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ABSTRACT In this paper, the stability problem of a class of deterministic car-following systems with
uniformly distributed delays is addressed with a particular focus on the effects induced by the delay
parameters on the stability. To perform such an analysis, the frequency-sweeping approach introduced
recently by the authors will be adopted. The corresponding results are easy to derive and to implement.
As a byproduct of the analysis, the complete characterization of the delay intervals guaranteeing stability is
explicitly derived. Two case studies with different network topology types (linear and ring configurations)
are studied in detail. The stability problem of car-following systems under consideration is a specific
consensus problem of multi-agent systems. Such examples allow illustrating the approach as well as the
positive effect of using uniformly distributed delay in the modeling (compared with the commonly-used
pointwise delay). The derived results show that the approach is effective and may be adopted to more
general consensus problems for multi-agent systems.

INDEX TERMS Car-following systems, Uniformly distributed delay systems (UDDSs), Complete stability
problem, Frequency-sweeping approach, Consensus of multi-agent systems.

I. INTRODUCTION

FOR studying the traffic flow dynamics, various mathe-
matical models have been proposed (see e.g., [3], [9],

[11], and [30]). In this paper, we focus on the car-following
models, which represent a type of microscopic traffic flow
models and are usually described by delay-differential equa-
tions (see e.g., [6], [23], and [24]). Time delays in the car-
following systems mainly arise from driver reactions and
vehicle mechanical response (see [2] and [32]).

Compared with the pointwise-delay models, the
distributed-delay ones may better reflect the inherent memory
effects of drivers in car-following systems (a detailed analysis
can be found in [28] and [29]).

In this paper, we are concerned with the model containing

a uniformly distributed delay. The corresponding system is
called a uniformly distributed delay system (UDDS). Math-
ematically speaking, the UDDS model covers the pointwise-
delay model [29]. In addition, the UDDS model may lead to
larger stability regions in the corresponding parameter-space
[1]. Whereas, the stability analysis for a UDDS is much more
complicated than that for a pointwise-delay system.

The objective of this paper is to study the complete
stability problem w.r.t. the delay parameter τ for the car-
following systems with uniformly distributed delays. The
problem involves technical difficulties from two aspects: (1)
The stability problem for car-following systems is a type of
consensus problem for multi-agent systems. (2) The overall
system is a time-delay one (more precisely, a UDDS).
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For the stability analysis of time-delay systems, the exist-
ing methods can be mainly divided into the τ -decomposition
method [10] (the delay is treated as the only free parameter)
and the D-decomposition method [20] (the delay is fixed
while some system and/or controller parameters are free
parameters). The approach in our current paper falls in the
former class.

To appropriately address the car-following systems with
uniformly distributed delays, we adopt the frequency-
sweeping framework which was proposed in [14] and dis-
cussed in [13] in the case of dynamical systems including
uniformly distributed delays. However, such ideas cannot
be adopted straightforwardly to higher dimension cases that
represents an important inconvenience if the methodology is
used in the analysis of traffic flow models. In order to make
our frequency-sweeping approach more practically effective,
two technical novelties are proposed and explicitly discussed.

First, the characteristic equation of the car-following mod-
el has a characteristic root λ = 0 independent of τ , as the
configuration matrix (related with the network topology) has
a simple zero eigenvalue. In the field of time-delay systems,
the case with characteristic root λ = 0 generally does not
need to be addressed since the associated time-delay systems
can not be asymptotically stable for any τ value. However,
for multi-agent systems, such a characteristic root λ = 0
generally does not affect the consensus (see e.g., [8], [21],
[22], [31], and [33]). In this paper, we will show that the
frequency-sweeping approach can be directly used to study
the stability of car-following systems. More precisely, the
characteristic root λ = 0 does not correspond to a valid
frequency-sweeping curve (FSC). We only need to analyze
all the FSCs in a standard manner.

Second, the configuration matrix for a car-following sys-
tem is an n × n one, where n is the number of vehicles.
As n increases, the exponent of e−τλ for the corresponding
characteristic function f(λ, τ) may be very large. It is not
trivial to obtain the expansion of f(λ, τ), which is required
in the earlier literature to generate the FSCs. In this paper,
we generate the FSCs through computing the associated
generalized eigenvalues, without needing to calculate the
scalar form of f(λ, τ).

The above novelties considerably facilitate the analysis
and will motivate us to further investigate more general
consensus problems of multi-agent systems by using the
frequency-sweeping approach in the future.

This paper is organized as follows. In Section II, some
preliminaries and prerequisites are given. The frequency-
sweeping approach for UDDSs is reviewed in Section III.
In Section IV, the implementation of frequency-sweeping
approach to car-following systems, two case studies, and
some discussions are given. Finally, the paper concludes in
Section V.

Notations: In this paper, R (R+) denotes the set of (posi-
tive) real numbers; C− (C+) denotes the left-half (right-half)
plane; C0 is the imaginary axis; ∂D is the unit circle; N is the
set of non-negative integers. ε is a sufficiently small positive

real number. I is the identity matrix of appropriate dimen-
sions. For γ ∈ R, dγe denotes the smallest integer greater
than or equal to γ. rank(·) denotes the rank of a matrix.
Finally, det(·) denotes the determinant of its argument.

II. PRELIMINARIES AND PREREQUISITES
A. CAR-FOLLOWING SYSTEMS WITH UNIFORMLY
DISTRIBUTED DELAYS
Drivers make decision based on the information continuously
observed during a memory window (see [25] and [32]). That
is why we adopt the distributed-delay model. In this paper,
we adopt the uniform distribution function as the kernel of
distributed-delay model, which represents the average of the
information available in the memory window [16].

Consider a car-following system with n number of vehi-
cles. The car-following dynamics can be described by

v̇i(t) = αi
∫∞

0
κ(θ)(vi+1(t− θ)− vi(t− θ))dθ,

i = 1, . . . , n,
(1)

where vi(t) is the velocity of the i-th vehicle at time t, αi > 0
can be considered as the sensitivity of the i-th driver to the
velocity difference between his vehicle and the one in front,
and κ(θ) is the uniformly distributed delay kernel

κ(θ) =

{
1

d1+d2
, if τ − d1 < θ < τ + d2,

0, otherwise,
(2)

where τ ≥ d1 ≥ 0, d2 ≥ 0, and d1 + d2 > 0.
All the n vehicles’ dynamics can be expressed in a aug-

mented form:

V̇ (t) =

∫ ∞
0

JV (t− θ)κ(θ)dθ, (3)

where V (t) = (v1(t), ..., vn(t))T and J ∈ Rn×n is the
configuration matrix weighted by αi > 0. The structure of
J is determined by the network topology (two case studies
will be given in Subsection IV-B).

B. STABILITY CONDITION OF CAR-FOLLOWING
SYSTEMS
A car-following system is said to be stable if all the vehicles
reach a constant speed. The associated characteristic function
is (see e.g., [17] and [29]):

f(λ, τ) = det(λI − Jµ(λ)e−τλ), (4)

where λ is the Laplace variable and µ(λ) = ed1λ−e−d2λ
(d1+d2)λ .

We now summarize the stability condition for the car-
following systems.

As J has a simple zero eigenvalue, the characteristic equa-
tion f(λ, τ) = 0 has a characteristic root λ = 0 independent
of τ , i.e., a fixed zero characteristic root. The stability of
the car-following systems under consideration in this paper
is determined by all the remaining characteristic roots.

In other words, a car-following system is asymptotically
stable if and only if all the infinitely many characteristic roots
(except the fixed zero characteristic root) are located in the
open left half-plane C−.
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C. COMPLETE STABILITY PROBLEM W.R.T. DELAY
PARAMETER τ

Our objective in this paper is to study the complete stability
problem w.r.t. the delay parameter τ . To be more precise, our
objective is to find the whole stability τ -set along the semi-
infinite interval τ ∈ [d1,∞).

As commonly adopted in the literature, the notation
NU(τ) ∈ N denotes the number of characteristic roots
located in the open right half-plane C+, in the presence of
delay τ . We will inspect NU(τ) as τ increases from the
minimum value d1 to∞.

For the most common pointwise-delay system ẋ(t) =
Ax(t)+Bx(t−τ), the characteristic function is a quasipoly-
nomial f(λ, τ) = det(λI−A−Be−τλ) with infinitely many
characteristic roots. One may refer to some monographs on
stability of time-delay systems e.g., [7] and [18]. Generally
speaking, it is non-trivial to study the spectrum and the
complete stability problem has long been open (see [12] and
[14] for some dedicated introduction and study).

Compared with the pointwise-delay systems, the UDDSs
exhibit more complicated characteristic functions (belonging
to general quasipolynomias [14]). In the next section, we will
systematically introduce how to solve the complete stability
problem for UDDSs.

III. FREQUENCY-SWEEPING APPROACH
The frequency-sweeping approach can be applied to study
the stability of a broad class of time-delay systems [14],
including retarded- and neutral-type time-delay systems, dis-
tributed time-delay systems, fractional time-delay systems,
and multiple time-delay systems.

In this section, we review the results for UDDSs recently
proposed in [13].

A. BASIC NOTIONS AND NOTATIONS
Consider the following general distributed delay system

ẋ(t) = Ax(t) +B

∫ t

−∞
κ(t− θ)x(θ)dθ, (5)

where A and B are constant matrices and κ(θ) : [0,∞) 7→
[0,∞) is a scalar kernel function.

Throughout this paper, we consider the case where κ(θ) is
the uniform distribution (2).

The system described by (5) and (2) is called a uniform-
ly distributed delay system (UDDS), and the characteristic
function is

f(λ, τ) = det(λI −A−B e−(τ−d1)λ−e−(τ+d2)λ

(d1+d2)λ ), λ 6= 0.
(6)

For the application of the UDDS model, one may refer to
e.g., [4], [5], [15], and [29].
Remark 1: The UDDS model includes the pointwise-delay
one. When κ(θ) = δ(θ − τ) (δ(θ) is the Dirac delta
function), system (5) reduces to the pointwise-delay system
ẋ(t) = Ax(t) +Bx(t− τ).

Although the characteristic function (6) is not a standard
quasipolynomial, it falls in the class of general quasipolyno-
mials (see [14]). The analysis for a general quasipolynomial
is much more involved than that for a standard quasipolyno-
mial.

Letting z = e−τλ, we can rewrite the characteristic
function f(λ, τ) (6) as

p(λ, z) = det(λI −A−Bµ(λ)z), λ 6= 0. (7)

It can be expanded as a scalar form:

p(λ, z) = a0(λ) + a1(λ)µ(λ)z + · · ·+ aq(λ)µq(λ)zq, (8)

where q = rank(B).
Without loss of generality, suppose there are u critical pairs

(λ, z) (λ ∈ C0 and z ∈ ∂D) for p(λ, z) = 0. They are
denoted by (λ0 = jω0, z0), . . ., (λu−1 = jωu−1, zu−1) with
0 < ω0 ≤ · · · ≤ ωu−1

1.
Once all the critical pairs (λα, zα) are found, all the critical

pairs (λ, τ) (λ ∈ C0 and τ ∈ R+\(0, d1)) for f(λ, τ) = 0
can be obtained. The corresponding λ and τ are called
a critical imaginary root (CIR) and a critical delay (CD),
respectively.

For each CIR λα, the corresponding (infinitely many) CDs
are given by τα,k

∆
= τα,0 + 2kπ

ωα
, k ∈ N, τα,0

∆
= min{τ ≥

d1 : e−τλα = zα}. The pairs (λα, τα,k), k ∈ N, define a set
of critical pairs associated with (λα, zα).

For a UDDS, the frequency-sweeping curves (FSCs) can
be generated by the following procedure.

Frequency-Sweeping Curves (FSCs): Sweep ω > 0 and
for each λ = jω we have q solutions of z such that
p(jω, z) = 0 (denoted by z1(jω), . . . , zq(jω)). In this way,
we obtain q FSCs Γi(ω): |zi(jω)| vs. ω, i = 1, . . . , q.
We denote by =1 the line parallel to the abscissa axis with
ordinate equal to 1. If (λα, τα,k) is a critical pair, then some
FSCs intersect =1 at ω = ωα.

It is easy to see that all the CIRs and CDs can be detected
from the FSCs.

For a set of critical pairs (λα, τα,k), there must exist some
FSCs such that zi(jωα) = zα = e−τα,0λα intersecting =1

when ω = ωα. Among these FSCs, we denote the number
of those when ω = ωα + ε (ω = ωα − ε) above =1 by
NFzα(ωα + ε) (NFzα(ωα − ε)). We introduce a notation
∆NFzα(ωα) to describe the asymptotic behavior of the
FSCs, defined as

∆NFzα(ωα) = NFzα(ωα + ε)−NFzα(ωα − ε). (9)

In order to solve the complete stability problem for UD-
DSs, some technical issues need to be appropriately ad-
dressed. See the subsequent subsections.

1Due to the conjugate symmetry of the spectrum, it suffices to consider
only the roots with non-negative imaginary parts.
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B. ON CHARACTERISTIC ROOT λ = 0

Although f(λ, τ) is not defined at λ = 0, λ = 0 may be a
potential characteristic root. We can check it by L’Hôpital’s
rule (more details can be found in Subsection 3.1 of [13]).

For the car-following systems considered in this paper,
there is always a simple characteristic root λ = 0 indepen-
dent of τ . This is due to the simple zero eigenvalue of the
configuration matrix J . Thus, a0(λ), . . . , aq(λ) in (8) have a
common zero λ = 0 (i.e., the function p(λ, z) (8) has a factor
λ).
Remark 2: In the field of time-delay systems, the case that
a0(λ), . . . , aq(λ) have a common zero not in C− is generally
treated as a trivial case, since the associated time-delay
system can not be asymptotically stable for any τ value. It
is not hard to see that such a common zero does not have an
effect on the FSCs.

C. SPECTRAL PROPERTY AT MINIMUM VALUE OF τ

To solve the complete stability problem, it is needed to
analyze the spectrum at the minimum value of τ , i.e., τ = d1,
where the system still has an infinite number of charac-
teristic roots (unlike the pointwise-delay system ẋ(t) =
Ax(t) + Bx(t − τ), which becomes a finite-dimensional
system ẋ(t) = (A+ B)x(t) at the minimum value of τ , i.e.,
τ = 0).

We can adopt the argument principle-based method to
compute NU(d1) or NU(d1 + ε) (more details can be found
in Subsection 3.2 of [13]).

D. INVARIANCE PROPERTY

As a key step of the stability analysis, we need to analyze
the asymptotic behavior of the CIRs at the corresponding
CDs. Since a CIR has infinitely many CDs, it is impossible
to analyze the asymptotic behavior at all the infinitely many
CDs one by one.
Theorem 1 ( [13]): For a critical imaginary root λα of the
uniformly distributed delay system described by (5) and (2),
∆NUλα(τα,k) is a constant ∆NFzα(ωα) for all τα,k > d1.

The contribution of Theorem 1 is twofold:
First, the invariance property is confirmed for the UDDSs,

with which we will be able to systematically study the
complete stability problem.

Second, a graphical criterion is obtained to determine
∆NUλα(τα,k), since the constant value of ∆NFzα(ωα) can
be easily observed from the FSCs.

For each α, the constant value of ∆NUλα(τα,k) is denoted
by Uλα .

E. SOLUTION FOR COMPLETE STABILITY PROBLEM

Combining the results in the previous subsections, we are
able to obtain the explicit expression of NU(τ) for a UDDS.
Theorem 2 ( [13]): For any τ > d1 which is not a critical
delay, NU(τ) for the uniformly distributed delay system

described by (5) and (2) can be explicitly expressed as

NU(τ) = NU(d1 + ε) +

u−1∑
α=0

NUα(τ), (10)

where

NUα(τ) =

{
0, τ < τα,0,

2Uλα

⌈
τ−τα,0
2π/ωα

⌉
, τ > τα,0,

if τα,0 6= d1,

NUα(τ) =

{
0, τ < τα,1,

2Uλα

⌈
τ−τα,1
2π/ωα

⌉
, τ > τα,1,

if τα,0 = d1,

The UDDS is asymptotically stable if and only if τ lies in
the interval(s) with NU(τ) = 0 excluding the CDs.

As a result, the whole stability τ -set may be found and the
complete stability problem can be solved.

IV. IMPLEMENTATION OF FREQUENCY-SWEEPING
APPROACH TO CAR-FOLLOWING SYSTEMS
In this section, we apply the frequency-sweeping approach
reviewed in Section III to solve the complete stability prob-
lem for the car-following systems with uniformly distributed
delays.

Compared with the work in [13], this paper contains some
technical novelties as introduced in the next subsection.

A. NOVELTIES OF THE PAPER
For the car-following systems under consideration, the fol-
lowing properties hold:

(1) λ = 0 is a fixed characteristic root independent of τ .
(2) rank(J) = n−1 and the index q in (8) equals to n−1.
Taking into account the above properties, we present some

novelties concerning the frequency-sweeping approach.
As mentioned, the case with characteristic root λ = 0 is

a trivial case in the field of time-delay systems, since the
associated time-delay systems can not be asymptotically sta-
ble for any τ value. However, when studying the consensus
of multi-agent systems, the characteristic root λ = 0 does
not have an explicit affect, as the consensus is determined
by all the other characteristic roots. In this paper, we will
directly use the frequency-sweeping approach to address the
car-following systems. More precisely, the characteristic root
λ = 0 does not correspond to a valid FSC. There are
q = n−1 number of valid FSCs. We only need to analyze all
the n−1 FSCs in a standard manner. Moreover, this illustrates
that the frequency-sweeping approach is applicable to some
more general consensus problems of multi-agent systems.

Another novelty is that the FSCs can be generated through
computing the generalized eigenvalue of (λI, Jµ(λ)). To be
more precise, for each ω value, the corresponding q solutions
z1(jω), . . . , zq(jω) for p(jω, z) = 0 can be calculated by
means of the generalized eigenvalues of (jωI, Jµ(jω)). We
do not need to expand the function p(λ, z) into the scalar
form (8). As the configuration matrix of a car-following
system (the Laplacian matrix of a general multi-agent system,
see e.g., [19], [26], [27], and [34]) is in general of high
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FIGURE 1. Ring configuration for Example 1

dimension. This novelty considerably reduces the complexity
of the analysis procedure and hence is of practical signifi-
cance.

B. CASE STUDIES
In the sequel, we address a car-following system with 20
vehicles (borrowed from Subsection 5.1 of [29]) to illustrate
the frequency-sweeping approach.

We study the complete stability problem under different
values of d1 and d2. In particular, when d1 = d2 = 0,
the system under consideration reduces to a pointwise-delay
system. Therefore, we may compare the delay effect on
stability between the uniformly distributed delay model and
the commonly-used pointwise-delay model.

Two widely utilized configurations are considered in Ex-
ample 1 and Example 2, respectively.
Example 1: Consider a car-following system with 20 vehicles
(i.e., n = 20). With the ring configuration as shown in Fig. 1.

The configuration matrix J is the following 20×20 matrix

J =



−2 0 · · · 0 2

2
. . . . . . . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 2 −2


.

We here study the complete stability problem w.r.t. the
delay parameter τ under different values of d1 and d2.

We first address the case d1 = d2 = 0, which exactly
corresponds to the pointwise-delay model. We may adopt
some existing approaches and have that the stability set of
τ is [0, 0.2510).

In the sequel, we study in detail the case d1 = d2 = 0.1.
As mentioned in Subsection III-B, there is a fixed simple

characteristic root λ = 0. The reason for characteristic root
λ = 0 is different with the one for the general UDDSs
discussed in [13]. For the characteristic function f(λ, τ)
(4) considered in this paper, λ is a factor and hence the
characteristic root λ = 0 does not affect the FSCs.

By using the method mentioned in Subsection III-C, we
have that NU(0.1) = NU(0.1 + ε) = 0. As λ varies along
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FIGURE 2. Image and argument of f(λ, d1) when d1 = d2 = 0.1 for
Example 1

TABLE 1. CIRs and CDs for Example 1

CIRs CDs (k ∈ N)

λ0,1=0.6253j
τ0,k = 4.7727 + 10.0478k
τ1,k = 0.2512 + 10.0478k

λ2,3=1.2329j
τ2,k = 2.2932 + 5.0961k
τ3,k = 0.2548 + 5.0961k

λ4,5=1.8061j
τ4,k = 1.4785 + 3.4789k
τ5,k = 0.2609 + 3.4789k

λ6,7=2.3299j
τ6,k = 1.0787 + 2.6967k
τ7,k = 0.2697 + 2.6967k

λ8,9=2.7918j
τ8,k = 0.8440 + 2.2506k
τ9,k = 0.2813 + 2.2506k

λ10,11=3.1817j
τ10,k = 0.6912 + 1.9748k
τ11,k = 0.2962 + 1.9748k

λ12,13=3.4920j
τ12,k = 0.5848 + 1.7993k
τ13,k = 0.3149 + 1.7993k

λ14,15=3.7172j
τ14,k = 0.5071 + 1.6903k
τ15,k = 0.3381 + 1.6903k

λ16,17=3.8537j
τ16,k = 0.4484 + 1.6304k
τ17,k = 0.3668 + 1.6304k

λ18=3.8994j τ18,k = 0.4028 + 1.6113k

a proper Jordan curve (see [13] for details), the image of
f(λ, d1) is given in Fig. 2(a) and the argument of f(λ, d1)
(denoted by arg(f(λ, d1)) ∈ (−π, π]) is given in Fig. 2(b),
where the abscissa axis denotes the proportion of the com-
pletion of λ’s track along the Jordan curve.

The remaining analysis is as follows.
The FSCs for d1 = d2 = 0.1 are shown in Fig. 3(a) and

Fig. 3(b). According to the discussions in Subsection IV-A,
there are totally 19 FSCs. Among them, there are 9 pairs of
coinciding FSCs.

From the FSCs, we can detect all CIRs λα and the corre-
sponding CDs τα,k. They are listed in Table 1.

According to Theorem 1, it follows that ∆NUλα(τα,k) =
+1 for all α = 0, . . . , 18 and k ∈ N. Hence, Uλα = +1 for
all α = 0, . . . , 18.

In light of Theorem 2, for any τ > d1 which is not a critical
delay, NU(τ) for the car-following system can be explicitly
expressed as

NU(τ) = 0 +

18∑
α=0

NUα(τ),

VOLUME 4, 2016 5
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FIGURE 3. FSCs when d1 = d2 = 0.1 for Example 1
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FIGURE 4. NU(τ) when d1 = d2 = 0.1 for Example 1

where

NUα(τ) =

{
0, τ < τα,0,

2
⌈
τ−τα,0
2π/ωα

⌉
, τ > τα,0,

α = 0, . . . , 18.

Therefore, there is one and only one stability τ -interval:
[0.1, 0.2512). The NU(τ) distribution is plotted in Fig. 4.

For other values of d1 and d2, the complete stability
problem w.r.t. τ can be solved analogously. We directly list
the stability results in Table 2.

In Table 2, we also give the range of θ with κ(θ) > 0
under which the stability may be retained. This range reflects
the allowable range of delay effect. �
Example 2: Consider a car-following system with 20 vehicles
(i.e., n = 20). With the linear configuration as shown in Fig.
5.

TABLE 2. Stability results for Example 1

d1 = d2 = Stability τ -set Range of θ with κ(θ) > 0
0 [0, 0.2510)

0.01 [0.01, 0.2510) [0, 0.02] to (0.2410, 0.2610)
0.05 [0.05, 0.2511) [0, 0.1] to (0.2011, 0.3011)
0.1 [0.1, 0.2512) [0, 0.2] to (0.1512, 0.3512)
0.15 [0.15, 0.2514) [0, 0.3] to (0.1014, 0.4014)
0.2 [0.2, 0.2517) [0, 0.4] to (0.0517, 0.4517)
0.25 [0.25, 0.2520) [0, 0.5] to (0.0020, 0.5020)
0.3 ∅

FIGURE 5. Linear configuration for Example 2
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FIGURE 6. Image and argument of f(λ, d1) when d1 = d2 = 0.1 for
Example 2

The configuration matrix J is the following 20×20 matrix

J =


0 0 · · · · · · 0
2 −2 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 2 −2

 .

We here study the complete stability problem w.r.t. the
delay parameter τ under different values of d1 and d2.

We first address the case d1 = d2 = 0, which exactly
corresponds to the pointwise-delay model. We may adopt
some existing approaches and have that the stability set of
τ is [0, 0.7854).

As mentioned in Subsection III-B, there is a fixed simple
characteristic root λ = 0 and it does not affect the FSCs.

By using the method mentioned in Subsection III-C, we
have that NU(0.1) = NU(0.1 + ε) = 0. As λ varies along
a proper Jordan curve (see [13] for details), the image of
f(λ, d1) is given in Fig. 6(a) and the argument of f(λ, d1)
(denoted by arg(f(λ, d1)) ∈ (−π, π]) is given in Fig. 6(b),
where the abscissa axis denotes the proportion of the com-
pletion of λ’s track along the Jordan curve.

The remaining analysis is as follows.
The FSCs for d1 = d2 = 0.1 are shown in Fig. 7(a) and

Fig. 7(b). According to the discussions in Subsection IV-A,
there are totally 19 FSCs. Specifically, they are all coinciding.
One may easily prove it in light of the factorization technique
to be discussed in the next subsection.

From the FSCs, we can detect the CIRs: λα=1.9869j with
the CDs τα,k = 0.7906 + 3.1624k for all α = 0, . . . , 18,
where k ∈ N.

According to Theorem 1, it follows that ∆NUλα(τα,k) =
+1 for all α = 0, . . . , 18 and k ∈ N. Hence, Uλα = +1 for
all α = 0, . . . , 18.
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(b) For ω ∈ [0, 25]

FIGURE 7. FSCs when d1 = d2 = 0.1 for Example 2
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FIGURE 8. NU(τ) when d1 = d2 = 0.1 for Example 2

In light of Theorem 2, for any τ > d1 which is not a critical
delay, NU(τ) for the car-following system can be explicitly
expressed as

NU(τ) = 0 +

18∑
α=0

NUα(τ),

where

NUα(τ) =

{
0, τ < τα,0,

2
⌈
τ−τα,0
2π/ωα

⌉
, τ > τα,0,

α = 0, . . . , 18.

Therefore, there is one and only one stability τ -interval:
[0.1, 0.7906). The NU(τ) distribution is plotted in Fig. 8.

For other values of d1 and d2, we directly list the results
for the complete stability problem w.r.t. τ in Table 3. �

It is worth to mention that the results in the above two
examples are analytical without any conservatism.

TABLE 3. Stability results for Example 2

d1 = d2 = Stability τ -set Range of θ with κ(θ) > 0
0 [0, 0.7854)

0.01 [0.01, 0.7855) [0, 0.02] to (0.7755, 0.7955)
0.05 [0.05, 0.7867) [0, 0.1] to (0.7367, 0.8367)
0.1 [0.1, 0.7906) [0, 0.2] to (0.6906, 0.8906)
0.15 [0.15, 0.7970) [0, 0.3] to (0.6470, 0.9470)
0.2 [0.2, 0.8057) [0, 0.4] to (0.6057, 1.0057)
0.25 [0.25, 0.8165) [0, 0.5] to (0.5665, 1.0665)
0.3 [0.3, 0.8293) [0, 0.6] to (0.5293, 1.1293)

C. SOME DISCUSSIONS
In the above examples, all the CIRs are simple and non-
degenerate. Otherwise, the analysis of the CIRs’ asymptotic
behavior will be much more complicated. Such examples for
UDDSs can be found in [13]. It is worth mentioning that
the frequency-sweeping approach covers the general case:
Multiple and/or degenerate CIRs are allowed.

It is seen from Table 2 and Table 3 that the UDDS model
may give rise to a larger stability τ -set as well as a larger
allowable range of delay effect than the pointwise-delay
system counterpart. The positive effect of introducing the
UDDS model is illustrated.

The examples demonstrate that it is simple to imple-
ment the frequency-sweeping approach, although the car-
following systems under consideration are with high dimen-
sions.

The problem considered in this paper is a specific consen-
sus one. For instance, there is not a non-delayed term in the
expression (3). The results of this paper inspire us to study
more general consensus problems for multi-agent systems by
using the frequency-sweeping approach. For the consensus
studies of multi-agent systems with delays, one may refer to
e.g., [19], [22], [26], [31], and [33].

In the literature, the factorization of the characteristic func-
tion is often used. For instance, the characteristic function
f(λ, τ) (4) can be factorized as

f(λ, τ) =
∏n

i=1
(λ− λi(J)µ(λ)e−τλ),

where λi(J) stands for the i-th eigenvalue of J with λ1(J) =
0.

With the above factorization, we may study the complete
stability problem for each factorized characteristic equation
λ − λi(J)µ(λ)e−τλ = 0. The common stability τ -set of all
the factorized characteristic equations expect the one corre-
sponding to λ1(J) is the stability τ -set of the car-following
system.

It is worth to note that some λi(J) may be complex
numbers. That is, some factorized characteristic functions are
complex-coefficient quasipolynomials, which leads to some
technical points to be specifically investigated. In the future,
the frequency-sweeping approach could be used with the
factorization, and some deeper properties may be explored
in this way.

V. CONCLUDING REMARKS
In this paper, we study the stability of car-following systems
with delays. The delays are modelled as uniformly distributed
ones. Such models are more realistic than the commonly-
used pointwise-delay counterparts and meanwhile the anal-
ysis is more complicated.

We adopt in this paper the frequency-sweeping approach
recently proposed for uniformly distributed delay systems
(UDDSs). With some technical novelties, a modified version
of frequency-sweeping approach is obtained. It is shown that
the complete stability problem w.r.t. the delay parameter τ
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now can be systematically solved and that the implementa-
tion of the frequency-sweeping approach is quite simple.

The problem under consideration in this paper belongs to
the consensus problem for multi-agent systems. Inspired by
the results of this paper, in the future, we may study some
more general consensus problems by using the frequency-
sweeping approach.
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