.
Finally, Section VI draws some concluding remarks.

II. LOSING STABILITY DUE TO ARBITRARILY SMALL
PERTURBATIONS

In this section we show that under certain conditions
on the derivative feedback gain kd, a stable closed loop
of (1) and (2) loses stability under an arbitrarily small
feedback delay (Subsection II-A), an arbitrarily close finite
difference approximation of the derivative (Subsection II-B)
and low-pass filtering of the derivative feedback signal with
an arbitrarily large cut-off frequency (Subsection II-C). The
presented results are a simplification of the results obtained
for the PID control of MIMO systems examined in [3]. We
refer to that paper for more details and more detailed versions
of the presented proofs.

A. Feedback delay

As first implementation error, we consider a delay in the
feedback loop. Shifting this delay to the input, (1) becomes ẋ(t) =A0 x(t) +

K∑
k=1

Ak x(t− τk) + b u(t− r),

y(t) = cT x(t)

(4)

with r > 0 an arbitrarily small positive delay. The following
proposition shows that under a certain condition on kd, a
controller of form (2) that is stabilizing for system (1), may
no longer be stabilizing for system (4) even if the feedback
delay r is arbitrarily small.

Proposition 1. Assume that the feedback gains kp and kd
asymptotically stabilize (1)-(2). If |kd cT b| > 1, then the
closed loop of (4) and (2) is unstable for all r > 0.

Proof. The behavior of the closed loop of (4) and (2) is
described by the following delay differential equation

ẋ(t)− kd bcT ẋ(t− r) =

A0x(t) +
K∑
k=1

Ak x(t− τk) + kp bc
Tx(t− r),

which is of neutral type. It follows from [15, Proposi-
tion 1.25] that the closed loop system is unstable independent
of r > 0 if ρ(kdbc

T ) = |kdcT b| > 1.

B. Finite difference approximation of the derivative

In some applications, not all state derivatives can be
measured. Under those circumstances, one has to resort to a
finite difference approximation:

ẏ(t) ≈ y(t)− y(t− r)
r

.

The PD output feedback signal now becomes

u(t) = kp y(t) + kd
y(t)− y(t− r)

r
, (5)

with r > 0 a sufficiently small positive delay. The following
proposition show that also an arbitrarily close finite differ-
ence approximation can destroy the stability of the closed
loop for certain values of kd.

Proposition 2. Assume that the feedback gains kp and kd
asymptotically stabilize (1)-(2). If kd cT b > 1, then there
exists a constant r̂ > 0 such that the closed loop of (1) and
(5) is unstable for all r ∈ (0, r̂).

Proof. The stability of the closed loop of (1) and (5) is
characterized by the solutions of

∆fd(λ; r) := det
(
λIn − kd bcT 1−e−λr

r

−A0 −
K∑
k=1

Ak e
−λτk − kp bcT

)
= 0.

Multiplying this equation by rn and introducing the change
of variables µ = λr gives

det
(
µIn − kd bcT (1− e−µ)

−rA0 −
K∑
k=1

rAk e
−µτk/r − rkp bcT

)
= 0.

(6)
As r ↘ 0, the left-hand side of this equation uniformly
converges to the function

∆̃fd(µ) = det
(
µIn − kd bcT (1− e−µ)

)
on compact regions in the open right half-plane. It is easy
to show that ∆̃fd(µ) has at least one root in the open right
half-plane if kd cT b > 1, see for example [16]. Next, as in
the proofs of [3, Proposition 3.2] and [1, Proposition 3.1],
one can use the uniform convergence of the left-hand side of
(6) to ∆̃fd(µ) on compact regions in the right half-plane and
Rouché’s theorem [17] to show that there exist ε, r̂ > 0 such
that ∆fd(λ; r) has at least one root in the right half-plane
{λ ∈ C : <(λ) > ε/r} for all r ∈ (0, r̂).



C. Low pass filtering
As a final example of a perturbation that can cause a loss

of stability even when made infinitesimal, we examine low
pass filtering of the derivative feedback signal. The feedback
signal now becomes

u(t) = kpy(t) + kdζ(t) (7)

with
T ζ̇(t) + ζ(t) = ẏ(t) (8)

and 1/T the cut-off frequency of the filter.

Proposition 3. Assume that the feedback gains kp and kd
asymptotically stabilize (1)-(2). If kdcT b > 1, then there
exists a constant T̂ > 0 such that the closed-loop of (1)
and (7) is unstable for all T ∈ (0, T̂ ). On the other hand,
if kdcT b < 1, then there exists a constant T̃ > 0 such that
the closed loop of (1) and (7) is asymptotically stable for
all T ∈ (0, T̃ ).

Proof. The asymptotic stability of the closed loop of (1) and
(7) is characterized by the roots of

∆lp(λ;T ) := det
(

(In − kd bcT 1
1+λT )λ

−A0 −
K∑
k=1

Ak e
−λτk − kp bcT

)
.

Multiplying this function with Tn and introducing the change
of variable µ = λT results in

∆̄lp(µ;T ) := det
(

(In − kd bcT 1
1+µ )µ

−TA0 −
K∑
k=1

TAk e
−µτk/T − Tkp bcT

)
.

As T ↘ 0, this function uniformly converges to

∆̃lp(µ) := det

(
µIn − kd bcT

µ

1 + µ

)
on compact regions in the open right-half plane. This last
function has a root in the open right-half plane if (and only
if) kdcT b > 1. Also in this case, one can use the uniform
convergence of ∆̄lp(µ;T ) to ∆̃lp(µ) on compact regions in
the open right half-plane for T ↘ 0 and Rouché’s theorem
to show that this implies that there exist ε, T̂ > 0 such that
∆lp(λ;T ) has a root with real part larger than ε/T for all
T ∈ (0, T̂ ).

On the other hand, if kdcT b < 1, then there exist ε, T > 0
such that I − kdbcT 1

λT+1 is invertible for all λ in the half
plane V := {λ ∈ C : <(λ) > −ε} and all T ∈ (0, T ). This
means that ∆lp(λ;T ) = 0 on V can be rewritten as

det
(
Inλ−

(
In − kd bcT 1

1+λT

)−1×(
A0 +

K∑
k=1

Ak e
−λτk + kp bc

T
))

= 0.

Thus, for T ∈ (0, T ), if ∆lp(λ;T ) has a characteristic root,
λ0, inside V , it must be bounded in modulus by

|λ0| ≤ supλ∈V

∥∥∥(In − kd bcT 1
1+λT

)−1
∥∥∥×(

‖A0 + kp bc
T ‖+

K∑
k=1

‖Ak‖ e−<(λ)τk

)
<∞

The eigenvalues of ∆lp(λ;T ) in V lie thus in a compact
region and ∆lp(λ;T ) uniformly converges to ∆(λ) on such
compact regions as T ↘ 0. Because ∆(λ) is stable, we
can choose ε such that ∆(λ) has no roots in V . Combining
this information with Rouché’s theorem as in the proof
of [3, Proposition 4.1], one can show that there exists a
constant T̃ > 0 such that ∆lp(λ;T ) has no roots in the
aforementioned compact region and hence in V . Stability is
thus preserved, for all T ∈ (0, T̃ ).

III. STRONG STABILITY

A. Definition

As seen in the previous section, the notion of (asymptotic)
stability does not suffice to adequately describe the behavior
of the closed loop system with PD output feedback control as
stability might be lost under arbitrarily small implementation
errors. Therefore, [3, Section 4.2] introduced the concept
of strong stability, which requires the closed loop system
not only to be stable but also to preserve this stability
under a certain class of sufficiently small perturbations. More
specifically, it considers the perturbation framework depicted
in Figure 1, in which the functions R1(λ; r1), R2(λ; r2)
and R(λ; r3) represent the perturbations. These perturbation
functions are required to fulfill the conditions given in
Assumption 1. The additional low pass filter (dashed box)
will come into play in the next subsection.

Plant

+ kp

R3(λ; r3)R1(λ; r1)

λkd R2(λ; r2)
1

λT+1

Fig. 1: Closed loop description of the considered perturbation
framework.

Assumption 1. The perturbations R1(λ; r1), R2(λ; r2) and
R(λ; r3) fulfill the following conditions

1) for every r ≥ 0, the functions {λ 7→ Ri(λ; r)}3i=1

are meromorphic and for every λ ∈ C, the functions
{r 7→ Ri(λ; r)}3i=1 are continuous;

2) λ 7→ Ri(λ; 0) ≡ 1 for i = 1, 2, 3;
3) for every compact set Ω ⊂ C, we have

lim
r→0+

max
λ∈Ω
|Ri(λ; r)− 1| = 0 for i = 1, 2, 3

i.e. the functions {λ 7→ Ri(λ; r)}3i=1 uniformly con-
verge to the identity function on compact regions in
the complex plane as r goes to zero;

4) there exist constants M,N, r̂ > 0 such that for all
λ ∈ C with <(λ) ≥ −N and for all r ∈ (0, r̂)

|Ri(λ; r)| ≤M for i = 1, 2, 3.

The implementation errors studied in Section II fit this
framework: R1(λ; r) = e−λr and R2(λ; r) = R3(λ; r) =



1 for (4); R1(λ; r) = R3(λ, r) = 1 and R2(λ, r) ={
1−e−λr
λr λr 6= 0

1 λr = 0
for (5); and R1(λ; r) = R3(λ; r) = 1

and R2(λ;T ) = 1/(λT + 1) for (7).
Based on these perturbation functions, [3] introduced the

following definition for strong stability.

Definition 1. [3, Definition 4.3] A closed loop system as
depicted in Figure 1, is strongly stable if it is asymptotically
stable and if for every trio of functions {Ri(λ; ri)}3i=1 that
satisfies the assumptions above, there exists a constant r̂ > 0
such that the closed loop system remains asymptotically
stable under these perturbations for all r1, r2 and r3 in
the open interval (0, r̂).

B. Guaranteeing strong stability using low pass filtering

In Section II it was shown that arbitrarily small imple-
mentation errors can cause a loss of stability of the closed
loop system. In the Laplace domain, this corresponded with
characteristic roots with a large real part appearing in the
right half-plane via infinity. A natural way to cancel these
roots is to add a low pass filter to the control loop, as
suggested in [1]. However, from Section II-C it follows that
this low pass filter itself might be destabilizing if kdcT b > 1.
Luckily, the following proposition shows that if kdcT b < 1
then the closed loop system can be made strongly stable
by adding a low pass filter with a sufficiently large cut-off
frequency (depicted with a dashed box in Figure 1).

Proposition 4. Assume that the feedback gains kp and kd
asymptotically stabilize (1)-(2). If kdcT b < 1, then the
closed-loop of (1) and (7) is strongly stable for sufficiently
small T .

Proof. By considering the perturbations and the low pass
filtering of the derivative signal, the characteristic function
becomes

∆R,lp(λ; r1, r2, r3, T ) := det
((
In − kd bcT×

1
λT+1R1(λ; r1)R2(λ; r2)R3(λ; r3)

)
λ−A0−

K∑
k=1

Ak e
−λτk − kp bcTR1(λ; r1)R3(λ; r3)

)
.

We choose M , N and r̂ according to Assumption 1.4. The
characteristic roots of ∆R,lp(λ; r1, r2, r3, T ) in the half-plane
V = {λ ∈ C : <(λ) > −N} for r1, r2 and r3 in the interval
(0, r̂) are then bounded in modulus by

|λ0| ≤ supλ∈V

∣∣∣ λ
λT+1

∣∣∣ · |kd| · ‖b‖ · ‖c‖ ·M3 + ‖A0‖+
K∑
k=1

‖Ak‖e−<(λ)τk + |kp| · ‖b‖ · ‖c‖ ·M2 <∞.

Furthermore, ∆R,lp(λ; r1, r2, r3, T ) converges uniformly to
∆lp(λ;T ) for r1, r2, r3 ↘ 0. Moreover, if kdcT b < 1,
it follows from Proposition 3 that for sufficiently small T
there exists an ε > 0 such that ∆lp(λ;T ) has no root
with <(λ) > −ε. Using once again Rouché’s theorem, it
follows that for sufficiently small T there exists a 0 <
r̃ ≤ r̂ such that ∆R,lp(λ; r1, r2, r3, T ) has no root with

<(λ) > −min(ε,N) for r1, r2 and r3 in the open interval
(0, r̃).

C. Necessary condition for strong stability

The following proposition induces a necessary condition
for the existence of feedback gains kp and kd such that the
closed loop of (1) and (7) can be made strongly stable for
sufficiently large cut-off frequencies.

Proposition 5. If ∆(λ), as defined in (3), has an odd number
of roots in the closed right half-plane for kd = 0 independent
of kp, then there do not exist feedback gains kp and kd such
that the closed loop of (1) and (7) is strongly stable.

Proof. Assume that kp and kd are such that the closed loop
of (1) and (2) is asymptotically stable, i.e. (3) has no roots
in the closed right half-plane, and such that for kd = 0 the
closed loop is unstable and (3) has an odd number of roots
in the closed right half-plane. Now consider the feedback
law u(t) = kpy(t) + αkdẏ(t). From our choices for kp and
kd, it follows that for α = 0 the corresponding characteristic
function has an odd number of roots in the closed right half-
plane while for α = 1 there are none (as the system is
stable). Because the roots of the characteristic function move
in complex conjugate pairs as α varies from 0 to 1, this
implies that at least one root has to pass through either the
origin or appear via infinity when decreasing α to zero. A
root passing through the origin is however not possible as a
root in the origin would be invariant with respect to α. The
root must thus appear from infinity. This implies that there
exists an ᾱ ∈ (0, 1) such that I − ᾱkdbcT is not invertible,
which means that kdcT b > 1. For each stabilizing controller
pair (kp,kd) it holds that kdcT b > 1 and thus is the low pass
filter itself destabilizing for small T .

IV. ILLUSTRATION

In this section we illustrate the results of the two previous
sections using two low order examples. Firstly, consider the
following third order system:

ẋ(t) =

 0 1 0
0 0 1
−1 0 0

x(t) +

 0 0 0
0 0 0

2.15 0 0

x(t− 6)

+

 0
0
−1

u(t),

y(t) =
[
8.7 0 1

]
x(t).

(9)

The open loop system is unstable and the associated charac-
teristic function has five roots in the closed right half-plane.
The stability of the closed loop with (2) is characterized by
the zeros of

(1 + kd)λ
3 + kpλ

2 + 8.7kdλ+ 1 + 8.7kp − 2.15e−6λ (10)

Figure 2 shows the number of right half-plane roots of this
characteristic quasi-polynomial in function of kp and kd
(encircled). This figure can be understood as follows. As
kd is decreased from kd > −1 to kd < −1 a right half-plane
root appears (kp > 0) or disappears (kp < 0) via infinity.



Other changes to the number of right half-plane roots are
caused by characteristic roots crossing the imaginary axis.
These crossings correspond to characteristic roots λ = ω
for which
−(1 + kd)ω

3 − kpω2 + 8.7kdω + 1
+8.7kp − 2.15 cos(6ω) + 2.15 sin(6ω) = 0.

By splitting the real and imaginary part of this equation,

−kpω2 + 1 + 8.7kp − 2.15 cos(6ω) = 0

−(1 + kd)ω
3 + 8.7kdω + 2.15 sin(6ω) = 0

it is clear that we have a crossing at the origin for kp =
1.15/8.7 and a crossing complex conjugate pair ±ω for

kp =(2.15 cos(6ω)− 1)/(8.7− ω2),

kd =(ω3 − 2.15 sin(6ω))/(8.7ω − ω3).

We observe that there are two parameter regions for which
the closed loop system is asymptotically stable. A large one
in the left bottom corner of Figure 2a with kd < −1 (dark
gray) and a smaller one in the parameter region on which
Figure 2b focuses (light gray). Parameter pairs (kp, kd) in
the stabilizing region with kd < −1, result in controllers
that stabilize the nominal system, but for which stability
is lost under arbitrarily small perturbations such as those
encountered in Section II. Furthermore, the closed loop
system can not be made strongly stable by including low
pass filtering of the derivative signal as the filter is itself
destabilizing. On the other hand, feedback parameters in the
light gray region, result in stabilizing controllers that can be
made strongly stable by adding a low pass filter of form (8)
with a sufficiently large cut-off frequency to the control loop.

Finally, we illustrate the applicability of Proposition 5.
Consider the following system of order two ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0 0
2 0

]
x(t− 6) +

[
0
1

]
u(t),

y(t) =
[
0 1
]
x(t).

(11)

It can be verified that the open loop system is unstable and
that the associated characteristic function (λ2 − 2e−6λ) has
three roots in the closed right half plane. The characteristic
function corresponding to the closed loop with (2) is

(1− kd)λ2 − 2e−6λ − kpλ, (12)

which for kd = 0 reduces to λ2−2e−6λ−kpλ. By varying kp
the number of right half-plane roots of this last function can
only change by roots crossing the imaginary axis in complex
conjugate pair as a root passing through either the origin or
via infinity is impossible. As for kp = 0 there are three roots
in the closed right half plane, the number of right half-plane
roots of λ2−2e−6λ−kpλ must thus remain odd, independent
of kp. It now follows from Proposition 5 that the system can
not be strongly stabilized with PD output feedback control
and low pass filtering of the derivative signal as there do not
exist controller parameters kp and kd such that (12) has no
right half plane roots and kdcT b < 1.

This can be verified using Figure 3, which shows the
number of right half-plane roots of (12) in function of kp

kp

kd

2

0

4

3

1

3

10

3

5 1

2

3

Crossing via infinity Crossing via imaginary axis
Crossing via the origin

(a) (kp, kd)∈ [−0.6, 0.75]× [−4.4, 2]

kp

kd

1 2

0
1

(b) (kp, kd)∈ [0, 0.3]× [0.8, 1.3]

kp

kd

0

2
3

4

4

2

(c)
(kp, kd)∈ [−0.1, 0.2]× [0.96,−1.6]

Fig. 2: Number of right half-plane roots (encircled) of (10)
in function of kp and kd.

and kd (encircled). To construct this figure, we use the fact
that the number of right half-plane roots can only change
by roots moving over infinity at kd = 1 or crossing the
imaginary axis at ±ω for

kp =
0.3 sin(6ω)

ω
and kd =

0.3 cos(6ω)

ω2
+ 1.

It follows from this figure, that system (11) can only be
stabilized for a derivative gain kd strictly larger than one. It
now follows from the results in Section II that the resulting
controller loses stability under arbitrarily small feedback
delay, an arbitrarily close finite difference approximation and
low pass filtering with an arbitrarily large cut-off frequency.
Furthermore, the system can not be strongly stabilized by
including a low pass filter as this filter itself destabilizes the
system.
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Fig. 3: Number of right half-plane roots (encircled) of (12)
in function of kp and kd.



V. CONTROLLER DESIGN

In this section, we describe a computational procedure
to design a PD output feedback controller with low pass
filtering of the derivative signal of form (7), which strongly
stabilizes system (1). To synthesize such controllers, we will
minimize the spectral abscissa of (3), i.e. the real part of
its right-most characteristic root, in function of kp and kd,
under the constraint that kdcT b < 1. This design procedure
can be summarized as follows:

1) choose initial gains kp and kd such that kdcT b < 1;
2) minimize the spectral abscissa of (3)

f(kp, kd) = maxλ∈C

{
<(λ) : ∆(λ) = 0

}
in kp and kd under the constraint kdcT b < 1;

3) choose a sufficiently small T such that the closed loop
of (1) and (7) is asymptotically stable.

The constraint in step 2 ensures that the condition in Propo-
sition 4 is fulfilled. This constraint is handled using a penalty
method. More precisely, we minimize

f(kp, kd) + γmax
(
0, kdc

T b− 1
)
, (13)

in kp and kd. If the resulting kd fulfills the constraint
kdc

T b < 1 then the design procedure is stopped. Otherwise,
γ is increased and the minimization procedure is restarted
until the resulting kd fulfills the constraint kdcT b < 1. Note,
however, that optimization problem (13) is non-convex and
might therefore have multiple local optima. To overcome this
difficulty, we run the optimization procedure starting from
several initial parameters.

Next, we illustrate the effectiveness of this design
method on system (9). Starting from the unstable controller
(kp, kd) = (1, 0) and γ in (13) equal to 100, we obtain the
stabilizing feedback parameters (kp, kd) = (0.2378, 1.0190).
Next, we choose 1/T = 104 such that the closed loop of (1)
and (7) is exponentially stable with a decay rate of 0.03792.
Furthermore, because kdcT b = −1.0190 < 1 it follows from
Proposition 4 that the closed loop stability is strongly stable.

VI. CONCLUDING REMARKS

This work focused on a certain class of implementation
errors that destabilize the closed loop of a system with
state delays and a PD output feedback controller, even when
the size of the perturbation is infinitesimal. Under certain
conditions on the derivative feedback gain kd, it was then
shown that by adding a low filter pass with a sufficiently large
cut-off frequency, the closed loop system can preserve its
stability under sufficiently small perturbations of this class.

However, when assessing the real-life stability of the
closed loop system, also other kinds of perturbations, such as
modelling errors, which typically can not be made arbitrarily
small, have to be taken into account. In contrast to the
implementation errors on which we focused here, these
perturbations typically no longer destabilize the closed loop
when made arbitrarily small. Nevertheless, it is still possible
for very small (but not infinitesimal) perturbations of this
kind to significantly change the location of the characteristic

roots; think of the roots of Wilkinson’s polynomial [18].
Hence, the spectral abscissa and as a consequence the
behavior of the real life system may significantly differ from
the prediction by the model if such perturbations are present.
To address these kind of perturbations, the pseudo-spectral
framework can be used. For example, instead of minimizing
the spectral abscissa of the nominal model, one could amend
the model with a family of perturbations and consider more
robust performance measures such as the pseudo-spectral
abscissa or the distance to instability.
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