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The Laplacian Spectrum of Large Graphs
Sampled from Graphons

Renato Vizuete, Graduate Student Member, IEEE, Federica Garin, Member, IEEE,
and Paolo Frasca, Senior Member, IEEE

Abstract—This paper studies the Laplacian spectrum and the average effective resistance of (large) graphs that are sampled from
graphons. Broadly speaking, our main finding is that the Laplacian eigenvalues of a large dense graph can be effectively approximated
by using the degree function of the corresponding graphon. More specifically, we show how to approximate the distribution of the
Laplacian eigenvalues and the average effective resistance (Kirchhoff index) of the graph. For all cases, we provide explicit bounds on
the approximation errors and derive the asymptotic rates at which the errors go to zero when the number of nodes goes to infinity. Our
main results are proved under the conditions that the graphon is piecewise Lipschitz and bounded away from zero.

Index Terms—Graphons, Laplacian matrix, average effective resistance, Kirchhoff index, large networks.
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1 INTRODUCTION

THE study of large networks has been a focus of atten-
tion in recent years due to the increasing relevance of

large networks in multiple fields, from computer science
and engineering to biology, economics and sociology. Large
networks require specific methods not only because of their
size but also because their topologies are often known
with large uncertainties and can dynamically evolve with
time. A prominent tool to approach large networks is the
concept of graphon, developed in [1], [2], [3] more than a
decade ago. Graphons are infinite-dimensional representa-
tions of “families” of graphs and limit objects of convergent
graph sequences. Their handy mathematical properties are
allowing for a rapidly increasing number of applications
in multiple fields, including game theory [4], [5], signal
processing [6], [7], control theory [8], [9], and the study of
diffusion processes [10] and epidemics [11], [12] on graphs.
These applications are demonstrating that graphons can also
be a versatile tool to study dynamics on large networks.

Since the concept of graphon is inherently related to the
adjacency matrix of graphs, its applications have essentially
focused on cases when the adjacency matrix is the object of
study. However, this can be limiting for some applications,
because many network-based dynamics are instead better
described by using the Laplacian matrix of the graph [13].
Other applications of the Laplacian matrix include spectral
clustering [14], combinatorial optimization [15], and signal
processing [16].

The spectrum of the Laplacian matrix encodes relevant
properties of the network, including its connectivity that can
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be measured by its spectral gap, that is, the magnitude of its
smallest nonzero eigenvalue (if the spectral gap is small, the
graph is poorly connected). The Laplacian spectrum also
has an important role in the study of graphs by associating
an electrical network to them [17]. Representing graphs as
networks of resistors is a classical tool in graph theory
with a large range of applications such as the analysis of
random walks [18], [19], consensus algorithms [20], [21],
and distributed estimation algorithms [22]. In this context,
a key graph property is the average effective resistance,
which can be written as a function of the eigenvalues of
the Laplacian matrix. The average effective resistance, also
known as Kirchhoff index, can also be used to evaluate
the connectivity of a network: small values imply well-
connected networks.

The average effective resistance can be computed, ex-
actly or approximately, for many specific graph topologies,
including toroidal graphs [23], d-dimensional grids [24], and
other graphs with geometric properties [20].

However, closed-form expressions for the eigenvalues
are not available beyond few academic examples and there-
fore are of little help for graphs that represent real networks.
Actually, real networks are often very large and their size
can make the numerical computation of eigenvalues im-
practical, even accounting for the the recent developments
of fast Laplacian solvers [25], [26], [27], [28]. Even worse,
the topology of the network may not be fully known or
be dynamically evolving, therefore preventing the direct
application of numerical methods.

In this paper we demonstrate that, for large dense net-
works that are well described by graphons, properties of
these limit objects can be used to provide useful approxi-
mations of the Laplacian properties. Work in this direction
has so far been limited to spectral clustering [14], [29] and
random walks on graphons [10]: we offer here a careful
analysis of the approximation properties of graphons for the
Laplacian eigenvalues.

In the case of large dense networks, the Laplacian matrix
can be seen as a perturbation of the degree matrix of the
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graph [30], [31], such that the contribution of the adjacency
matrix to the Laplacian spectrum is small. Therefore, the
distribution of the eigenvalues of the Laplacian matrix is
close to the distribution of the degrees. At the same time, the
degree function of a graphon is closely related to the degrees
of the sampled graphs [32]. Combining these two facts, it
becomes natural to use the degree function of a graphon
to approximate the Laplacian spectrum and, consequently,
the average effective resistance of (large) graphs that are
sampled from that graphon.

Motivated by this informal discussion, the objective of
this paper is to use characteristics of graphons for the analy-
sis of the spectrum of the Laplacian matrix of graphs that are
sampled from graphons. More precisely, our contribution
is showing that the degree function of the graphon can
be used to approximate the distribution of the Laplacian
eigenvalues (Theorem 1) and the average effective resistance
(Theorem 2). These results will be proved under the techni-
cal assumptions of the graphon being piecewise Lipschitz
and bounded away from zero.

The rest of this paper is structured as follows. Section 2
introduces the necessary preliminaries about graphons and
sampled graphs. Section 3 presents our main results regard-
ing both the Laplacian spectrum and the average effective
resistance. Section 4 presents a numerical example for our
results, using sequences of networks sampled from a Lip-
schitz continuous graphon. Finally, conclusions and future
work are exposed in Section 5.

2 GRAPHS AND GRAPHONS

This section contains the definition of graphons and some
related notions and facts that will be needed later.

2.1 Graphons: basic notations and norms

We begin by summarizing some definitions and results from
[2], [3], [32] about kernels and graphons. The space of all
bounded symmetric measurable functions W : [0, 1]2 →
R is denoted by W . The elements of this space are called
kernels, because of their connection with integral operators,
illustrated below. The set of all kernels W ∈ W such that
0 ≤ W ≤ 1 is denoted byW0 and their elements are called
graphons, whose name is a contraction of graph-function.
The set of all kernels W such that −1 ≤ W ≤ 1 is denoted
byW1. The degree function of a graphon is defined as:

d(x) :=

∫ 1

0
W (x, y) dy.

We denote by δW the infimum of d(x).
Every functionW ∈ W defines an integral operator TW :

L2[0, 1]→ L2[0, 1] by:

(TW f) (x) :=

∫ 1

0
W (x, y)f(y) dy.

If W is continuous, then the operator is also TW : C[0, 1]→
C[0, 1]. For 1 ≤ p <∞, the Lp norm of a kernel is

‖W‖p :=

(∫
[0,1]2

|W (x, y)|p dxdy

)1/p

and its cut norm is

‖W‖� := sup
S,T⊆[0,1]

∣∣∣∣∫
S×T

W (x, y) dx dy

∣∣∣∣ .
For W ∈ W1, we have the following inequalities between
Lp norms and the cut norm [2, Equation 8.14]:

‖W‖� ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖1/21 ≤ 1. (1)

By considering the operator TW associated to a kernel W ∈
W , we can define the operator norm:

|||TW ||| := sup
f∈L2[0,1],‖f‖2=1

‖TW f‖2.

For the elements of W1, the cut and operator norms are
related by [3, Equation 4.4 and Lemma E.6]:

‖W‖� ≤ |||TW ||| ≤
√

8‖W‖1/2� . (2)

2.2 Sampled Graphs

A graphon W can be used to generate a random graph with
N vertices, by the following sampling method in two steps:

1. Complete Weighted Graph ḠN : let X = (X1, . . . , XN )
be a sequence of independent random variables uniformly
distributed on the interval [0, 1]. We generate the complete
weighted graph ḠN with N vertices, whose adjacency
matrix is defined as: ĀN (i, j) = W (X(i), X(j)) for all i, j
in {1, . . . , N}, where X(i) is the i-th order statistic of the
samples X1, . . . , XN .

2. Simple Graph GN : from ḠN , we generate the simple
graph GN with N vertices by connecting each pair of dis-
tinct vertices i 6= j with probability ĀN (i, j) independently
of the other edges.

The degrees of the vertices of ḠN are denoted by d̄i (i.e.,
d̄i is the ith row-sum of ĀN ) and the normalized degrees
by δ̄i = d̄i/N . We introduce also the diagonal degree matrix
D̄N = diag[d̄1, · · · , d̄N ] and the Laplacian matrix L̄N =
D̄N − ĀN . We denote the eigenvalues of L̄N as λ̄i ≤ · · · ≤
λ̄N and its normalized eigenvalues as µ̄i = λ̄i/N .

Similarly, we denote the degrees of GN by di (i.e.,
di is the ith row-sum of AN ) and the normalized ver-
sions by δi = di/N . The degree matrix is defined as
DN = diag[d1, · · · , dN ] and the Laplacian matrix as LN =
DN − AN . The eigenvalues of the Laplacian matrix are
denoted by λ1 ≤ · · · ≤ λN and the normalized eigenvalues
as µi = λi/N . Notice that ĀN is the expectation ofAN given
X , and hence d̄i is the expectation of di given X .

When needed, we will also use d̄(1) ≤ · · · ≤ d̄(N) to
denote degrees d̄1, . . . , d̄N re-arranged in non-decreasing
order, and similarly we will define δ̄(i)’s, d(i)’s and δ(i)’s
with a non-decreasing reordering of the corresponding (nor-
malized) degrees.

By considering a uniform partition of [0, 1] into the inter-
vals BNi , where BNi = [(i− 1)/N, i/N) for i = 1, . . . , N − 1
and BNN = [(N − 1)/N, 1], we define the following step
functions concerning degrees:

dN (x) =
N∑
i=1

δi1BN
i

(x), d̃N (x) =
N∑
i=1

δ(i)1BN
i

(x),
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and the following step functions concerning Laplacian
eigenvalues:

µN (x) =
N∑
i=1

µi1BN
i

(x), µπN (x) =
N∑
i=1

µπ(i)1BN
i

(x),

where 1A(x) is the indicator function and π ∈ SN , i.e., π is
a permutation of 1, . . . , N .

2.3 Step Graphons Associated with Sampled Graphs
Given a (possibly weighted) graph G with N vertices
and with weighted adjacency matrix whose entries are
aij ∈ [0, 1], the step graphon WG associated with G is
defined as

WG(x, y) :=
N∑
i=1

N∑
j=1

aij1BN
i

(x)1BN
j

(y)

and the corresponding operator is

(TWG
f)(x) :=

N∑
j=1

aij

∫
BN

j

f(y) dy for any x ∈ BNi .

For a step graphon WG we have [2, Equation 8.15]:

‖WG‖1 ≤
√

2N‖WG‖�. (3)

To prove our main results, we will also need the fol-
lowing lemma, concerning the Frobenius norm ‖A‖F of the
adjacency matrix of a graph and the operator norm of the
associated step graphon.

Lemma 1. Let W be a step graphon associated with a graph G
with N vertices. Then:

‖A‖F ≤
4
√

2N5|||TWG
|||1/2.

Proof. We consider the L2 norm of the step graphon:

‖WG‖2 =

(∫ 1

0

∫ 1

0
W 2
G(x, y) dxdy

)1/2

.

We can see that W 2
G(x, y) = WG(x, y)WG(x, y) is the prod-

uct of two step functions with the same partition. Using the
property 1A∩B = 1A1B , we obtain:

W 2
G(x, y) =

N∑
i=1

N∑
j=1

a2
ij1BN

i
(x)1BN

j
(y),

and hence:

‖WG‖22 =

∫ 1

0

∫ 1

0

N∑
i=1

N∑
j=1

a2
ij1BN

i
(x)1BN

j
(y) dx dy

=
N∑
i=1

N∑
j=1

∫ i
N

i−1
N

∫ j
N

j−1
N

a2
ij dxdy =

1

N2

N∑
i=1

N∑
j=1

a2
ij =

‖A‖2F
N2

.

This gives ‖A‖F = N‖WG‖2. Finally, using (1), (2),
(3) implies ‖A‖F ≤ N‖WG‖1/21 ≤ 4

√
2N5‖WG‖1/2� ≤

4
√

2N5|||TWG
|||1/2.

For the graphs ḠN and GN sampled from a graphon
W as described in Section 2.2, we will denote the cor-
responding step graphons with the short-hand notations
W̄N := WḠN

and WN := WGN
.

2.4 Graphs Sampled from Piecewise Lipschitz
Graphons
We shall restrict our analysis to a class of graphons that is
wide enough to be relevant for the applications, but leads
to a tractable analysis. We therefore consider the class of
piecewise Lipschitz graphons, whose properties we recall
from [32].

Definition 2.1 (Piecewise Lipschitz graphon). Graphon W
is said to be piecewise Lipschitz if there exists a constant L and
a sequence of non-overlapping intervals Ik = [αk−1, αk)
defined by 0 = α0 < · · · < αK+1 = 1, for a finite non-
negative integer K such that for any k, `, any set Ik` =
Ik × I` and pairs (x1, y1) and (x2, y2) ∈ Ik` we have that:

|W (x1, y1)−W (x2, y2)| ≤ L(|x1 − x2|+ |y1 − y2|).

If K = 0, then the graphon is said to be Lipschitz.

Notice that when W is a piecewise Lipschitz graphon,
the degree function d(x) is piecewise continuous, and hence
δW is its minimum, and not just its infimum.

Definition 2.2 (Large enough N ). Given a piecewise Lip-
schitz graphon W and ν < e−1, N is large enough if N
satisfies the following conditions:

2

N
< min
k∈{1,...,K+1}

(αk − αk−1), (4a)

1

N
log

(
2N

ν

)
+

1

N
(2K + 3L) < max

x
d(x), (4b)

Ne−N/5 < ν. (4c)

The following result is given in [32] as Theorems 1 and 2.

Lemma 2. For a piecewise Lipschitz graphon W and N large
enough, with probability at least 1− ν:∣∣∣∣∣∣TW̄N

− TW
∣∣∣∣∣∣ ≤ 2

√
(L2 −K2)b2N +KbN =: ϑ(N), (5)

‖d̄N (x)− d(x)‖2 ≤ ϑ(N), (6)

and with probability at least 1− 2ν:

|||TWN
− TW ||| ≤

√
4 log(2N/ν)

N
+ ϑ(N) =: φ(N), (7)

‖dN (x)− d(x)‖2 ≤ φ(N), (8)

where bN := 1
N +

√
8 log(N/ν)
N+1 .

From Lemma 2 we can see that the constant ν determines
the probability with which the results hold, such that if we
want a higher probability, the value of N will increase to
satisfy the large enough condition. The constant ν will appear
in most of the results of the paper.

To obtain the main results of our paper (see Section 3)
we will consider graphons which are piecewise Lipschitz.
Moreover, when needed, we will consider graphons which
are bounded away from zero, i.e., whose infimum (denoted
by ηW , and which is actually a minimum under the piece-
wise Lipschitz assumption) is strictly positive. Graphons
which are bounded away from zero are also known as
graphons having ‘minimal degree’ [32], since the assump-
tion W (x, y) ≥ ηW > 0 for all x, y has the following
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implications about the degrees, both of the graphon itself
and of the graphs sampled from the graphon: δW ≥ ηW > 0
and δ̄i ≥ ηW for all i = 1, . . . , N .

2.5 Laplacian Operator of a Graphon
The Laplacian matrix of a graph is defined as the difference
between the degree matrix and the adjacency matrix. In
analogy with this definition, we can define a Laplacian
operator for graphons LW : L2[0, 1]→ L2[0, 1] as:

(LW f)(x) := d(x)f(x)− (TW f)(x). (9)

If the graphon is continuous, LW is also an operator in the
space of continuous functions LW : C[0, 1] → C[0, 1], see
[14]. The spectrum of this operator is composed by an es-
sential spectrum located in the range of the degree function
d(x) and a finite number of isolated eigenvalues κi, which
can only have accumulation points in the boundaries of the
essential spectrum. The isolated eigenvalues are contained
in the interval [0, 1] and κ1 = 0 is always an eigenvalue with
a constant eigenfunction associated ψ1(x) = k.

3 MAIN RESULTS ON LAPLACIAN SPECTRUM

This section contains our main results about the Laplacian
spectrum, which regard the whole distribution of the eigen-
values (Section 3.1), the spectral gap (Section 3.2) and the
average effective resistance (Section 3.3). We conclude the
section with some remarks about an easy extension of our
results to deterministically sampled graphs (Section 3.4).

3.1 Distribution of eigenvalues
For a large dense network, the distribution of the eigenval-
ues of the Laplacian matrix is close to the distribution of the
degrees of the vertices [31]. Using results of perturbation
theory, [30] derived a bound for the relative error in the
estimation of the eigenvalues of the Laplacian matrix using
the degrees of the network for simple graphs:

‖λG − d̃G‖2
‖d̃G‖2

≤
√

N

‖d̃G‖1
, (10)

where λG is a vector with the Laplacian eigenvalues ar-
ranged in non-decreasing order and d̃G is a vector with the
degrees of the network arranged in non-decreasing order. In
particular, for a sequence of graphs where at least a constant
fraction of vertices have a degree growing linearly with N ,
the right-hand side of (10) decays to zero as O(1/

√
N).

Graphs GN sampled from a graphon as described in
Section 2.2 are dense graphs, and it is natural to look for
an analogous of (10), so as to show that the eigenvalues of
the Laplacian of GN are mostly determined by the reordered
degree function of the same graph, with an error bounded by
a quantity only depending on N and on the graphon (see
Proposition 1).

Proposition 1. For a piecewise Lipschitz graphon W and N
large enough, with probability at least 1− 2ν:

‖µN (x)− d̃N (x)‖2 ≤ 4

√
2

N

√
|||TW |||+ φ(N),

with φ(N) as in Lemma 2.

Proof. By definition:

‖µN (x)− d̃N (x)‖22 =

∫ 1

0

N∑
i=1

|µi − δ(i)|21BN
i

(x) dx

=
1

N

N∑
i=1

|µi − δ(i)|2 =
1

N3

N∑
i=1

|λi − d(i)|2.

We can use the Wielandt-Hoffman Theorem [33], obtaining:∑N
i=1 |λi− d(i)|2 ≤ ‖AN‖2F and hence ‖µN (x)− d̃N (x)‖2 ≤
1

N3/2
‖AN‖F .

By using Lemma 1 we get:

‖µN (x)− d̃N (x)‖2 ≤
4
√

2N5|||TWN
|||1/2

N3/2
.

Finally we notice that |||TWN
||| ≤ |||TWN

− TW |||+|||TW ||| and
we use (7) from Lemma 2 to obtain the desired result.

Furthermore, we can approximate the distribution of
the normalized Laplacian eigenvalues by using the degree
function of the graphon, as follows.

Proposition 2. For a piecewise Lipschitz graphon W and N
large enough, with probability at least 1− 2ν:

min
π∈SN

‖µπN (x)− d(x)‖2 ≤ 4

√
2

N

√
|||TW |||+ φ(N) + φ(N),

with φ(N) as in Lemma 2.

Proof. In addition to the step functions defined in Sec-
tion 2.2, in this proof we will also use:

µ̄πN (x) =
N∑
i=1

µ̄π(i)1BN
i

(x).

The goal of this proof is to show that, with probability at
least 1− 2ν, there exists a permutation σ such that:

‖µσN (x)− d(x)‖2 ≤ 4

√
2

N

√
|||TW |||+ φ(N) + φ(N).

Notice that a different σ might be used for different realiza-
tions of the random graph GN .

By applying the triangle inequality in ‖µσN (x) − d(x)‖2,
we get that, for any σ:

‖µσN (x)− d(x)‖2 ≤ ‖µσN (x)− dN (x)‖2 + ‖dN (x)− d(x)‖2.
(11)

For the first term, we have:

‖µσN (x)− dN (x)‖2 =
1

N3/2

(
N∑
i=1

|λσ(i) − di|2
)1/2

.

Then, we apply Wielandt-Hoffman theorem to AN = DN −
LN , which gives:

min
π∈SN

N∑
i=1

|λπ(i) − di|2 ≤ ‖AN‖2F .

We choose σ to be the permutation that achieves the above
minimum, so that we get:

‖µσN (x)− dN (x)‖2 ≤
‖AN‖F
N3/2

.
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For an upper bound on ‖AN‖F , we apply Lemma 1, and
then we apply the inequality |||TWN

||| ≤ |||TWN
− TW ||| +

|||TW ||| and the bound (7) from Lemma 2. We obtain that
with probability at least 1− ν there exists σ such that:

‖µσN (x)− dN (x)‖2 ≤ 4

√
2

N

√
|||TW |||+ φ(N). (12)

For the second term in the right-hand side of (11), we use
(8) from Lemma 2. Notice that Lemma 2 ensures that with
probability at least 1− ν both bounds (7) and (8) hold true,
together; this ensures that with the same probability both
bounds (12) and (8) hold true, together.

Proposition 2 is key in our analysis because it makes
the connection between graphs and graphons: the result
ensures that the degree function of the graphon provides a
good approximation of the eigenvalues of the graph.

The statement of Proposition 2 involves finding the
best re-ordering π of the Laplacian eigenvalues, so as to
minimize ‖µπN (x)−d(x)‖2: if we want to know the function
µπN (x) that satisfies the corresponding upper bounds, it is
necessary to evaluate N ! possible permutations. A simpler
statement can be obtained by adding a suitable monotonic-
ity assumption to a graphon bounded away from zero. In
the theorem below we will consider a graphon W that is
bounded away from zero and is non-decreasing, i.e., such
that W (x1, y) ≤ W (x2, y) when x1 ≤ x2. A graphon being
non-decreasing implies that its degree function is also non-
decreasing, even though the converse is not true.

Theorem 1. For a piecewise Lipschitz, non-decreasing graphon
with minimum ηW > 0 and for N large enough, with probability
at least 1− 3ν:

‖µN (x)− d(x)‖2 ≤ ϕ(N) +
4

√
2

N

√
|||TW |||+ ϑ(N) + ϑ(N),

with ϑ(N) as in Lemma 2 and ϕ(N) as in Lemma 3 below.

To prove Theorem 1, we first need the following concen-
tration results for the normalized degrees of GN and ḠN
and for the normalized eigenvalues of the corresponding
Laplacian matrices.

Lemma 3. Given a graphon W with infimum ηW > 0, if N
is large enough, with probability at least 1 − ν the normalized
degrees of the graphs GN and ḠN sampled from W satisfy:

max
i=1,...,N

|δ(i) − δ̄(i)| ≤

√
log(2N/ν)

NηW
:= γ(N), (13)

and with probability at least 1− 2ν the normalized eigenvalues of
their Laplacian matrices LN and L̄N satisfy:

max
i=1,...,N

|µi−µ̄i| ≤
( 1
√
ηW

+2
)√ log(2N/ν)

N
:= ϕ(N). (14)

Proof. For the first part of the proof, we use Chernoff bound,
as in [34, Proof of Theorem 2], thanks to the remark that d̄i
is the expectation of di, conditioned on X , and that di is the
ith row-sum of AN . By the Chernoff bound, for any given i:

Pr[|di − d̄i| > b d̄i] ≤
ν

N
if b ≥

√
log(2N/ν)

d̄i
.

Since d̄i ≥ NηW , by considering b =

√
log(2N/ν)

NηW
, for any

given i, we have with probability at least 1− ν/N :

|di − d̄i| ≤

√
log(2N/ν)

NηW
d̄i ≤

√
log(2N/ν)

NηW
d̄(N).

Hence, with probability at least 1− ν this bound is true for
all i = 1, . . . , N . Since DN − D̄N is diagonal,

‖DN − D̄N‖2 = max
i=1,...,N

|di− d̄i| ≤

√
log(2N/ν)

NηW
d̄(N) (15)

with probability at least 1− ν.
From Weyl’s Theorem, maxi |d(i)− d̄(i)| ≤ ‖DN −D̄N‖2,

which ends the proof of (13), recalling that d̄(N) ≤ N , d(i) =
Nδ(i) and d̄(i) = Nδ̄(i).

For the second part of the lemma, we have:

‖LN − L̄N‖2 = ‖DN −AN − D̄N + ĀN‖2
≤ ‖DN − D̄N‖2 + ‖ĀN −AN‖2.

By [34, Theorem 1], with probability at least 1− ν:

‖AN − ĀN‖2 ≤
√

4d̄(N) log(2N/ν). (16)

Combining (15) and (16), with probability at least 1− 2ν:

‖LN − L̄N‖2 ≤

√
d̄2

(N) log(2N/ν)

NηW
+
√

4d̄(N) log(2N/ν).

By using Weyl’s Theorem and considering the normalized
eigenvalues we get:

max
i
|µi − µ̄i| ≤

√
d̄2

(N) log(2N/ν)

N3ηW
+

√
4d̄(N) log(2N/ν)

N2
.

Finally, since d̄(N) ≤ N , we get the desired result.

The proof of Theorem 1 and the proof of Theorem 2 in the
next section heavily rely both on Lemma 2 and on Lemma 3.
More precisely, each proof will require the simultaneous
use of various bounds from such lemmas; since each bound
holds with some probability, the following lemma is about
the joint probability of the bounds of interest.

Lemma 4. Given a piecewise Lipschitz graphonW with infimum
ηW > 0, if N is large enough, then:

• with probability 1− 3ν, (5), (6) and (14) hold true;
• with probability 1− 3ν, (7), (8), (13) and (14) hold true.

Proof. The first statement is immediately obtained: Lemma 2
ensures that with probability at least 1 − ν both (5) and (6)
hold true, while Lemma 3 ensures that (14) holds true with
probability at least 1 − 2ν. Hence, the probability that all
three bounds hold true is at least 1− ν − 2ν = 1− 3ν.

For the second statement, we need a closer look at the
proofs of Lemmas 2 and 3. The same event (15), which
has probability at least 1 − ν, is used in the proof of both
statements (13) and (14) of Lemma 3. Hence, the probability
that both bounds hold together is at least 1− 2ν. Moreover,
the same event (16), which has probability at least 1 − ν
thanks to [34, Theorem 1], is used both in the above proof
of Lemma 3 and in the proof of the two statements (7) and
(8) in Lemma 2 (see [32, Proof of Theorem 1] for the latter
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proof). Hence, the probability that all the bounds (13), (14),
(7), and (8) hold true together is at least 1− 3ν.

Now we have all the tools needed to prove Theorem 1.

Proof of Theorem 1. In this proof, we will make use of the
bounds (5), (6) and (14) from Lemmas 2 and 3; by Lemma 4,
the event that all three bounds hold true has probability at
least 1− 3ν.

We start from the left-hand side of the claimed inequality,
and we use the triangle inequality to obtain that:

‖µN (x)− d(x)‖2 ≤ ‖µN (x)− µ̄N (x)‖2
+ ‖µ̄N (x)− d̄N (x)‖2 + ‖d̄N (x)− d(x)‖2. (17)

The first term can be rewritten and bounded by using (14):

‖µN (x)−µ̄N (x)‖2 =

(
1

N

N∑
i=1

|µi − µ̄i|2
)1/2

≤ ϕ(N). (18)

For the second term, we have:

‖µ̄N (x)− d̄N (x)‖2 =
1

N3/2

(
N∑
i=1

|λ̄i − d̄i|2
)1/2

.

By applying Wielandt-Hoffman theorem to ĀN = D̄N−L̄N ,
we obtain:

min
π∈SN

N∑
i=1

|λ̄π(i) − d̄i|2 ≤ ‖ĀN‖2F . (19)

The assumption that W is non-decreasing implies that also
d̄N (x) is non-decreasing, i.e., d̄1 ≤ · · · ≤ d̄N . This, together
with the fact that λ1 ≤ · · · ≤ λN by definition, ensures that
the minimum in (19) is achieved for the identity permuta-
tion that leaves all positions unchanged. Hence we obtain:

‖µ̄N (x)− d̄N (x)‖2 =
1

N3/2

(
N∑
i=1

|λ̄i − d̄i|2
)1/2

≤ ‖ĀN‖F
N3/2

.

Then, we can use Lemma 1, and the inequality
∣∣∣∣∣∣TW̄N

∣∣∣∣∣∣ ≤∣∣∣∣∣∣TW̄N
− TW

∣∣∣∣∣∣+ |||TW ||| with the bound (5) to obtain that

‖µ̄N (x)− d̄N (x)‖2 ≤ 4

√
2

N

√
|||TW |||+ ϑ(N). (20)

For the third term in the right-hand side of (17), we use (6).
Finally, the desired result is obtained from (17) by com-

bining the three bounds (18), (20) and (6).

Theorem 1 has implications on the asymptotic behavior
of ‖µN (x)−d(x)‖2, which are discussed in the next remark.

Remark 1. The upper bound on ‖µN (x) − d(x)‖2 in Theo-
rem 1 holds true with probability at least 1 − 3ν, and has an
expression which depends both on ν and on N . We are interested
in its asymptotic behaviour for N → ∞. When we consider
a constant ν, we can easily see that this upper bound goes to
zero as O((log(N)/N)1/4), since ϕ(N) = O((log(N)/N)1/2)
and ϑ(N) = O((log(N)/N)1/4); moreover, if the graphon
is Lipschitz (K = 0), then the upper bound goes to zero as
O((1/N)1/4), since in this case ϑ(N) = O((log(N)/N)1/2).
It is interesting to notice that all these asymptotic behaviours
remain the same also when we consider ν = 1/Nα for any
positive constant α, since this only affects constant factors. By
choosing α > 1, we can then apply Borel-Cantelli Lemma and

obtain that, under the assumptions of Thm. 1, almost surely
‖µN (x) − d(x)‖2 decays to zero as O((log(N)/N)1/4), and
under the further assumption that the graphon is Lipschitz then
almost surely ‖µN (x)− d(x)‖2 goes to zero as O((1/N)1/4).

Similarly, from Prop. 2 we obtain that for any piecewise
Lipschitz graphon almost surely minπ∈SN

‖µπN (x) − d(x)‖2
decays to zero as O((log(N)/N)1/4), and for any Lipschitz
graphon almost surely minπ∈SN

‖µπN (x)−d(x)‖2 decays to zero
as O((1/N)1/4).

3.2 Spectral gap
The results in Section 3.1 concern the distribution of eigen-
values of the Laplacian matrix. However, it is often useful
to obtain more detailed information on small eigenvalues,
and in particular on the second largest, to see its distance
from zero. This distance, also known as the spectral gap, is
a measure of how well connected is the graph and plays
a crucial role in shaping the properties of graph-based
dynamics such as random walks on graphs and consensus-
seeking systems [35], [36], [37].

In this section we give some results on µ̄2, the spectral
gap of ḠN , and on µ2, the spectral gap of GN : the results
about µ̄2 will become useful in the next section. The two
spectral gaps are closely related, due to Lemma 3.

Remark 2. Given a graphon W with infimum ηW > 0, by
Lemma 3 we have |µ2 − µ̄2| ≤ ϕ(N) with probability at least
1 − 2ν. By taking ν = 1/Nα for some α > 1, we obtain
that |µ2 − µ̄2| = O((log(N)/N)1/2) with probability at least
1 − O(1/Nα), and hence we can apply Borel-Cantelli Lemma
to conclude that almost surely |µ2 − µ̄2| decays to zero as
O((log(N)/N)1/2).

Lemma 5. For a complete weighted graph sampled from a
graphon with infimum ηW :

µ̄2 ≥ ηW .

Proof. We use the variational characterization of eigenvalues
(Courant-Fischer theorem). Since λ̄1 = 0 with eigenvector
1N (the all-ones vector of size N ),

µ̄2 =
1

N
λ̄2 =

1

N
min

x: xTx=1
xT1N=0

xT L̄Nx. (21)

Since L̄N is a symmetric Laplacian matrix,

xT L̄Nx=
1

2

∑
i

∑
j

ĀN (i, j)(xi−xj)2≥ ηW
2

∑
i

∑
j

(xi−xj)2.

Then notice that
∑
i

∑
j(xi−xj)2 = 2N [(

∑
i x

2
i )−(

∑
i xi)

2]

and hence for all x such that xTx = 1 and xT 1N = 0 we
have

∑
i

∑
j(xi − xj)2 = 2N , so that xT L̄Nx ≥ NηW . With

this, together with (21), we can conclude that µ̄2 ≥ ηW .

By combining (14) and Lemma 5, we obtain the following
lower bound for µ2.

Proposition 3. For a simple graph sampled from a graphon with
infimum ηW and for N large enough, with probability at least
1− 2ν:

µ2 ≥ ηW − ϕ(N), with ϕ(N) as in (14).

From Proposition 3 we can see that a sufficient condition
to guarantee that the spectral gap µ2 remains bounded away
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from zero a.s. is having a graphon with ηW > 0. Another
case in which µ2 is guaranteed to remain bounded away
from zero a.s. is given by Proposition 4 below (based on
the results in [14]): when the graphon W is continuous, has
δW > 0 and its zero eigenvalue κ1 = 0 has multiplicity one.

Proposition 4. Let W be a continuous graphon. Let M be the
number of isolated eigenvalues of W in the interval [0, δW ],
counted with their multiplicities, and let 0 = κ1 ≤ κ2 ≤ · · · ≤
κM be such eigenvalues. Define ρ = κ2 if M ≥ 2, and ρ = δW
if M = 1. Then,

lim
N→∞

µ2 = ρ, a.s.

Proof. The results in [14] imply that limN→∞ µ̄2 = ρ a.s.,
as we show below. Consider the operator LPN

: C[0, 1] →
C[0, 1]:

(LPN
f)(x) := dPN

(x)f(x)−
∫ 1

0
W (x, y)f(y) dPN (y),

where dPN
(x) :=

∫ 1
0 W (x, y) dPN (y), PN := 1/N

∑N
i=1 δXi

is the empirical distribution and δXi is the Dirac measure.
Isolated eigenvalues of LPN

are also eigenvalues of L̄N [14,
Proposition 22]. According to [14, Proposition 23], LPN

con-
verges compactly to LW a.s., which implies the convergence
of isolated parts of the spectrum and due to the upper-
semicontinuity, the limits of convergent sequences are the
isolated eigenvalues of LW . Additionally, [14, Proposition
6] implies that for an isolated eigenvalue κ with multiplicity
m, there are m sequences of eigenvalues that converge to
κ. If κ1 = 0 has multiplicity 1 and there are no isolated
eigenvalues in the interval (0, δW ), then the second eigen-
value µ̄2 will converge to δW according to [14, Proposi-
tion 24]. Finally, by Remark 2 we have that almost surely
limN→∞ µ2 = limN→∞ µ̄2, which completes the proof.

Notice that Proposition 4 requires the additional as-
sumption that the graphon is continuous, which was not
required in Proposition 3, but on the other hand it does not
require the graphon to be bounded away from zero and
moreover it gives a much richer result, since it characterizes
the almost sure limit of µ2 for N →∞.

3.3 Average effective resistance

We consider the simple graph GN as an electrical network
where all the edges have resistance equal to 1. Between two
vertices i and j, we denote the effective resistance Reff(i, j)
as the electrical potential difference induced between i and
j by a unit current injected in i and extracted from j. The
average effective resistance of GN is defined as:

Rave
N :=

1

2N2

N∑
i=1

N∑
j=1

Reff(i, j).

This quantity is also related to the spectrum of the Laplacian
matrix of the graph [37]:

Rave
N =

1

N

N∑
i=2

1

λi
.

This handy characterization immediately leads to draw
some conclusions about its asymptotic behavior.

Remark 3. To find the asymptotic behavior for N → ∞ of the
average effective resistance of graphs sampled from a piecewise
Lipschitz graphon bounded away from zero, we can see that:

NRave
N =

N∑
i=2

1

λi
≤ (N − 1)

1

λ2
≤ 1

µ2
.

As noticed in Remark 2, Lemma 3 implies that |µ2 − µ̄2| goes to
zero a.s. Moreover, by Lemma 5, µ̄2 ≥ ηW > 0. From this, we
can conclude that almost surely µ2 is bounded away from zero,
and hence Rave

N = O(1/N) a.s. Also, since λN ≤ N we get:

NRave
N ≥ (N − 1)

1

N
.

Therefore Rave
N = Θ(1/N) a.s.

Considering that the distribution of the eigenvalues of
the Laplacian matrix is similar to the distribution of the
degrees, we can estimate the average effective resistance
RN of a simple graph GN through the degree function of
the graphon W , by defining an analogous quantity as:

Rave
W,N :=

1

N

∫ 1

0

1

d(x)
dx.

Theorem 2. For a piecewise Lipschitz graphonW with minimum
ηW > 0 and for N satisfying conditions (4a), (4b), (4c) and
condition:

log(2N/ν)

N
<

η2
W

1 + 2ηW
, (22)

let Rave
N be the average effective resistance of a graph GN sampled

from W . Then, with probability at least 1− 3ν:∣∣Rave
N −Rave

W,N

∣∣ ≤
1

N(ηW − γ(N))

(
1

N
+
φ(N)

δW
+

4
√

2
√
|||TW |||+ φ(N)

N1/4(ηW − ϕ(N))

)
,

with φ(N) as in Lemma 2 and ϕ(N) and γ(N) as in Lemma 3.

Proof. In this proof, we will make use of the bounds (7), (8),
(13) and (14) from Lemmas 2 and 3; by Lemma 4, the event
that all four bounds hold true has probability at least 1−3ν.

If we define the step function

rN (x) =
N∑
i=2

1

λi
1BN

i
(x),

it is easy to see that Rave
N = ‖rN (x)‖1 and Rave

W,N =∥∥∥ 1
Nd(x)

∥∥∥
1
, so that we have:

∣∣Rave
N −Rave

W,N

∣∣ =

∣∣∣∣‖rN (x)‖1 −
∥∥∥∥ 1

Nd(x)

∥∥∥∥
1

∣∣∣∣ (23)

≤
∣∣∣∣‖rN (x)‖1−

∥∥∥∥ 1

NdN (x)

∥∥∥∥
1

∣∣∣∣+

∣∣∣∣∥∥∥∥ 1

NdN (x)

∥∥∥∥
1

−
∥∥∥∥ 1

Nd(x)

∥∥∥∥
1

∣∣∣∣.
We start by studying the first term in (23). We notice that∥∥∥∥ 1

NdN (x)

∥∥∥∥
1

=
1

N

N∑
i=1

1

di
=

1

N

N∑
i=1

1

d(i)
=

∥∥∥∥∥ 1

Nd̃N (x)

∥∥∥∥∥
1

.

We use this remark and the reverse triangle inequality (i.e.,∣∣∣‖x‖ − ‖y‖∣∣∣ ≤ ‖x− y‖), to obtain∣∣∣∣‖rN (x)‖1 −
∥∥∥∥ 1

NdN (x)

∥∥∥∥
1

∣∣∣∣ ≤
∥∥∥∥∥rN (x)− 1

Nd̃N (x)

∥∥∥∥∥
1

.
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Then, we have:∥∥∥∥∥rN (x)− 1

Nd̃N (x)

∥∥∥∥∥
1

=
1

N2δ(1)
+

1

N

N∑
i=2

∣∣∣∣∣d(i) − λi
d(i)λi

∣∣∣∣∣
≤ 1

N2δ(1)
+

∑N
i=2 |d(i) − λi|
N3µ2δ(1)

.

By using the norm inequality ‖·‖1 ≤
√
N‖·‖2 and applying

Wielandt-Hoffman Theorem to AN = DN −LN , we obtain:

N∑
i=2

|d(i) − λi| ≤
√
N

(
N∑
i=2

|d(i) − λi|2
)1/2

≤
√
N‖AN‖F .

Finally, we can use Lemma 1 and (7) to obtain:∥∥∥∥∥rN (x)− 1

Nd̃N (x)

∥∥∥∥∥
1

≤ 1

N2δ(1)
+

4
√

2
√
|||TW |||+ φ(N)

N5/4µ2δ(1)

.

Now we study the second term in (23) and use again the
reverse triangle inequality and Hölder’s inequality so that∣∣∣∣∥∥∥∥ 1

NdN (x)

∥∥∥∥
1

−
∥∥∥∥ 1

Nd(x)

∥∥∥∥
1

∣∣∣∣ ≤ ∥∥∥∥ 1

NdN (x)
− 1

Nd(x)

∥∥∥∥
2

.

Then, we obtain:∥∥∥∥ 1

NdN (x)
− 1

Nd(x)

∥∥∥∥
2

=

(∫ 1

0

∣∣∣∣d(x)− dN (x)

Nd(x)dN (x)

∣∣∣∣2 dx

)1/2

≤ 1

Nδ(1)δW

(∫ 1

0
|d(x)− dN (x)|2 dx

)1/2

.

Since
(∫ 1

0 |d(x)− dN (x)|2 dx
)1/2

= ‖dN (x) − d(x)‖2, we
can apply (13) and get:∣∣∣∣∥∥∥∥ 1

NdN (x)

∥∥∥∥
1

−
∥∥∥∥ 1

Nd(x)

∥∥∥∥
1

∣∣∣∣ ≤ 1

Nδ(1)δW
φ(N).

Using the bounds obtained for the two terms in (23), we get:∣∣Rave
N −Rave

W,N

∣∣≤ 1

N2δ(1)
+

4
√

2
√
|||TW |||+ φ(N)

N5/4µ2δ(1)

+
φ(N)

Nδ(1)δW
.

By using (13) and (14) we obtain:∣∣Rave
N −Rave

W,N

∣∣ ≤ 1

N2(δ̄(1) − γ(N))
+

φ(N)

NδW (δ̄(1) − γ(N))

+
4
√

2
√
|||TW |||+ φ(N)

N5/4(δ̄(1) − γ(N))(µ̄2 − ϕ(N))
.

Finally we get the desired result by using δ(1) ≥ ηW and
Lemma 5. Notice that assumption ηW > 0 and condition
(22) ensure that the denominators appearing in the upper
bound are positive.

Remark 4. Theorem 2 gives an upper bound on the absolute error∣∣∣Rave
N −Rave

W,N

∣∣∣. This bound holds true with probability at least
1−3ν, and has an expression which depends both on ν and on N .
We are interested in its asymptotic behaviour for N →∞. When
we consider a constant ν or ν = 1/Nα, this upper bound goes
to zero as O((log(N)/N5)1/4), and with the further assumption
that the graphon is Lipschitz (K = 0), it decays as O((1/N)5/4).
By choosing α > 1, we can then apply Borel-Cantelli Lemma,
and obtain that almost surely

∣∣∣Rave
N −Rave

W,N

∣∣∣ decays to zero

as O((log(N)/N5)1/4), and moreover as O((1/N)5/4) in case

Fig. 1. ‖µN (x) − d(x)‖2 for growing N . Its decay is consistent with the
upper bound O(N−1/4), depicted in red.

the graphon is Lipschitz. It is also interesting to study the
relative error

∣∣∣Rave
N −Rave

W,N

∣∣∣ /Rave
N . Recalling Remark 3 about

the asymptotic behaviour of the denominator, we obtain that the
relative error almost surely decays to zero as O((log(N)/N)1/4),
and as O((1/N)1/4) if the graphon is Lipschitz.

3.4 Deterministic Sampling
An alternative procedure for the generation of complete
weighted graphs from graphons is the use of deterministic
latent variables proposed in [32], such that the adjacency
matrix of ḠN is generated as:

ĀN (i, j) = W (i/N, j/N) for all i, j ∈ {1, . . . , N}.

All the results of Section 3 (with exception of Proposition 4)
easily extend to deterministic sampling with minor adjust-
ments, which we detail here. Lemma 3 and Lemma 5 do
not depend on the sampling method and remain the same.
As indicated in [32], the factor bN of ϑ(N) and φ(N) in
Lemma 2 is redefined as bN := 1/N and (5) and (6) hold
with probability 1 while (7) and (8) hold with probability at
least 1 − ν. With the new definition of bN , Propositions 1
and 2 hold with probability at least 1 − ν and Lemma 4
and Theorems 1 and 2 hold with probability at least 1− 2ν.
The rates of convergence in Remarks 2 and 3 do not change
while for Remarks 1 and 4 the rate of convergence for
piecewise Lipschitz and Lipschitz graphons is O(1/N1/4).

Proposition 4 instead cannot be easily extended to the
deterministic case because in [14] the compact convergence
of the operators is proved by using Glivenko-Cantelli Theo-
rem, which is formulated for random variables.

4 NUMERICAL EXAMPLE

We consider the graphon W (x, y) = 1 − 0.8xy, which is
Lipschitz and bounded away from zero (its minimum is
ηW = 0.2). Its degree function is d(x) = 1 − 0.4x, whose
minimum is δW = 0.6. To validate the results, we consider a
sequence of simple graphs that are randomly sampled from
W for 10 ≤ N ≤ 1000. Fig. 1 presents the approximation
of the distribution of the normalized eigenvalues by using
the degree function of the graphon. By solving the eigen-
function equation (i.e., (LWψ)(x) = κψ(x)) we find that the
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operator only has the trivial eigenvalue κ1 = 0, so that, by
Proposition 4 and Remark 2, a.s. lim µ̄2 = limµ2 = δW .
Fig. 2 shows the difference between the second normalized
eigenvalues of GN and ḠN and their convergence towards
δW as per Proposition 4. We can observe that the conver-
gence of µ2 is slower than the convergence of µ̄2.

Fig. 3 shows our approximation of the average effective
resistance:

Rave
W,N =

1

N

∫ 1

0

dx

1− 0.4x
= − 5

2N
log(0.6).

The relative error plot suggests our bound on the conver-
gence rate to be tight in its dependence on N .

5 CONCLUSION AND FUTURE WORK

In this paper, the spectrum of the Laplacian matrix of a
network sampled from a graphon was analyzed using the
degree function of the graphon. First, we showed that for
networks derived from a graphon, the distribution of the
eigenvalues of the Laplacian matrix is determined mainly
by the degrees of the network. Then, we showed that the
average effective resistance of a graph sampled from a
graphon can be estimated by using the degree function of
the graphon. For both problems, we have derived explicit
bounds on the approximation error.

Even if this paper has shown some initial applications of
the graphon Laplacian operator, numerous related questions
remain open. Indeed, our methods can be applied to esti-
mate other functions of the Laplacian spectrum, such as the
spectral zeta function [38] and several performance metrics
in estimation and control problems over networks [37], [39].
Furthermore, the graphon Laplacian operator could be used
to define suitable infinite-dimensional dynamical systems
that approximate dynamical systems on finite-dimensional
graphs, as done in [10] with the normalized Laplacian and
in [9], [40] with the adjacency matrix. This line of work
entails some technical difficulties, such as the lack of com-
pactness of the graphon Laplacian operators.

Finally, we ought to recall that graphons are limited
to approximate dense graphs, whereas many relevant net-
works are sparse. It is therefore an open question to develop
the suitable tools to address these cases.
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