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ABSTRACT

Survival analysis consists of studying the elapsed time until an event of interest, such as the death
or recovery of a patient in medical studies. This work explores the potential of neural networks in
survival analysis from clinical and RNA-seq data. If the neural network approach is not recent in
survival analysis, methods were classically considered for low-dimensional input data. But with the
emergence of high-throughput sequencing data, the number of covariates of interest has become
very large, with new statistical issues to consider. We present and test a few recent neural network
approaches for survival analysis adapted to high-dimensional inputs.

Keywords Survival analysis Neural networks High-dimension Cancer Transcriptomics

1 Introduction

Survival analysis consists of studying the elapsed time until an event of interest, such as the death or recovery of a
patient in medical studies. This paper aims to compare methods to predict a patient’s survival from clinical and gene
expression data.

The Cox model (Cox, 1972) is the reference model in the field of survival analysis. It relates the survival duration of an
individual to the set of explanatory covariates. It also enables to take into account censored data that are often present in
clinical studies. With high-throughput sequencing techniques, transcriptomics data are more and more often used as
covariates in survival analysis. Adding these covariates raise issues of high-dimensional statistics, when we have more
covariates than individuals in the sample. Methods based on regularization or screening (Tibshirani, 1997; Fan et al.,
2010) have been developed and used to solve this issue.

The Cox model relies on the proportional hazard hypothesis, and in its classical version, does not account for nonlinear
effects or interactions, which proves limited in some real situations. Therefore, in this paper, we focus on another
type of methods: neural networks. Deep learning methods are more and more popular, notably due to their flexibility
and their ability to handle interactions and nonlinear effects, including in the biomedical field (Rajkomar et al., 2018;
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Kwong et al., 2017; Suo et al., 2018). The use of neural networks for survival analysis is not recent, since it dates back
to the 90’s (Faraggi and Simon, 1995; Biganzoli et al., 1998) but it began being widely used only recently. We can
differentiate two strategies. The first one relies on the use of a neural network based on the Cox partial log-likelihood as
those developed by Faraggi and Simon (1995); Ching et al. (2018); Katzman et al. (2018); Kvamme et al. (2019). The
second strategy consists of using a neural network based on a discrete-time survival model, as introduced by Biganzoli
et al. (1998). Biganzoli et al. (1998) have studied this neural network only in low-dimension. In this paper, our objective
is to study and adapt this model to the high-dimensional cases, and compare its performances to two other methods: the
two-step procedure with the classical estimation of the parameters of the Cox model with a Lasso penalty to estimate
the regression parameter and a kernel estimator of the baseline function (as in Guilloux et al. (2016)) and the Cox-nnet
neural network (Ching et al., 2018) based on the partial likelihood of the Cox model. Section 2 recalls the different
notations used in survival analysis and presents the different models. Then, we introduce the simulation plan created to
compare the models. Finally, we underline the results to conclude with the potential of neural networks in survival
analysis.

2 Models

First, we introduce the following notations:

• Yi the survival time

• Ci the censorship time

• Ti = min(Yi, Ci) the observed time

• δi the censorship indicator (which will be equal to 1 if the interest event occurs and else to 0).

2.1 The Cox model

The Cox model (Cox, 1972) predicts the survival probability of an individual from explanatory covariates Xi. =
(Xi1, . . . , Xip)

T ∈ Rp. The hazard function λ is given by:

λ(t|Xi.) = α0(t) exp(βTXi.), (1)

where α0(t) corresponds to the baseline hazard and β = (β1, . . . , βp)
T ∈ Rp is the vector of regression coefficients. A

benefit of this model is that only α0(t) depends on time while the second term of the right hand side of (1) depends
only on the covariates (proportional hazard model). The Cox model structure can be helpful when we are interested in
the prognostic factors because β can be estimated without knowing the function α0. It is possible thanks to the Cox
partial log-likelihood, which is the part of the total log-likelihood that does not depend on α0(t), and is defined by:

L (β) =

n∑
i=1

(
βTXi.

)
−

n∑
i=1

δi log

(∑
l∈Ri

exp
(
βTXl.

))
,

with Ri the individuals at risk at the observation time Ti of individual i, and δi the censorship indicator of individual i.
The Lasso procedure was proposed by Tibshirani (1997) for the estimation of β in the high-dimensional setting. The
non-relevant variables are set to zero thanks to the L1− penalty added to the Cox partial likelihood: L(β) + λ||β||1.
However, to predict the survival function S, we need to fully estimate the hazard risk λ(s|Xi.) since:

S(t) = P(Ti > t|Xi.) = exp

(
−
∫ t

0

α0(s) exp(βTXi.)ds

)
.

We follow the two-step procedure of Guilloux et al. (2016): first, we estimate β from the penalized Cox partial
likelihood, and then we estimate α0(t) from the kernel estimator introduced by Ramlau-Hansen (1983), in which we
have plugged the Lasso estimate of β.

2.2 Neural networks

The studied neural networks in this paper are fully-connected multi-layer perceptrons. Several layers constitute this
network with at least one input layer, one output layer, and one or several hidden layers.
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2.2.1 Cox-nnet

Faraggi and Simon (1995) developed a neural network based on the proportional hazards model. The idea of Faraggi
and Simon (1995) was to replace the linear prediction of the Cox regression with the neural network’s hidden layer’s
output. Faraggi and Simon (1995) only applied their neural network to survival analysis from clinical data, in low
dimension. More recently, some authors revisited this method Ching et al. (2018); Katzman et al. (2018); Kvamme et al.
(2019). However, only Cox-nnet (Ching et al., 2018) was applied in a high-dimensional setting. We will thus use this
model as benchmark in our study.

The principle of Cox-nnet is that its output layer corresponds to a Cox regression: the output of the hidden layer replaces
the linear function of the covariates in the exponential of the Cox model equation.

To estimate the neural network weights, Ching et al. (2018) uses the Cox partial log-likelihood as the neural network
loss:

L(β,W, b) =

n∑
i=1

θi −
n∑
i=1

δi log

(∑
l∈Ri

exp (θl)

)
(2)

with δi the censoring indicator and θi = βTG(WTXi. + b), where G is the activation function of the hidden layer,
W = (wdh)1≤d≤p,1≤h≤H with H the number of neurons in the hidden layer, and β = (β1, . . . , βH)T the weights and
b the biases of the neural network to be estimated. In this network, the activation function tanh is used. To the partial
log-likelihood, Ching et al. (2018) adds a ridge penalty in L2−norm of the parameters. Thus, the final cost function for
this neural network is:

Loss(β,W, b) = L(β,W, b) + λ(‖β‖2 + ‖W‖2 + ‖b‖2). (3)

We maximize this loss function to deduce estimators of β, W and b. The principle in this neural network is that the
activation function for the output layer is a Cox regression, so that we have:

ĥi = exp


H∑
h=1

β̂hG
(
b̂h + ŴTXi.

)
︸ ︷︷ ︸

θ̂i=β̂TG(ŴTXi.+b̂)

 . (4)

The output of the neural network ĥi corresponds to the part of the Cox regression that does not depend on time. Ching
et al. (2018) only used ĥi, but in our study, we are interested in the complete survival function, and thus we need to
estimate the complete hazard function ĥ(xi, t). For that purpose, we estimate the baseline risk α0(t), with the kernel
estimator introduced by Ramlau-Hansen (1983). As for the Cox model, we estimate α0(t) with the two-steps procedure
of Guilloux et al. (2016) and this estimator is defined by:

α̂m(t) =
1

nm

n∑
i=1

K

(
t− u
m

)
δi∑
l∈Ri

ĥl
, (5)

with ĥl the estimator defined by (4), K : R→ R a kernel (a positive function with integral equal to 1), m the bandwidth,
which is a strictly positive real parameter. m can be obtained by cross-validation or by the Goldenshluger & Lepski
method Goldenshluger and Lepski (2011) for instance, and we choose the latter. We can finally derive an estimator of
the survival function for individual i:

Ŝ(t|Xi.) = exp

(
−
∫ t

0

α̂m(s)ĥids

)
. (6)

2.2.2 Discrete time neural network

Biganzoli et al. (1998) have proposed a neural network based on a discrete-time model. They introduced L time
intervals Al =]tl−1, tl], and build a model predicting in which interval, the failure event occurs. We write the discrete
hazard as the conditional probability of survival:

hil = P (Yi ∈ Al|Yi > tl−1), (7)

with Yi the survival time of individual i. Biganzoli et al. (1998) duplicates the individuals as input of the neural network.
The duplication of individuals gives it a more original structure than that of a classical multi-layer perceptron. The
Biganzoli et al. (1998)’s neural network takes as input the set of variables of the individual and an additional variable

3
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Figure 1: Structure of the neural network based on the discrete-time model of Biganzoli et al. (1998)

corresponding to the mid-point of each interval. Due to the addition of this variable, the p variables of each individual
are repeated for each time interval. The output is thus the estimated hazard hil = hl(Xi, al) for the individual i at time
al. We schematize the structure of this neural network on FIGURE 1. Biganzoli et al. (1998) initially used a 3-layers
neural network with a logistic function as the activation function for both the hidden and output layers. The output of
the neural network with H neurons in the hidden layer and p+ 1 input variables is given by:

hil = h(xi, tl) = f2
(
a+ βT f1

(
b+WTXi.

))
,

where W = (wdh)1≤d≤p+1,1≤h≤H , and β = (β1, . . . , βH)T are the weights of the neural network, a and b are the
biases of the neural network to be estimated, and f1 and f2 the sigmoid activation functions. The target of this neural
network is the death indicator dil, which will indicate if the individual i dies in the interval Al. We introduce li ≤ L the
number of intervals in which the individual i is observed, di0, . . . , di(li−1) = 0 whatever the status of the individual i
and dili is equal to 0 if the individual i is censored and 1 otherwise. The cost function used by Biganzoli et al. (1998) is
the cross-entropy function and the weights of the neural network can be estimated by minimizing it:

L(β,W, a, b) = −
n∑
i=1

li∑
l=1

dil log(hil) + (1− dil) log(1− hil). (8)

The duplication of the individuals for each time interval increases the sample size in the neural network, it is an advantage
in a high-dimensional framework. Moreover, Biganzoli et al. (1998) added a ridge penalty to their cross-entropy function
(8):

Loss(β,W, a, b) = L(β,W, a, b) + λ(‖β‖2 + ‖W‖2 + ‖a‖2 + ‖b‖2), (9)
In Biganzoli et al. (1998), λ was chosen by deriving an Information Criteria. We choose instead to use cross-validation
since it improved model the predictive capacity.

After estimating the parameters of the neural network by minimizing the loss function (9), the output obtained is the
estimate of the discrete risk ĥil for each individual i and the survival function of individual i is estimated using:

Ŝ(Tli) =

li∏
i=1

(1− ĥil). (10)

This model was only applied for low-dimensional inputs, and this paper investigates its performance and capacity to
adapt to high-dimensional settings. We denote this network NNsurv. We noticed an improvement of the performance

4



A PREPRINT - MAY 11, 2021

when using a ReLU activation function for the hidden layers and thus used it instead of the original sigmoid functions.
Moreover, original neural network only has one hidden layer. We propose to add one supplementary hidden layer
to study if a deeper structure could improve the neural network prediction capacity. We call the deeper version
NNsurv-deep. Its structure is similar to the one schematized in Figure 1, but with two hidden layers instead of one. The
input layer does not change, and the individuals are always duplicated at the input of the neural network. The output
layer also has a single neuron corresponding to the discrete hazard estimate. These neural networks are implemented in
a package available on https://github.com/mathildesautreuil/NNsurv.

We will compare the performances of these four models (Cox-Lasso, Cox-nnet, NNsurv, NNsurv-deep) on simulated
data and then to a real dataset.

3 Simulations

We create a simulation design to compare different neural network approaches to predict survival time in high-dimension.
We divide the simulation plan into two parts. The first part concerns a simulation study based on (Bender et al., 2005)
which proposes to generate the survival data from a Cox model. Data simulated with this model naturally favors the two
methods based on the Cox model. We also consider a model with a more complex behavior: the Accelerated Hazards
(AH) model (Chen and Wang, 2000). In the AH model, variables will accelerate or decelerate the hazard risk. The
survival curves of the AH model can therefore cross each other. Other choices of models were also possible, and in the
Appendix A, we also present the results for the Accelerated Failure Time (AFT) model (Kalbfleisch and Prentice, 2002)
which does not satisfy the proportional risk assumption either, but does not allow the intersection of survival curves of
different patients.

In all cases, the models’ baseline risk function is assumed known and follows a particular probability distribution. We
use the Weibull distribution for the Cox model and the log-normal distribution for the AH model. Several simulations
are considered, by varying the sample size, the total number of explanatory variables, and the number of relevant
explanatory variables considered in the model. We use the package that we have developed called survMS and available
on CRAN or https://github.com/mathildesautreuil/survMS.

3.1 Generation of survival times

Considering the survival models (Cox, AFT, and AH models), the survival function S(t|X) can be written as:

S(t|X) = exp(−H0(ψ1(X)t)ψ2(X) with (11)

H0 is the cumulative hazard and

(ψ1(X), ψ2(X)) =

 (1, exp(βTX)) for the Cox model
(exp(βTX), exp(−βTX)) for the AH model
(exp(βTX), 1) for the AFT model.

The distribution function is deduced from the survival function from the following formula:

F (t|X) = 1− S(t|X). (12)

For data generation, if Y is a random variable that follows a probability distribution F, then U = F (Y ) follows a
uniform distribution on the interval [0, 1], and (1− U) also follows a uniform distribution U [0, 1]. From Equation (12),
we finally obtain that:

1− U = S(t|X) = exp(−H0(ψ1(X)t)ψ2(X)). (13)

If α0(t) is positive for all t, then H0(t) can be inverted, and we can express the survival time of each of the models
considered (Cox, AFT and AH) from H−10 (u). We write in a general form the expression of the random survival times
for each of the survival models:

T =
1

ψ1(X)
H−10

(
log(1− U)

ψ2(X)

)
. (14)

Two distributions are used for the cumulative hazard function H0(t) to generate the survival data. If the survival times
are distributed according to a Weibull distributionW(a, λ), the baseline hazard is of the form :

α0(t) = aλta−1, λ > 0, a > 0. (15)

The inverse of the cumulative risk function is expressed as follows:

H−10 (u) =
(u
λ

)1/a
. (16)
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For survival times following a log-normal distribution LN (µ, σ) with mean µ and standard deviation σ, the basic risk
function is therefore written:

α0(t) =

1
σ
√
2πt

exp
[
− (log t−µ)2

2σ2

]
1− Φ

[
log t−µ
σ

] , (17)

with Φ(t) the distribution function of a standard Normal distribution. The inverse of the cumulative hazard function is
expressed by:

H−10 (u) = exp(σΦ−1(1− exp(−u)) + µ), (18)

with Φ−1(t) the inverse of the distribution function of a centered and reduced normal distribution.

3.2 Simulation with the Cox - Weibull model

Survival times and baseline function: Generating survival times from a variety of parametric distributions were
described by Bender et al. (2005). In the case of a Cox model with a baseline function distributed from a Weibull
distribution, the inverse cumulative hazard function is H−10 (t) = ( tλ )

1
a and the survival time T of the Cox model is

expressed as:

T =

(
− 1

λ
log(1− U) exp(−Xi.β)

) 1
a

, (19)

where U is a random variable with U ∼ U [0, 1].

Choice of parameters of the Weibull distribution: We chose the Weibull distribution parameters so that our design
of simulation is close to real datasets. The mean and the standard deviation of Breast cancer real dataset (available
on www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6532) is around 2325 days and 1304 days respectively.
As the survival times follow a Weibull distribution, the mean and the variance of T write as:

E(T ) =
1
a
√
λ

Γ

(
1

a
+ 1

)
and V(T ) =

1
a
√
λ2

[
Γ

(
2

a
+ 1

)
− Γ2

(
1

a
+ 1

)]
,

where Γ is the Gamma function. We set a = 2 and λ = 1.3e−7 to have a mean and variance of our simulated datasets
close to those of the Breast cancer real dataset.

3.3 Simulation with the AH - Log-Normal model

Survival times and baseline function: Building on the work of Bender et al. (2005), we also simulate the survival
data from the AH model. We perform this simulation to generate data whose survival curves will intersect. For this
simulation, we consider that the survival times follow a log-normal distribution LN (µ, σ). In this case, the inverse of
the cumulative hazard function is expressed as (18), and we have:

T =
1

exp(βTXi.)
σΦ−1

(
log(1− U)

exp(−βTXi.)
+ µ

)
(20)

with Φ−1(t) the inverse of the distribution function of a centered and reduced normal distribution.

Choice of parameters of the Log-Normal distribution: As in the previous simulation, we ensure that the distribu-
tion of the simulated data is close to that of the real ones and we use the formulas:

µ = ln(E(T ))− 1

2
σ2 and σ2 = ln

(
1 +

Var(T )

(E(T ))2

)
. (21)

Since, the expectation and the standard deviation are respectively 2325 and 1304, the values of µ and σ used for the
simulation of the survival data should be µ = 7.73 and σ = 0.1760. However, to have survival curves crossing rapidly,
we take a higher value of σ: σ = 0.7.

3.4 Metrics

To assess the performance of the survival models, we use two classical metrics, the Concordance Index (CI) and the
Integrated Brier Score (IBS).

6
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3.4.1 Concordance Index

The index measures whether the prediction of the model under study matches the rank of the survival data. If the event
time of an individual i is shorter than that of an individual j, a good model will predict a higher probability of survival
for individual j. This metric takes into account censored data, and it takes a value between 0 and 1. If the C-index
is equal to 0.5, the model is equivalent to random guessing. The time-dependent C-index proposed by Antolini et al.
(2005), adapted to non-proportional hazard models, is chosen in this study.

Consider n individuals, and for 1 ≤ i ≤ n, Ti their observation times (either survival or censoring times) and δi their
censorship indicators. For i, j = 1, . . . , n i 6= j, we define the indicators:

compij = 1{(Ti<Tj ;δi=1)∪(Ti=Tj ;δi=1,δj=0)} (22)

and
conctdij = 1{S(Ti|Xi.)<S(Tj |Xj.)}compij , (23)

The estimate of the time-dependent C-index for survival models is equal to:

Ĉtd =

∑n
i=1

∑
j 6=i conc

td
ij∑n

i=1

∑
j 6=i compij

(24)

If we are in the proportional hazards or linear transformation models’ case, the metric Ĉtd of the equation (24) is
equivalent to the usual C-index Gerds et al. (2013).

3.4.2 Integrated Brier Score

The Brier score measures the squared error between the indicator function of surviving at time t, 1{Ti≥t}, and its
prediction by the model Ŝ(t|Xi.). Graf et al. (1999) adapted the Brier score Brier (1950) for censored survival data
using the inverse probability of censoring weights (IPCW) and Gerds and Schumacher (2006) subsequently proposed a
consistent estimator of the Brier score in the presence of censored data. The Brier score is defined by:

BS(t, Ŝ) = E
[(
Yi(t)− Ŝ(t|Xi.)

)2]
, (25)

where Yi(t) = 1{Ti≥t} is the status of individual i at time t and Ŝ(t|Xi.) is the predicted survival probability at time t
for individual i. Unlike the C-index, a lower value of this score shows a better predictive ability of the model.

As mentioned above, Gerds and Schumacher (2006) gave an estimate of the Brier score in the presence of censored
survival data. The estimate of the Brier score under right censoring is:

B̂S(t, Ŝ) =
1

n

n∑
i=1

Ŵi(t)(Yi(t)− Ŝ(t|Xi.))
2, (26)

with n the number of individuals in the test set. Moreover, in the presence of censored data it is necessary to adjust the
score by weighting it by the inverse probability of censoring weights (IPCW). This weighting is defined by:

Ŵi(t) =
(1− Yi(t))δi
Ĝ(Ti|Xi.)

+
Yi(t)

Ĝ(t|Xi.)
, (27)

where δi is the censored indicator equal to 1 if we observe the survival time and equal to 0 if the survival time is
censored, and Ĝ(t|x) is the Kaplan-Meier Kaplan and Meier (1958) estimator of the censored time survival function at
time t.

The integrated Brier score Mogensen et al. (2012) summarizes the predictive performance estimated by the Brier
score Brier (1950):

ÎBS =
1

τ

∫ τ

0

B̂S(t, Ŝ)dt, (28)

where B̂S(t, Ŝ) is the estimated Brier score and τ > 0. We take τ > 0 as the maximum of the observed times and
the Brier score is averaged over the interval [0, τ ]. As for the Brier score, a lower value of the IBS indicates a better
predictive ability of the model.

7
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4 Results

In this section, we compare the performances of the Cox model with Lasso (denoted CoxL1) Tibshirani (1997), the
neural network based on the Cox partial log-likelihood Cox-nnet Ching et al. (2018) presented in Section 2, and
discrete-time neural networks (NNsurv and NNsurv-deep), adapted from Biganzoli et al. (1998) and also presented in
Section 2. The performances are compared on simulated data (with the Cox and AH models, and for several parametric
configurations) and on a real data case presented below. The discrete-time C-index (Ctd) and Integrated Brier Score
(IBS) are used for this purpose. We can calculate the reference Ctd and IBS values from our simulations based on
the exact model used for the simulation. Note however, that the models under comparison can sometimes "beat" these
reference values by chance (due to the random generation of survival times).

4.1 Simulation study

n is the number of samples, n ∈ 200; 1000, and p is the number of covariates, p ∈ 10; 100; 1000. Note that even
if our objective is to apply our models to predict survival from RNA-seq data, we present simulation results up to
1000 covariates (instead of the potential several tens of thousands usually available with RNA-seq). Indeed, when we
performed tests with 10,000 inputs, none of the model were able to perform well, thus underlining the necessity of a
preliminary filtering as classically done when handling RNA-seq data (Conesa et al., 2016).

4.1.1 Results for the Cox - Weibull simulation

The Cox-Weibull simulation corresponds to a Cox model’s data with a baseline risk modeled by a Weibull distribution.
In this simulation, the model satisfies the proportional hazards assumption. The results of this simulation in TABLE 1
show that Cox-nnet performs best concerning the Ctd in all settings (regardless of the number of variables or sample
size) and most settings for the IBS. The best IBS values for Cox-nnet, as we can see from TABLE 1, are for sample
size equal to 200 and number of variables to 10 and 100 or sample size worth to 1000 and number of variables is to
100 and 1000. CoxL1 also has the best IBS (i.e. the lowest) for a sample size of 1000 and 10 variables. These good
results of CoxL1 and Cox-nnet are not surprising because we simulated the data from a Cox model. We can observe in
TABLE 1 that NNsurv-deep obtains the lowest IBS value for 200 individuals and 1000 variables. We can also see that
the IBS values of NNsurv and NNsurv-deep are very close to the reference IBS values. This phenomenon is also
true when the sample size is equal to 1000, and the number of variables is equal to 100. Moreover, we can observe in
TABLE 1 that some of the values of Ctd obtained for NNsurv and NNsurv-deep are close to those of Cox-nnet. We
notice notably this case when the sample size is equal to 200, and the number of variables is equal to 10, and when the
number of samples is 1000 and the number of variables is of 10 and 100. We can see that some of the values of the Ctd
for the discrete-time neural networks are better than those obtained from the Cox model, for example, for a sample
size equal to 200 and number of variables worth to 100 or for a sample size worth to 1000 and whatever the number of
variables is.

n 200 1000
Method p 10 100 1000 10 100 1000
Reference C?td 0.7442 0.7428 0.7309 0.7442 0.7428 0.7309

IBS? 0.0471 0.0549 0.0582 0.0471 0.0549 0.0582
NNsurv Ctd 0.7137 0.6224 0.5036 0.7398 0.7282 0.5700

IBS 0.0980 0.0646 0.1359 0.0759 0.0537 0.1007
NNsurv Ctd 0.7225 0.5982 0.5054 0.7424 0.7236 0.5741
deep IBS 0.0878 0.0689 0.1080 0.0591 0.0555 0.1185
Cox Ctd 0.7313 0.6481 0.5351 0.7427 0.7309 0.6110
-nnet IBS 0.0688 0.0622 0.1402 0.0640 0.0498 0.0710
CoxL1 Ctd 0.7292 0.5330 0.5011 0.7419 0.7243 0.5

IBS 0.0715 0.0672 0.1175 0.0541 0.0509 0.0770

Table 1: Results of predicting methods on Cox-Weibull simulation

Synthesis: Not surprisingly, Cox-nnet has the best results on this dataset simulated from a Cox model with a Weibull
distribution. However, the neural networks based on a discrete-time model (NNsurv and NNsurv-deep) have very
comparable performances, and clearly outperforms the CoxL1 model when the number of variables increases.
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4.1.2 Results for the AH - Log-Normal simulation

The results presented in TABLE 2 are those obtained on the AH simulation with the baseline hazard following a
log-normal distribution. In this simulation, the risks are not proportional, and the survival functions of different
individuals can cross.

We can observe that the neural networks based on a discrete-time model have the best performances concerning the Ctd
and the IBS, and their values are close to the reference Ctd and IBS. This phenomenon is particularly correct for the
IBS when the sample size is equal to 1000, the IBS values of NNsurv and NNsurv-deep are lower than those of the
reference IBS. On the other hand, the methods based on the Cox partial likelihood have the highest Ctd values for a
small sample size (n=200) and a small number of variables (p=10) or, on the contrary, for a large sample size (n=1000)
and a large number of variables (p=1000). For a sample size equal to 200, neural networks based on a discrete-time
model have higher Ctd values than those obtained by CoxL1 and Cox-nnet. The values obtained for the IBS by the
two methods using the Cox partial likelihood are good. For a small number of individuals (n=200), the IBS values of
CoxL1 and Cox-nnet are very high. For example, Cox-nnet obtains IBS values equal to 0.2243 and 0.1609 respectively
for 10 and 100 variables, and CoxL1 gets IBS values equal to 0.2278 and 0.1614, respectively. These values are very
high compared to the baseline IBS. CoxL1 and Cox-nnet, therefore, have more difficulty with a small number of
samples. The predictions of these two methods are not as good as those given by discrete-time neural networks.

n 200 1000
Method p 10 100 1000 10 100 1000
Reference C?td 0.7225 0.6857 0.7070 0.7225 0.6867 0.7070

IBS? 0.0755 0.0316 0.0651 0.0755 0.0316 0.0651
NNsurv Ctd 0.6863 0.5971 0.5358 0.7084 0.6088 0.5654

IBS 0.1247 0.0780 0.0859 0.0699 0.0347 0.0533
NNsurv Ctd 0.7042 0.5793 0.5325 0.7155 0.6450 0.5702
deep IBS 0.1789 0.2529 0.1554 0.0602 0.0303 0.0484
Cox Ctd 0.7128 0.5812 0.5356 0.7097 0.6047 0.5720
-nnet IBS 0.1342 0.2243 0.1609 0.0843 0.0875 0.0553
CoxL1 Ctd 0.7042 0.5219 0.5112 0.7088 0.5597 0.5

IBS 0.1350 0.2278 0.1614 0.0608 0.0408 0.0553

Table 2: Results of predicting methods on AH/Log-normal simulation

Synthesis: On the dataset simulated from an AH model with a log-normal distribution, neural networks based on the
discrete-time model have the best performances in most situations. The deep version of the model is also better than the
one with only one hidden layer. In this simulation, the data do not check the proportional hazards assumption, and
survival curves exhibit complex patterns for which the more versatile NNsurv-deep appears more adapted.

4.2 Application on real datasets

4.2.1 Breast cancer dataset

Description of data: The METABRIC data (for Molecular Taxonomy of Breast Cancer International Consortiulm)
Curtis et al. (2012) include 2509 patients with early breast cancer. These data are available at https://www.synapse.
org/#!Synapse:syn1688369/wiki/27311. Survival time, clinical variables, and expression data were present for
1981 patients, with six clinical variables (age, tumor size, hormone therapy, chemotherapy, tumor grades), and 863
genes (pre-filtered). The percentage of censored individuals is high, equal to 55%.

Results: The comparison results of the METABRIC dataset are summarized in TABLE 3. NNsurv-deep manages
to get the highest value of Ctd. The Ctd of NNsurv is equivalent to that of Cox, but Cox-nnet has a lower value. The
integrated Brier score is very close for NNsurv-deep, Cox-nnet, and CoxL1, although the latter has the lowest IBS
value.

On this real dataset, the differences between the models are not striking, despite the small superiority of NNsurv-deep.
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CoxL1 Cox-nnet NNsurv-deep NNsurv
Metabric Ctd 0.6757 0.6676 0.6853 0.6728

IBS 0.1937 0.1965 0.1972 0.2038
Table 3: Results of different methods on the breast dataset (METABRIC)

5 Discussions

This work is a study of neural networks for the prediction of survival in high-dimension. In this context, usual methods
such as the estimation in a Cox model with the Cox partial likelihood can no longer be performed. Several methods
(such as dimension reduction or machine learning methods, like Random Survival Forests Ishwaran et al. (2008)) have
been proposed, but our interest in this study has been directed towards neural networks and their potential for survival
analysis from RNAseq data.

Two neural-network based approaches have been proposed. The first one is based on the Cox model but introduces a
neural network for risk determination (Faraggi and Simon, 1995). The second approach is based on a discrete-time
model Biganzoli et al. (1998) and its adaptation to the high-dimensional setting was the main contribution of our work.
In section 4, we compared the standard Cox model with Lasso penalty and a neural network based on the Cox model
(Cox-nnet) with those based on a discrete-time model adapted to the high dimension (NNsurv, and NNsurv-deep). To
evaluate this comparison rigorously, we created a design of simulations. We simulated data from different models (Cox,
AH, and AFT in appendix) with varying number of variables and sample sizes, allowing diverse levels of complexity.

We concluded from this study that the best neural network in most situations is Cox-nnet. It can handle nonlinear effects
as well as interactions. However, the neural network based on discrete-time modeling, which directly predicts the hazard
risk, with several hidden layers (NNsurv-deep), has shown its superiority in the most complex situations, especially in
the presence of non-proportional risks and intersecting survival curves. On the Metabric data, NNsurv-deep performs
the best, but only marginally better than the Cox partial log-likelihood-based Lasso estimation procedure, suggesting
slight non-linearity and interactions.

The neural networks seem to be interesting methods to predict survival in high-dimension and, in particular, in the
presence of complex data. The effect of censoring in these models was not studied in this work, but Roblin et al.
(2020) evaluated several methods to cope with censoring in neural networks models for survival analysis. For practical
applications, a disadvantage of neural networks is the interpretation difficulty. On the contrary, the output of a Cox
model associated with the Lasso procedure is easily interpretable. The Cox model is therefore privileged by the
domain’s users nowadays. The interpretability issue of neural networks is more and more studied (Hao et al., 2019) and
is an exciting research avenue to explore.
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A Appendix: supplementary results

A.1 Simulation from the AFT - Log-Normal model

Survival times and baseline function: To simulate the data from the AFT/Log-normal model, we relied on Leemis
et al. (1990). We chose to perform this simulation to generate survival data that do not respect the proportional hazards
assumption. For this simulation, we consider that the survival times follow a log-normal distribution LN (µ, σ). In this
case, the inverse of the cumulative hazard function is expressed as (18). Survival times can therefore be simulated from:

T =
1

exp(βTXi.)
exp(σφ−1(U) + µ). (29)

Choice of parameters of Log-Normal distribution: We wish the distribution of the simulated data is close to the
real data. We follow the same approach to choose the parameters σ and µ of the survival time distribution as for the
Cox/Weibull simulation presented above. The value of the parameters is obtained from the explicit formulas:

µ = ln(E(T ))− 1

2
σ2 and σ2 = ln

(
1 +

Var(T )

(E(T ))2

)
. (30)

Given the expectation and the standard deviation are respectively 2325 and 1304, the values of µ and σ used for the
simulation of the survival data should be µ = 7.73 and σ = 0.1760.

A.2 Simulation study

A.2.1 Results for the AFT - Log-normal simulation

This section presents the results for data simulated from an AFT model with a baseline risk modeled by a log-normal
distribution. The specificity of these simulated data is that they do not satisfy the proportional hazards assumption, but
the survival curves do not cross.

TABLE 4 shows that CoxL1 and Cox-nnet have the best results in most configurations considering Ctd or IBS. This
good result for Ctd is particularly right when the sample size is equal to 200 or when the sample size is equal to 1000,
and the number of variables is equal to 10 and 100. The Ctd obtained by the CoxL1 model is equal to 0.9867 for 200
individuals and ten variables, and the Ctd obtained for the Cox-nnet model is equal to 0.9060 for 1000 individuals and
100 variables. We can see in TABLE 4 that the Ctd obtained for the neural networks based on a discrete-time model
is very close to those obtained by CoxL1 and Cox-nnet and is either higher than the reference one or slightly below.
For example, for a sample size equal to 200 and a number of variables equal to 10, the Ctd of NNsurv is equal to
0.9832, that of Cox-nnet is equal to 0.9867, and the reference one is equal to 0.9203. We have the same behavior for
100 variables and the same sample size or 100 variables and a sample size of 1000.
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Moreover, the IBS values are the lowest for the methods based on Cox modeling in most situations. But the IBS
values for NNsurv and NNsurv-deep are also excellent. They are lower than the reference IBS in many cases and are
very close to CoxL1 and Cox-nnet. We can observe these results when the number of variables is less than or equal to
100 regardless of the sample size. The good results of CoxL1 and Cox-nnet might seem surprising, but we can explain
it because we simulate these data from an AFT model whose survival curves do not cross. A method based on a Cox
model will predict survival functions that do not cross. For this simulation, the survival function prediction obtained by
CoxL1 and Cox-nnet is not cross and is undoubtedly closer to the survival function of the AFT simulation compared to
discrete-time neural networks.

n 200 1000
Method p 10 100 1000 10 100 1000
Reference C?td 0.9203 0.9136 0.9037 0.9203 0.9136 0.9037

IBS? 0.0504 0.0604 0.0417 0.0504 0.0604 0.0417
NNsurv Ctd 0.9832 0.8349 0.5425 0.9851 0.9038 0.7426

IBS 0.0265 0.0560 0.2577 0.0247 0.0188 0.0642
NNsurv Ctd 0.9786 0.8275 0.5576 0.9857 0.9060 0.7500
deep IBS 0.0295 0.0561 0.1886 0.0261 0.0207 0.0631
Cox Ctd 0.9825 0.8558 0.5979 0.9844 0.9060 0.7085
-nnet IBS 0.0122 0.0906 0.0959 0.0126 0.0374 0.0808
CoxL1 Ctd 0.9867 0.7827 0.5091 0.9856 0.9028 0.5349

IBS 0.0146 0.0965 0.0960 0.0077 0.0182 0.0827
Table 4: Results of predicting methods on AFT/Log-normal simulation

Synthesis: For data simulated from an AFT model with a log-normal distribution, Cox-nnet is the neural network
with the best results in most situations when the sample size is small. When the sample size increases, NNsurv-deep is
the best model considering the Ctd in most situations. Moreover, NNsurv and NNsurv-deep also seem to perform well
when the number of variables is less than or equal to 100. We assume that the good results of Cox-nnet are due to the
low level of complexity of the data. Indeed, the survival curves of the individuals in this dataset never cross.
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