
HAL Id: hal-03227222
https://centralesupelec.hal.science/hal-03227222v1

Submitted on 6 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structure analysis of direct sampling method in 3D
electromagnetic inverse problem: near- and far-field

configuration
Sangwoo Kang, Marc Lambert

To cite this version:
Sangwoo Kang, Marc Lambert. Structure analysis of direct sampling method in 3D electromag-
netic inverse problem: near- and far-field configuration. Inverse Problems, 2021, 37 (7), pp.075002.
�10.1088/1361-6420/abfe4e�. �hal-03227222�

https://centralesupelec.hal.science/hal-03227222v1
https://hal.archives-ouvertes.fr


Structure analysis of direct sampling method in

three-dimensional inverse electromagnetic scattering problem

and its extension to far-field configuration

Sangwoo Kang and Marc Lambert

Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Génie Electrique et Electronique de Paris,

91192, Gif-sur-Yvette, France.

Sorbonne Université, CNRS, Laboratoire de Génie Electrique et Electronique de Paris, 75252, Paris, France

Submitted version, final version @ https://doi.org/10.1088/1361-6420/abfe4e

Abstract

In this paper, we study the structure analysis of the Direct Sampling Method (DSM) in the three-
dimensional inverse electromagnetic scattering problem. Even though the DSM is well-known to the
robust, fast, and efficient non-iterative type algorithm to estimate the support and shape of unknown
inhomogeneities from scattered data, the inhomogeneities might not be detected in the DSM with
improper test polarization. To explain the reason for the phenomenon, we carefully analyze the in-
dicator function of DSM using the asymptotic formula of the scattered field under a small volume
hypothesis of well-separated inhomogeneities. The analytic representation formula of the indicator
function of DSM is presented by establishing the relationship of spherical Bessel functions, the polar-
ization of the incident wave and the test dipole, and the polarization tensor of the inhomogeneities,
which depends on their sizes, permittivity, etc. Through such theoretical results, we also show the
validity of the guideline to choose the test polarization given by other work. Furthermore, we propose
our method to select the polarization of the test dipole for better efficiency. With a similar path of
derivation, we also introduce and analyze the indicator function of DSM in far-field configurations.
Various numerical simulations with synthetic and experimental data validate our theoretical results
and proposals.

Keywords: 3D inverse electromagnetic scattering problem, Spherical Bessel function, Structure anal-
ysis, Direct sampling method, Orthogonality sampling method
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1 Introduction

The development and the analysis of efficient methods and techniques for solving an inverse scattering
problem are of great interest due to their potentials in various applications such as, and without exhaus-
tivity, non-destructive testing [1, 2, 3], biomedical imaging [4, 5, 6], and structural imaging [7, 8, 9] among
others. Unfortunately, solving such an inverse problem is known to be difficult because of its inherent ill-
posedness and non-linearity. However, various numerical techniques and algorithms have been developed
to deal with such a problem.

Non-iterative type techniques belong to one of the main family of methods because of their advantages
such as a low computational cost, no a priori information about the inhomogeneities, and the simplicity of
implementation, etc. Among them, we can cite MUltiple SIgnal Classification (MUSIC), Linear Sampling
Method (LSM), and migration-type method (Kirchhoff migration, subspace migration, or reverse-time
migration), etc., which have been developed and applied in various conditions. These methods are known
to provide good results to reconstruct the shapes and locations of unknown inhomogeneities when using
enough incident fields [10, 11, 12, 13], but might fail when not as exemplified in [12]. Practically speaking,
retrieving the information about the inhomogeneities with only a few number of incident fields is an
important issue for various applications such as Synthetic Aperture Radar (SAR) imaging [14, 15, 16, 17]
and Ground Penetrating Radar (GPR) [18, 19, 20], etc.

The Direct Sampling Method (DSM) was first developed in [21] for solving the two-dimensional inverse
acoustic scattering problems with only a few (one or two) incident fields for imaging and its robustness
and stability are shown in [22, 23, 24, 25]. Note that the DSM is equivalent to the normalized version of
Orthogonality Sampling Method (OSM) proved in [26]. So, we refer to the the relevant works [27, 28, 29].
For the sake of clarity, we denote both the DSM and OSM as DSM. Recently, we have investigated that
the structure of the DSM indicator function and validated the correlation with Kirchhoff migration, which
is one of the traditional techniques in multi-static configuration [30] and mono-static configuration [31]
under the small volume assumption of the well-separated inhomogeneities.

The DSM has been extended to solve two- and three-dimensional inverse electromagnetic scattering
problems in [32] with the same conclusions: The DSM is a fast, robust, and efficient technique to recon-
struct the supports of the inhomogeneities with only a few incident fields. But, contrary to the acoustic
problem, the inhomogeneities might not be detected via DSM if improper polarization of test dipole is
chosen. In other words, the main difference between scalar (acoustic case) and vector (electromagnetic
case) DSM is the choice of the polarization of the test function. In fact, in the 2D scalar case, the po-
larization of the test function is nothing but the same as the one of the configuration. Whereas, due
to the vectorial aspect of the data in the 3D electromagnetic case, the choice of test polarization is a
crucial parameter of the success of the imaging algorithm. Even though the authors in [32] exhibited the
feasibility of DSM, it was not enough to elucidate the relation of polarization of test dipole and the result
of DSM in the 3D vectorial case.

It is why, in the following, the analytical formulation of the DSM indicator will be established within
the framework of the asymptotic formula of the scattered field for small and well-separated inhomo-
geneities in near- and far-field configuration. This analytical solution is expressed as a function of the
spherical Bessel function of integer order and polarization tensor of the targets, which carries their phys-
ical characteristics (e.g., location, size, shape, and permittivity, etc.). Thanks to our analytical analysis,
the flowing matters are investigated and explained: (i) the reasons for which an inhomogeneity with a
smaller size and/or permittivity among others is difficult to be identified (this phenomenon can arise
in the 2D and 3D case with acoustic and electromagnetic waves); (ii) the reasons for which some in-
homogeneities might not be detected if the polarization of the test dipole is not properly chosen; (iii)
the theoretical validation of choosing polarization proposed in [32]. By adopting the idea in [33], which
dealt with the improvement of the accuracy of the MUSIC imaging algorithm via a proper selection of
the polarization test vector, the direct sampling method with proper test dipole (DSMP) is proposed to
handle the second issue in near-field and far-field configurations.

The article is structured as follows. The asymptotic formulations of the direct electromagnetic scat-
tering problem under the near-field and the far-field hypothesis and small volume hypothesis of inho-
mogeneities are briefly presented in § 2. The structure analysis of the direct sampling method and the
corresponding numerical simulations in the near-field and the far-field configuration are presented in § 3
and § 4, respectively. Additional numerical simulations using Fresnel experimental data are presented in
§ 5. Conclusions and perspectives are drawn in § 6.
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Figure 1: Scattering problem configuration for M = 3 (left) and sketch of the inhomogeneities τm (right).

2 Three-dimensional direct electromagnetic scattering problem

In this section, the asymptotic formulation of the three-dimensional direct electromagnetic scattering
from the well-separated inhomogeneities under the small volume hypothesis is briefly depicted based on
the well-known work [34] (See Figure 1(a) for the sketch), where each inhomogeneity τm is represented
by

τm = rm + αmDm ∈ Ω, m = 1, 2, · · · ,M. (1)

Here, rm and αm are the its location and size, respectively, and Dm characterizes the shape of τm.
For simplicity, we assume that all τm are the disks with radius αm (See Figure 1(b)). The collection of
all inhomogeneities is denoted by τ , i.e., τ =

⋃
m τm. Let us assume that each inhomogeneities is well

separated, i.e., there exist positive constant d0 such that

0 < d0 ≤ |rm − rm′ | and τm ∩ τm′ , m 6= m′. (2)

For the shake of simplicity, all the materials are supposed to be non-magnetic with µ0 as permeability.
Let εm and ε0 be the electric permittivity of τm and of the background, respectively. The angular frequency
ω0 is defined as ω0 = 2πf0, where f0 is the frequency in Hz —from now on the time dependence e−iω0t

is omitted. So the piecewise constant electric permittivity ε(x) and wavenumber k(x) can be defined by

ε(x) =

{
ε0, if x ∈ R3\τ
εm, if x ∈ τ

and k(x) =

{
k0 = ω0

√
ε0µ0, if x ∈ R3\τ

km = ω0
√
εmµ0, if x ∈ τ,

(3)

respectively. Note that the wavelength λ0 being defined as λ0 = 2π/k0.
The total electric fields E(x,y) at x due to a source placed at y is the solution of following time-

harmonic Maxwell’s equations:

{
∇×∇×E(x,y) − k2(x)E(x,y) = iω0µ0J

ν · (ε(x)E(x,y))+ − ν · (ε(x)E(x,y))− = 0 on ∂τ,
(4)

where ν is outward unit normal to τm and J is induced current of the source. Here, the scripts + and
− indicate the limiting direction from outside τm and from inside τm to boundary of τm, respectively.
The total electric field can be expressed as a sum of incident and scattered electric fields, i.e., E(x,y) =
Ei(x,y) +Es(x,y).

The incident electric field Ei(x,y) due to an electric dipole polarized along p̂t ∈ S2 and located at
y ∈ Γinc is given by

Ei(x,y) = iω0µ0IlG(x,y) · p̂t, (5)

where Il is the current moment. Here, G(x,y) is the dyadic Green function which is the solution of

∇×∇×G(x,y) − k20G(x,y) = δ(x− y)I3, (6)

and it can be expressed as a function of

G(x,y) :=

(
I3 +

1

k20
∇∇

)
g(x,y), (7)
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where I3 is 3×3 identity matrix and g(x,y) is the Green function of three-dimensional Helmholtz equation,
i.e.,

g(x,y) =
eik0|x−y|

4π|x− y| . (8)

To guarantee for uniqueness of solution, the scattered electric field satisfies the following Silver-Müller
radiation condition:

lim
|x|→∞

|x| [∇×Es(x,y) × x̂− ik0E
s(x,y)] = 0, (9)

uniformly in all directions x̂ = x/|x| ∈ S2.

Following [34], the combining the small volume assumption
(
αm

√
εm/ε0 ≪ λ0/2

)
with the non-

interaction hypothesis between the inhomogeneities (2), the scattered electric field, which is measured at
x located on the simply connected smooth surface Γobs, has the following asymptotic expansion formula:

Lemma 2.1 (Asymptotic formula of scattered field). Assume that all inhomogeneities are dielectric
and sufficiently small (αm

√
εm/ε0 ≪ λ0/2). Then the electric scattered field Es(x,y) has the following

asymptotic expansion formula for a generic incident field Ei(rm,y)

Es(x,y) = ω2
0µ0

M∑

m=1

[
α3
m (εm − ε0)G(x, rm)M

(
εm
ε0

;Dm

)
Ei(rm,y)

]
+O(α4) (10)

where α := max {αm, m = 1, 2 · · · ,M} and M(εm/ε0;Dm) ∈ C3×3 is a polarization tensor related to
Dm. By combining the form of electric pole given by (5) and asymptotic expansion formula in (10), the
electric scattered field Es(x,y) in the case of a incident field due to a dipole with a polarization direction
p̂t placed at y is given by

Es(x,y) = iω0µ0k
2
0Il

M∑

m=1

[
α3
m

(
εm − ε0

ε0

)
G(x, rm)M

(
εm
ε0

;Dm

)
G(rm,y) · p̂t

]
+O(α4) (11)

In [34, 35] the explicit form of M(εm/ε0;Dm) for various forms such as sphere, thin tube, or sheet,
is provided. For shake of simplicity, we assume that all inhomogeneities are spherical, so M(εm/ε0;Dm)
has then the following form:

M

(
εm
ε0

;Dm

)
=

3ε0
2ε0 + εm

|Dm|I3, (12)

and the remainder of either (10) or (11) becomes O(α5) as shown in [36]. So the field scattered by M
small spheres illuminated by a single dipole under the asymptotic hypothesis in near field is given by

Es(x,y) = iω0µ0k
2
0Il

M∑

m=1

AmG(x, rm)G(y, rm)p̂t +O(α5) where Am = α3
m

3(εm − ε0)

2ε0 + εm
|Dm| . (13)

For the far-field configuration, the corresponding dyadic Green function and scattered electric field
approximations are investigated. For a fixed y, the following far-field approximation holds:

g(x,y) =
eik0x

4πx
e−ix̂·y +O

(
1

x2

)
, (14)

and

G(x,y) =
eik0x

4πx
e−ik0x̂·y∆(x̂) +O

(
1

x2

)
, (15)

where ∆(x̂) = I3 − x̂⊗ x̂. Then the far-field pattern of G(x,y) is given by r

G∞(x̂,y) := e−ik0x̂·y∆(x̂), (16)

and the incident plane wave field due to a dipole can expressed as

Ei
∞(x, ŷ) := iω0µ0IlG∞(x, ŷ) · p̂t, (17)

where −ŷ is the impinging direction and p̂t is its polarization on S2. Hence, the total electric field Es(x, ŷ)
has the far-field pattern E∞(x̂, ŷ) such that

Es(x, ŷ) =
eik0x

4πx
E∞(x̂, ŷ) +O

(
1

x2

)
, (18)
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uniformly into all directions x̂ = x/|x| ∈ S2 as |x| → ∞
Following the same path than the near-field formulation, the far-field pattern E∞(x̂, ŷ) has following

asymptotic expansion formula.

Lemma 2.2 (Asymptotic formula of far-field pattern). Assume that all inhomogeneities are dielectric
and sufficiently small (αm

√
εm/ε0 ≪ λ0/2). Then, E∞(x̂, ŷ) has the following asymptotic expansion

formula:

E∞(x̂, ŷ) = ω2
0µ0

M∑

m=1

α3
m(εm − ε0)G∞(x̂, rm)M

(
εm
ε0

;Dm

)
Ei

∞(rm, ŷ) +O(α4) (19)

where α := max {αm, m = 1, 2 · · · ,M} for a generic incident field Ei
∞(rm, ŷ). Introducing the far-field

pattern of the dyadic Green function (16) and the expression of plane wave field due to the dipole (17) in
(19) leads to

E∞(x̂, ŷ) = iω0µ0k
2
0Il

M∑

m=1

α3
m

(
εm − ε0

ε0

)
e−ik0(x̂+ŷ)·rm

[
∆(x̂n)M

(
εm
ε0

;Dm

)
∆(ŷ) · p̂t

]
+O(α4), (20)

for an incident plane wave of impinging direction −ŷ and polarization p̂t.

Following the same path that for the near-field case (20) can be specialized in the case of spherical
using (12) leading to

E∞(x̂, ŷ) = iω0µ0k
2
0Il

M∑

m=1

Ame−ik0(x̂+ŷ)·rm [
∆(x̂n)∆(ŷ) · p̂t

]
+O(α5), (21)

3 Direct sampling method in near-field case

3.1 Introduction of direct sampling method and its structure analysis

The direct sampling method has been introduced in [32] and only the main equations with our notation
will be re-called in the follows. On the basis of the relation ((15) in [32])

〈Es(x,y),G(x, z) · q̂〉L2(Γobs)
≈ 1

k0

M∑

m=1

WmIm (G(z, rm)) · q̂, (22)

the indicator function of DSM ((16) in [32]) in the case of a single impinging source located at y with p̂t

as polarization direction is defined by

IDSM(z;y, q̂) :=

∣∣∣〈Es(x,y),G(x, z) · q̂〉L2(Γobs)

∣∣∣
‖Es(x,y)‖L2(Γobs)

‖G(x, z) · q̂‖L2(Γobs)

, (23)

and for L dipoles impinging directions, it is given by

IDSM(z) :=
1

L

L∑

l=1

IDSM(z;yl, q̂l) (24)

for taking into account each incident field. Here, G(x, z) · q̂ is a test dipole with polarization along
q̂ and related to receivers. Equation (22) shows that IDSM(z;y, q̂) ≈ 1 if z = rm ∈ τm, otherwise
IDSM(z;y, q̂) 6≈ 1 thanks to the oscillation property of dyadic Green function. However, we observed
that the choice of the test polarization vector q̂ is a key parameter for the proper reconstruction of the
inhomogeneities. So further analysis is necessary to verify the full structure of DSM indicator function
to identify the relation of the result of DSM and the choice of polarization. Note that the authors of [32]
proposed the guidelines for choosing q̂ such that q̂ = p̂t, but no theoretical reason was not yet provided.
So the validity of their suggestion will be proved in this work based on our analysis.

Thanks to the use of the asymptotic formula of scattered field introduced in Lemma 2.2, an represen-
tation formula of the DSM indicator function IDSM(z;y, q̂) is elucidated in the case of an incident field
due to a dipole placed in y and polarized along p̂t. The derivation is proposed as the following.
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Theorem 3.1. Assume that the total number of receiver directions N is sufficiently large and each
inhomogeneity is enough small (αm

√
εm/ε9 ≪ 0.5λ0). Then, the DSM indicator function has following

representation formula.

IDSM(z;y, q̂) =
|L1(z;y, q̂)|

max
z∈Ω

|L1(z;y, q̂)|
, (25)

where

L1(z;y, q̂) =
M∑

m=1

Am

[
C1

(
j0(k0|rm − z|)− j1(k0|rm − z|)

k0|rm − z|

)
+ C2

j2(k0|rm − z|)
|rm − z|2

]
. (26)

where js is a spherical Bessel function of integer order s and Am is defined in (13) and C1 and C2 are
given by

C1 =
[
p̂t · q̂

]
Q1(y, rm)− [p̂t · (rm − y)] [q̂ · (rm − y)]

|rm − y|2 Q2(y, rm) (27)

and

C2 =
[q̂ · (rm − z)] [p̂t · (rm − y)] [(rm − y) · (rm − z)]

|rm − y|2 Q2(y, rm)

− [p̂t · (rm − z)] [q̂ · (rm − z)]

|rm − y|2 Q1(y, rm), (28)

respectively. Here, Q1(y, rm) and Q2(y, rm) are defined by

Q1(y, rm) = g(y, rm)− g(y, rm)

k20 |rm − y|2 +
ig(y, rm)

k0|rm − y| , (29)

and

Q2(y, rm) = g(y, rm)− 3g(y, rm)

k20 |rm − y|2 +
3ig(y, rm)

k0|rm − y| . (30)

Proof. Using the asymptotic formula of scattered field (13) within the denominator of (23) leads to

〈Es(x,y),G(x, z) · q̂〉L2(Γobs)
= iω0µ0k

2
0Il

M∑

m=1

Am

〈
G(x, rm)G(rm,y) · p̂t,G(x, z) · q̂

〉
L2(Γobs)

(31)

≈ iω0µ0k0Il

M∑

m=1

Am(G(rm,y) · p̂t) · (Im(G(z, rm)) · q̂). (32)

To go from (31) to (32) the following relationship (see [32] for the demonstration)

〈G(x, z1) · p,G(x, z2) · q〉L2(Γobs)
≈ 1

k0
p · Im (G(z1, z2) · q) (33)

is used, where p ∈ C3, q ∈ S2 where S2 is unit sphere in R3.
The explicit form of G(rm,y)p̂t can be represented by

(G(rm,y) · p̂t)s = pts

[
g(y, rm)− g(y, rm)

k20 |rm − y|2 +
ig(y, rm)

k0|rm − y|

]

− (rm − y)s
p̂t · (rm − y)

|rm − y|2
[
g(y, rm)− 3g(y, rm)

k20 |rm − y|2 +
3ig(y, rm)

k0|rm − y|

]
,

(34)

= ptsQ1(y, rm)− (rm − y)s
p̂t · (rm − y)

|rm − y|2 Q2(y, rm), s = 1, 2, 3, (35)

whereQ1(y, rm) and Q2(y, rm) are defined (29) and (30), respectively. Similarly, the form of Im(G(z, rm))·
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q̂ is as follows

(Im (G(z, rm)) · q̂)s =
p̂rs

4π|rm − z|

[
sin(k0|rm − z|)− sin(k0|rm − z|)

k20 |rm − z|2 +
cos(k0|rm − z|)

k0|rm − z|

]

− (rm − z)s
q̂ · (rm − z)

4π|rm − z|3

×
[
sin(k0|rm − z|) − 3 sin(k0|rm − z|)

k20 |rm − z|2 +
3 cos(k0|rm − z|)

k0|rm − z|

]
,

(36)

=
p̂rs

4π|rm − z|f1(rm, z)− (rm − z)s
q̂ · (rm − z)

4π|rm − z|3 f2(rm, z) (37)

where

f1(rm, z) =

[
sin(k0|rm − z|) − sin(k0|rm − z|)

k20 |rm − z|2 +
cos(k0|rm − z|)

k0|rm − z|

]
1

4π|rm − z| , (38)

=
k0
4π

[
j0(k0|rm − z|)− j1(k0|rm − z|)

k0|rm − z|

]
, (39)

f2(rm, z) =

[
sin(k0|rm − z|) − 3 sin(k0|rm − z|)

k20 |rm − z|2 +
3 cos(k0|rm − z|)

k0|rm − z|

]
1

4π|rm − z|3 (40)

= − k0
4π

j2(k0|rm − z|)
|rm − z|2 . (41)

Here, the definitions of first kind of spherical Bessel functions are used to go from (38) to (39) and from
(40) to (41), respectively.

The combination of (35) and (37) for s = 1, 2, 3, leads to

(G(rm,y) · p̂t) · (Im(G(z, rm))·q̂)

=

3∑

s=1

(G(rm,y)p̂t)s (Im (G(z, rm)) q̂)s

=

{
[
p̂t · q̂

]
Q1(y, rm)− [p̂t · (rm − y)] [q̂ · (rm − y)]

|rm − y|2 Q2(y, rm)

}
f1(rm, z)

+

{
[q̂ · (rm − z)] [p̂t · (rm − y)] [(rm − y) · (rm − z)]

|rm − y|2 Q2(y, rm)

− [p̂t · (rm − z)] [q̂ · (rm − z)]

|rm − y|2 Q1(y, rm)

}
f2(rm, z).

(42)

After some manipulations and with the expansion of f1(rm, z) and f2(rm, z) as combination of the
spherical Bessel functions as defined in (39) and (41), the final expression is obtained as

∣∣∣〈Es(x,y),G(x, z)q̂〉L2(Γobs)

∣∣∣ ≈
∣∣∣∣∣

M∑

m=1

Am

[
C1

(
j0(k0|rm − z|)− j1(k0|rm − z|)

k0|rm − z|

)
+ C2

j2(k0|rm − z|)
|rm − z|2

]∣∣∣∣∣,

(43)

where C1 and C2 are given by (27) and (28) and where the constant
iω0µ0Ilk

2

0

4π is omitted since canceled
in the final expression thanks to the Hölder inequality

| 〈f ,g〉L2(Γobs)
| ≤ ‖f‖L2(Γobs)

‖g‖L2(Γobs)
(44)

which completes the proof.

Remark 3.1 (Properties of DSM with near-field data). We investigate the properties of IDSM(z;y, q̂)
from the result in Theorem 3.1 as follows.

1. Due to the properties of spherical Bessel function of integer orders in Figure 2, we have j0(k0|rm −
z|) = 1, j1(k1|rm − z|) = 0 and j2(k0|rm − z|) = 0 if z = rm, m = 1, 2, · · · ,M . In other words, each
inhomogeneity can be identified via IDSM(z;y, q̂) due to the term of j0(k0|rm−z|). But unexpected
artifacts will be discovered in the map of IDSM(z;y, q̂) because of the remaining terms j1(k0|rm−z|)
and j2(k0|rm − z|).
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2. The physical quantity of the inhomogeneities, e.g., the permittivity and size (which have been
concatenated within the complex amplitude Am for defect numbered m), have an important rule
in the map of IDSM(z;y, q̂). More specifically, the latter has its maximum values at the location
of the inhomogeneity, having the highest complex amplitude Am so that the one with the smallest
amplitude might be difficult to be identified. It is an inherent limitation of the DSM approach, as
it has been shown the details for the 2D scalar case in our previous work [30].

-15 -10 -5 0 5 10 15
-0.5

0

0.5

1

j
0
(|z|)

j
1
(|z|)

j
2
(|z|)

Figure 2: One-dimensional plot of the spherical Bessel function with orders 0, 1, 2

Based on our theoretical result in Theorem 3.1, we can know that choosing q̂ has an important rule
for proper reconstruction of support of the inhomogeneities. So a further discussion about choosing q̂ is
essential to apply the DSM.

Remark 3.2 (Investigation of choosing proper q̂).

1. The results provided by IDSM(z;y, q̂) are highly dependent on the choice of the test dipole polar-
ization q̂ ∈ S2 because the disturbing term could not have effect for imaging if C1 = 0 where C1

given by (27) which means that IDSM(z;y, q̂) 6= 1 when z = rm ∈ τm. Hence, we have to choose q̂

at least satisfying C1 6= 0, i.e,

[
p̂t · q̂

]
Q1(y, rm) 6= [p̂t · (rm − y)] [q̂ · (rm − y)]

|rm − y|2 Q2(y, rm). (45)

So (45) is a necessary condition to identify the inhomogeneities via IDSM(z;y, q̂).

2. From our theoretical result (25), the best choice of q̂ for imaging unknown targets with excellent
performance is to select q̂ making the large magnitude of C1 and small magnitude of C2 at the
same time. Unfortunately, it is impossible to select it analytically without information about τm
since both of C1 and C2 depend on the unknown information rm.

3. Following the pioneer work [33], leading to an enhanced MUSIC algorithm, the polarization of test
dipole q̂max was chosen to maximize the back-propagation amplitude in each sampling point z ∈ Ω.
So we suggest an alternative indicator function (DSMP) without any a priori information such as
follows:

IDSMP(z;y) = max
q̂∈S2

{IDSM(z;y, q̂)} (46)

even though more computational cost is required.

Now, we theoretically verify the validation of the guideline for choosing q̂ proposed from the authors
of [32] (q̂ = pt) through our structure analysis.

Corollary 3.2. Let rm 6= y, m = 1, 2, · · · ,M and q̂ = pt ∈ S2. Then, the necessary condition (45)
holds.

Proof. Assume that the condition (45) is no longer satisfied when q̂ = pt, i.e.,

[
p̂t · q̂

]
Q1(y, rm) =

[p̂t · (rm − y)] [q̂ · (rm − y)]

|rm − y|2 Q2(y, rm), where q̂ = pt. (47)

Then, since |pt| = 1 and pt · pt = 1,

Q1(y, rm) = (cos2 ϑ)Q2(y, rm), (48)

8



where ϑ is the between angle of two vectors pt and rm − y. The definitions of Q1(y, rm) and Q2(y, rm)
defined by (29) and (30), respectively, leads to

g(y, rm)

[
1− 1

k20 |rm − y|2 +
i

k0|rm − y|

]
= g(y, rm)

[
1− 3

k20 |rm − y|2 +
3i

k0|rm − y|

]
cos2 ϑ, (49)

which is equivalent to the case that the real and imaginary parts are simultaneously null. Namely,

1− 1

k20 |rm − y|2 =

[
1− 3

k20 |rm − y|2
]
cos2 ϑ, (50)

and
1

k0|rm − y| =
[

3

k0|rm − y|

]
cos2 ϑ. (51)

Since |rm− y| 6= 0, the imaginary part (51) implies to cos2 ϑ = 1
3 . By introducing the latter to (50),

1 =
1

3
, (52)

which is a contradiction. Therefore, C1 6= 0 if q̂ = pt which is the completeness of the proof.

Above observation shows that the necessary condition (45) is satisfied if q̂ = pt, so the inhomogeneities
can be identified via DSM with q̂ = pt when imaging the small volume spherical targets.

3.2 Numerical simulations

In this section, our theoretical results and efficiency of our methods are examined through various nu-
merical simulations. We consider a fixed frequency f0 = 749.481MHz = c0/λ0 where λ0 = 0.4m is the
wavelength and c0 the speed of light. FEKO is used to compute the fields scattered by various obsta-
cles illuminated by a single fixed dipole placed at y = (2.5λ0, 90°, 0°) and polarized along z-axis, where
(r, θ, φ) indicate the radial distance, polar angle, and azimuthal angle in spherical coordinate system

and polarized along θ̂. The three components x, y, z of the scattered fields are measured at the receiver
location defined as x = (rr, θr, φr), i.e., Es(x,y) = [Es

x(x,y), E
s
y(x,y), E

s
z (x,y; k0)]. Here, rr = 2.5λ0,

θrnθ
= 10nθ°, nθ = 1, 2, · · · , 17, φr

nφ
= 10(nφ − 1)°, nφ = 1, 2, · · · , 36, i.e., the total number of receivers

is N = Nθ × Nφ = 612. A 20-dB white Gaussian random noise is added using the MATLAB function
awgn. The region of interest (ROI) is defined as a 2.5λ0-side length cube evenly discretized in 41×41×41
voxels. To apply our proposal DSMP, we consider q̂t ∈ S2, t = 1, 2, · · · , 201 that are evenly distributed
by the method in [37].

The reconstructions are visualized using volume slice planes and/or isosurface the latter being defined
as

Vυ = {z ∈ Ω|I(z) ≥ υ}, (53)

where υ is an isosurface parameter and I is either IDSM(z;y, q̂) or IDSMP(z;y). According to [38], we
choose the parameter υ such as

υ = min
z∈Ω

I(z) + ρ

[
max
z∈Ω

I(z) −min
z∈Ω

I(z)
]
, 0 < ρ < 1, (54)

and ρ is chosen based upon the quality of the reconstructions.
In order to compare the accuracy of the results, we adopt the traditional notion of the Jaccard index

[39]. The index measures the similarity between two finite samples sets A and B, and it is defined as

J(A,B)(%) :=
|A ∩B|
|A ∪B| × 100. (55)

In our case the Jaccard index is calculated by comparing Iκ
exact (z) with various index maps Iκ (z) defined

as

Iκ (z) =

{
I (z) , ∀z such that I ≥ κ

0 ∀z such that I < κ
(56)

where κ varies from 0 to 1 and where I (z) can be IDSM(z;y, q̂) or IDSMP(z;y) and where Iexact (z) is
defined as

Iexact (z) =
|k(z) − k0|

max |k(z) − k0|
. (57)

Here, k(z) is the wavenumber at the searching point z ∈ Ω. The k0 is analogously defined in the back-
ground medium.
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Example 3.1 (Single small sphere). A small spherical dielectric inhomogeneity of location
(
λ0

4 , λ0

4 , λ0

4

)
,

radius λ0

10 and electric permittivity ε = 5ε0 is considered.

Figure 3 shows that the accuracy of DSM is highly dependent on the choice of the test dipole polariza-
tion, as stated in Remark 3.2. As for example when changing the test dipole polarization in the range of
q̂ in 0° ≤ θ ≤ 140° for fixed φ = 45°, the DSM results evolves from a good localization to bad one. We can
identify the inhomogeneity via DSM when the polarization is chosen either q̂ = pt (by the guideline in
[32]) or our proposal DSMP in (46), See Figure 4, and Figure 5, respectively. The results show that their
accuracy seems to be similar, the Jaccard index identifies that in Figure 6. But additional information
(e.g., the polarization of incident dipole) is not used in our proposal with a slightly higher computational
cost.

Figure 3: (Example 3.1) Maps of IDSM(z;y, q̂) using isosurface with ρ = 0.8, where q̂ = (1, θ, φ)

(a) Volume slice with x = 0.1 and y = 0.1 planes (b) Isosurface with ρ = 0.8

Figure 4: (Example 3.1) Maps of IDSM(z;y, q̂), where q̂ = (1, 90°, 45°) = (0, 0, 1) = p̂t

.

Example 3.2 (Two small spheres with different radii but same permittivity). In the following, the case
of two dielectric spheres with different radii α1 = 0.12λ0, α2 = 0.1λ0 but same electric permittivity
εm = 5ε0, m = 1, 2, located at r1 = (λ0

4 , λ0

4 , λ0

4 ) and r2 = (−λ0

2 ,−λ0

4 ,−λ0

4 , ), respectively is dealt with.

According to Figure 7, the proper choice of the test dipole polarization is a crucial parameter for
the efficiency of DSM also in multiple target case. Figures 8, 9, 10 show that both of the selections of
polarization provide a good result. Note that the isosurface representation has been drawn using ρ = 0.4
(instead of ρ = 0.8) to exhibit the localization of τ2. As a matter of fact, τ2 having a smaller size and
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(a) Volume slice with x = 0.1 and y = 0.1 planes (b) Isosurface with ρ = 0.8

Figure 5: (Example 3.1) Maps of IDSMP(z;y)
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Figure 6: (Example 3.1) Jaccard index of IDSM(z;y, q̂ = p̂t) and IDSMP(z;y)

being further away from the impinging dipole its signature has a lower value than the one of τ2, as stated
in Remark 1 which is an inherent limitation of DSM. We also note that the same phenomenon would
have happened in the case of scatterers with the same radii but different permittivity.

Figure 7: (Example 3.2) Maps of IDSM(z;y, q̂) using isosurface with ρ = 0.4, where q̂ = (1, θ, φ)
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(a) Volume slice with x = 0.1 and y =

0.1 planes
(b) Volume slice with x = −0.2 and
y = −0.1 planes

(c) Isosurface with ρ = 0.5

Figure 8: (Example 3.2) Maps of IDSM(z;y, q̂), where q̂ = (1, 0°, 45°) = (0, 0, 1) = p̂t

.

(a) Volume slice with x = 0.1 and y =

0.1 planes
(b) Volume slice with x = −0.2 and
y = −0.1 planes

(c) Isosurface with ρ = 0.5

Figure 9: (Example 3.2) Maps of IDSMP(z;y)

4 Direct sampling method in far-field case

4.1 Introduction of direct sampling method and its structure analysis

In the following, we will treat the far-field configuration in which the incident field is nothing but a single
plane wave Ei

∞(x̂, ŷ) having an impinging direction −ŷ and a polarization p̂t and the collected data are
the far-field pattern E∞(x̂, ŷ) as defined (20). The DSM indicator function is then defined as

I∞
DSM(z; ŷ, q̂) :=

∣∣∣〈E∞(x̂, ŷ),G∞(x̂, z) · q̂〉L2(S2

∣∣∣
‖Es(x̂, ŷ)‖L2(S2) ‖G∞(x̂, z) · q̂‖L2(S2)

. (58)

As usual the DSM indicator function with L multiple impinging directions is given by

I∞
DSM(z) =

1

L

L∑

l=1

I∞
DSM(z; ŷl, q̂l), (59)

where I∞
DSM(z; ŷl, q̂l) is given in (58) for each ŷl, l = 1, 2, · · · , L (note that (59) is equivalent to (58) if

L = 1).
Following the same steps as for the near-field case, an analytical formulation of the DSM indicator

function is proposed in Theorem 4.4 thanks to the use of the asymptotic formulation of the far-field pattern
(20). However, some preliminary results have to be introduced first in order to calculate the following
integral equation, a key point to establish an analytical formulation of the DSM indicator function.

∫

S2

(G∞(x̂, z1) · p) · (G∞(x̂, z2) · q)dS(x̂), (60)

Let us first introduce the well-known Funk-Hecke formula (Lemma 4.1) involving the spherical harmonic
function. We will have to deal with and a new lemma (Lemma 4.2) involving either the real part or the
imaginary part of the spherical harmonic function (the demonstration of the latter being provided in the
appendix)
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Figure 10: (Example 3.2) Jaccard index of IDSM(z;y, q̂ = p̂t) and IDSMP(z;y)

Lemma 4.1 (Funk-Hecke formula). For any f ∈ L2(−1, 1) and ẑ, x̂ ∈ S2, the following formula holds.
∫

S2

f(ẑ · x̂)Ym
n (x̂)dS(x̂) = λn Ym

n (ẑ) where λn = 2π

∫ 1

−1

f(t) Pn(t)dt (61)

for all n ∈ N and m = −n, . . . , n. Here, Ym
n is a spherical harmonic and Pn is a Legendre polynomial.

The details can be found in [40, 41] and reference therein. Following the same path than the Funk-
Hecke formula proof founded in [41, Theorem 2.16], the related results can be derived.

Lemma 4.2. For any f ∈ L2(−1, 1) and ẑ, x̂ ∈ S2, the following formulas hold.
∫

S2

f(ẑ · x̂)Re (Ym
n (x̂)) dS(x̂) = λnRe (Y

m
n (ẑ)) ,

∫

S2

f(ẑ · x̂)Im (Ym
n (x̂)) dS(x̂) = λnIm (Ym

n (ẑ)) ,

(62)

where λn has been defined in (61).

Proof. See the Appendix.

Let us focus on the special variant of Lemma 4.1 and Lemma 4.2 for which f(ẑ · x̂) = e−ik0|z|ẑ·x̂ =
e−ik0z·x̂, λn is then given by

λn = 2π

∫ 1

−1

e−ik0|z|ẑ·x̂ Pn(ẑ · x̂)d(ẑ · x̂). (63)

Since ẑ · x̂ = cosϕ where ϕ is angle between two vectors ẑ and x̂, we have

λn = 2π

∫ π

0

e−ik0|z| cosϕ Pn(cosϕ)(− sinϕ)dϕ (64)

=
4π

in
jn(k0|z|) (65)

thanks to the integral representation of the first kind spherical Bessel function jn of order n ∈ Z

jn(α) =
(−i)n

2

∫ π

0

eiα cosϕ Pn(cosϕ) sinϕdϕ. (66)

So, in our specific case, the results provided by the Lemmas 4.1 and 4.2 can be rewritten as
∫

S2

e−ik0z·x̂ Ym
n (x̂)dS(x̂) =

4π

in
jn(k0|z|)Ym

n (ẑ),

∫

S2

e−ik0z·x̂Re (Ym
n (x̂)) dS(x̂) =

4π

in
jn(k0|z|)Re (Ym

n (ẑ)) ,

∫

S2

e−ik0z·x̂Im (Ym
n (x̂)) dS(x̂) =

4π

in
jn(k0|z|)Im (Ym

n (ẑ)) ,

(67)

The next step is now to establish an analytical solution of (60) with the help of (67).
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Lemma 4.3. For p ∈ C3 and q ∈ S2, the following relation holds
∫

S2

(G∞(x̂, z1) · p) · (G∞(x̂, z2) · q)dS(x̂) =
8π

3
(p · q)j0(k0|z1 − z2|) + (D1 +D2)j2(k0|z1 − z2|), (68)

where W1 and W2 are given by

W1 = −8π

3

√
π

5
Y0

2(ẑ)(p1q1 + p2q2 − 2p3q3) (69)

and

W2 = −8π

√
2π

15

[
Re

(
Y1

2(ẑ)
)
(p1q3 + p3q1) + Im

(
Y1

2(ẑ)
)
(p2q3 + p3q2)

− Re
(
Y2

2(ẑ)
)
(p1q1 − p2q2)− Im

(
Y2

2(ẑ)
)
(p1q2 + p2q1)

]
. (70)

Here, ẑ = (z1 − z2) /|z1 − z2|.
Proof. The introduction of the expression of the far-field approximation of dyadic green function (15) in
(60) leads to

∫

S2

(G∞(x̂, z1) · p) · (G∞(x̂, z2) · q)dS(x̂) =
∫

S2

(e−ik0x̂·z1∆(x̂) · p) · (eik0x̂·z2∆(x̂) · q)dS(x̂) (71)

=

∫

S2

e−ik0x̂·(z1−z2)p · (∆(x̂) · q)dS(x̂) (72)

= p ·
∫

S2

(
e−ik0x̂·(z1−z2)∆(x̂) · q)

)
dS(x̂) (73)

where the following properties ∆(x̂)T = ∆(x̂) and ∆(x̂)2 = ∆(x̂) are used to go from (71) to (72), and
the fact that p is a complex constant vector to go from (72) to (73).

The next step is now to establish an explicit form of ∆(x̂) · q. The definition of ∆(x̂):

∆(x̂) := I3 − x̂⊗ x̂ =



1− x̂2

1 −x̂1x̂2 −x̂1x̂3

−x̂1x̂2 1− x̂2
2 −x̂2x̂3

−x̂1x̂3 −x̂1x̂2 1− x̂2
3,


 (74)

leads to
(∆(x̂) · q)s = qs − x̂s(q · x̂), s = 1, 2, 3. (75)

Using the expressions of the unit vector x̂ = (sin θ cosφ, sin θ sinφ, cos θ)
T

and of the spherical harmonics
Ym

n as a function of the spherical coordinates:

Y0
2 (θ, φ) =

1

4

√
5

π

(
3 cos2 θ − 1

)
,

Y1
2 (θ, φ) = −1

2

√
15

2π
sin θ cos θeiφ,

Y2
2 (θ, φ) =

1

4

√
15

2π
sin2 θe2iφ,

(76)

we can express the first component of ∆(x̂) · q as

(∆(x̂) · q)1 = q1 − sin θ cosφ (q1 sin θ cosφ+ q2 sin θ sinφ+ q3 cos θ) (77)

= q1 −
q1
2
sin2 θ − q1

2
sin2 θ cos 2φ− q2

2
sin2 θ sin 2φ− q3 sin θ cos θ cosφ (78)

=
2

3
q1 +

2

3
q1

√
π

5
Y0

2 −2

√
2π

15

[
q1Re

(
Y2

2(x̂)
)
+ q2Im

(
Y2

2(x̂)
)
− q3Re

(
Y1

2(x̂)
) ]

. (79)

Similarly, the other components are obtained by

(∆(x̂) · q)2 =
2

3
q2 +

2

3
q2

√
π

5
Y0

2(x̂)− 2

√
2π

15

[
q1Im

(
Y2

2(x̂)
)
− q2Re

(
Y2

2(x̂)
)
− q3Im

(
Y1

2(x̂)
) ]

,

(∆(x̂) · q)3 =
2

3
q3 −

4

3
q3

√
π

5
Y0

2(x̂) + 2

√
2π

15

[
q1Re

(
Y1

2(x̂)
)
+ q2Im

(
Y1

2(x̂)
) ]

.

(80)
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From the remarks (67) and the fact that Y0
0(x̂) =

1√
4π

, we have

∫

S2

e−ikx̂·(z1−z2)dS(x̂) = 4πj0(k|z1 − z2|). (81)

Combining either (79) or (80) with (67), for ẑ = (z1 − z2) /|z1 − z2|, gives the following analytical
expressions

∫

S2

e−ik0x̂·(z1−z2)(∆(x̂) · q)1dS(x̂) =
8π

3
q1j0(k0|z1 − z2|)−

8π

3
q1

√
π

5
Y0

2(ẑ)j2(k0|z1 − z2|)

+ 8π

√
2π

15
j2(k0|z1 − z2|)

[
q1Re

(
Y2

2(ẑ)
)
+ q2Im

(
Y2

2(ẑ)
)
− q3Re

(
Y1

2(ẑ)
)]

, (82)

∫

S2

e−ik0x̂·(z1−z2)(∆(x̂) · q)2dS(x̂) =
8π

3
q2j0(k0|z1 − z2|)−

8π

3
q2

√
π

5
Y0

2(ẑ)j2(k0|z1 − z2|)

+ 8π

√
2π

15
j2(k0|z1 − z2|)

[
q1Im

(
Y2

2(ẑ)
)
− q2Re

(
Y2

2(ẑ)
)
− q3Im

(
Y1

2(ẑ)
)]

, (83)

and

∫

S2

e−ik0x̂·(z1−z2)(∆(x̂) · q)3dS(x̂) =
8π

3
q3j0(k0|z1 − z2|) +

16π

3
q3

√
π

5
Y0

2(ẑ)j2(k0|z1 − z2|)

− 8π

√
2π

15
j2(k0|z1 − z2|)

[
q1Re

(
Y1

2(ẑ)
)
+ q2Im

(
Y1

2(ẑ)
)]

. (84)

They leads to

∫

S2

p ·
(
e−ik0x̂·(z1−z2)∆(x̂) · q)

)
dS(x̂) =

8π

3
(p · q)j0(k0|z1 − z2|) + (W1 +W2)j2(k|z1 − z2|), (85)

which complete the lemma. Here C1 and C2 are given by (69) and (70), respectively.

Now, under the small volume and spherical shape assumptions for the inhomogeneities, the DSM
indicator function (58) is derived thanks to the Lemma 4.3 and asymptotic formula (21).

Theorem 4.4. Assume that the total number of observation directions N is sufficiently large and each
inhomogeneity is enough small (αm

√
εm/ε9 ≪ 0.5λ). Then, the DSM indicator function has following

representation formula.

I∞
DSM(z; ŷ, q̂) ≈ |L2(z, ŷ, q̂)|

max
z∈Ω

|L2(z, ŷ, q̂)|
, (86)

where

L2(z, ŷ, q̂) :=

∣∣∣∣∣

M∑

m=1

Ameik0rm·ŷ
[
8π

3

((
∆(ŷ) · p̂t

)
· q̂

)
j0(k0|rm − z|) + (C3 + C4) j2(k0|rm − z|)

]∣∣∣∣∣. (87)

Here, for ẑm = (rm − z) /|rm − z|

C3 = −8π

3

√
π

5

[
(∆(ŷ) · p̂t)1q̂1 + (∆(ŷ) · p̂t)2q̂2 − 2(∆(ŷ) · p̂t)3q̂3

]
Y0

2(ẑm) (88)

and

C4 =8π

√
2π

15

[
− Re

(
Y1

2(ẑ)
) {

(∆(ŷ) · p̂t)1q̂3 + (∆(ŷ) · p̂t)3q̂1
}

− Im
(
Y1

2(ẑ)
) {

(∆(ŷ) · p̂t)2q̂3 + (∆(ŷ) · p̂t)3q̂2
}
+Re

(
Y2

2(ẑ)
) {

(∆(ŷ) · p̂t)1q̂1 − (∆(ŷ) · p̂t)2q̂2
}

+ Im
(
Y2

2(ẑ)
) {

(∆(ŷ) · p̂t)1q̂2 + (∆(ŷ) · p̂t)2q̂1
} ]

.

(89)
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Proof. According to the the asymptotic formula of far-field pattern (19) and sufficiently large N ,

∣∣∣〈E∞(x̂, ŷ),G∞(x, z)q̂〉L2(S2)

∣∣∣ =
∣∣∣∣∣k

2
0

M∑

m=1

Am

N∑

n=1

G∞(rm, x̂n)E
i(rm, ŷ) ·G∞(z, x̂n)q̂

∣∣∣∣∣,

≈
∣∣∣∣∣k

2
0

M∑

m=1

Am

∫

S2

G∞(rm, x̂)Ei(rm, ŷ) ·G∞(z, x̂)q̂dS(x̂)

∣∣∣∣∣.
(90)

By substituting p̂t = Ei
∞(rm, ŷ) = iω0µ0e

ik0rm·ŷ∆(ŷ)p̂t and q = q̂ in Lemma 4.3,

∣∣∣〈E∞(x̂, ŷ),G∞(x, z)q̂〉L2(S2)

∣∣∣ ≈ iω0µ0Ilk
2
0

∣∣∣∣∣

M∑

m=1

Ameik0rm·ŷ

×
[
8π

3

((
∆(ŷ)p̂t

)
· q̂

)
j0(k0|rm − z|) + (C3 + C4) j2(k0|rm − z|)

]∣∣∣∣∣, (91)

where C3 and C4 are given by (88) and (89), respectively. Thanks to the Hölder’s inequality (44), the
constant iω0µ0Ilk

2
0 is canceled and the proof is completed.

In the following, the structural properties of the DSM indicator function are discussed. Note that
some remarks will be redundant due to the similarity between the formulations in the near-field and the
far-field configurations.

Remark 4.1 (Properties of DSM with far-field data). According to Theorem 4.4, following properties of
DSM indicator function in far-field configuration can be investigated.

1. As for Figure 11, I∞
DSM(z; q̂) has a maximum of magnitude at z = rm ∈ τm since j0(k0|rm − z|) = 1

and j2(k0|rm − z|) = 0 in that case. However, unexpected artifacts can be found in the maps of
I∞
DSM(z; q̂) due to j2(k0|rm − z|) > 0 if z 6∈ τm.

2. According to the facts that stated in Remark 3.1 2, when dealing with multiple defects having
different physical properties (e.g., size and/or permittivity, etc.) in the medium, the one having
a smaller size or permittivity than the others will difficult to be identified through the maps of
I∞
DSM(z; q̂).

-15 -10 -5 0 5 10 15
-0.5
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0.5
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Figure 11: One-dimensional plot of the spherical Bessel function with orders 0, 2

Now, we investigate the method to choose proper polarization of test dipole based on Theorem 4.4 as
the following remark.

Remark 4.2 (Investigation of choosing proper q̂). Since j0(k0|rm − z|) contributes to retrieve the infor-
mation about inhomogeneities in the map of I∞

DSM(z; q̂), it is necessary to choose the polarization q̂ at
least satisfying following condition:

(
∆(ŷ) · p̂t

)
· q̂ 6= 0 if and only if p̂t · q̂ 6= (ŷ · q̂)(ŷ · p̂t), (92)

which is similar to Remark 3.2, but, on the contrary to (45), the condition (92) does not involve infor-
mation about the localization of the defect.
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1. Nevertheless, it is impossible to get an analytic solution of q̂ without a prior information about τm
because the latter is essential to eliminate the disturbing terms j2(k0|rm−z|) by making C1+C2 = 0.
Hence, we can again obtain the proper polarization of test dipole with the same process in the near-
field case proposed in (46) by

I∞
DSMP(z;y) = max

q̂∈S2
{I∞

DSM(z;y, q̂)} . (93)

2. Similar to the near-field case in Corollary 3.2, to select q̂ as p̂t will be one of proper way to image
the target via I∞

DSM(z; q̂). Because if q̂ = p̂t,

p̂t · q̂− (ŷ · q̂)(ŷ · p̂t) = 1− cos2 ϑ, (94)

where ϑ is between angle of p̂t and ŷ. Since p̂t ∦ q̂, the necessary condition (92) holds.

4.2 Numerical simulations with far-field data

Our analysis and proposal are verified through the numerical simulations using synthetic far-field data
obtained by FEKO to which a 20 dB white Gaussian random noise using the MATLAB function awgn is
added. The configurations are the same as Example 3.1 and Example 3.2 in section 3.2 except but in the
far-field configuration. In this simulations, we again consider evenly distributed q̂t ∈ S2, t = 1, 2, · · · , 201
to apply our proposal DSMP.

The spherical coordinate system is again used to present the information about direction and polariza-
tion of source and observation. A single incident impinging wave of direction (−1, 90°, 0°) and polarization
p̂t = (1, 0°, 0°) (= (0, 0, 1) in Cartesian coordinate system) is considered. The observation directions are
evenly distributed with θr varying from 0° to 350° with 10°-step and φr varying from 10° to 170° with
10°-step. Since the far-field configuration is considered, only the θr- and φr-components of the far-field
pattern are obtained. Then, a transformed far-field pattern Ẽ∞(x,y) = PE∞(x,y) is used to adjust our
theoretical approach (using three components of scattered field along x, y and z) where the transition

matrix is defined by P = [r̂r ; θ̂r; φ̂r] ∈ R3×3 with

r̂r = (sin θr cosφr, sin θr sinφr, cos θr)T ,

θ̂r = (cos θr cosφr , cos θr sinφr, cos θ)T ,

φ̂r = (− sinφr, cosφr, 0)T ,

(95)

in Cartesian coordinate system. As in section 3.2, the results are visualized using volume slice plane and
isosurface using isosurface parameter ν given in (54). The accuracy of the methods is measured by the
Jaccard index in (55)

Example 4.1 (Single small sphere). Let us remind the information about the inhomogeneity τ with
r = (0.1m, 0.1m, 0.1m), α = 0.1λ = 0.04m, and ε = 5ε0, respectively.

As shown in Figures 12, 13,and 14, the results are similar to the ones obtained within the near-
field configuration (Example 3.1). The DSM results are getting worse as the direction q̂ is changed in
0° ≤ θ ≤ 70° for fixed φ = 45°. Whereas, the inhomogeneity is correctly identified via DSM with p̂t

or DSMP . Hence, we can validate that both DSM with q̂ = p̂t and DSMP would be a good choice
for imaging of the inhomogeneity, but our proposal DSMP is no need to use the information about
polarization of incident field even with more computational cost. Furthermore, we can verify that the
accuracy of DSMP is slightly better than the traditional DSM by the Jaccard index in Figure 15.

Example 4.2 (Two small spheres with same radii and different permittivity). Similar to example 3.2,
two small spherical dielectric inhomogeneities with same radii αm = 0.1λ = 0.04m but different per-
mittivity ε1 = 3ε0, ε2 = 5ε0 are considered. They are located at r1 = (0.1m, 0.1m, 0.1m) and r2 =
(−0.2m,−0.1m,−0.1m), respectively.

Figure 16 shows that the issue of choosing the proper polarization of test dipole still occurs as the
previous example. DSM with the polarization as p̂t (Figure 17) or our proposal DSMP (Figure 18) handle
it as expected. However, as stated in Remark 4.1, the inhomogeneity having the smaller permittivity is
difficult to be identified with both DSM and DSMP, which is similar to the different radii case in example
3.2. The Figure 19 shows that the imaging performance is not enough good to identify all inhomogeneities
via both DSM with q̂ = p̂t and DSMP.
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Figure 12: (Example 4.1) Maps of IDSM(z;y, q̂) using isosurface with ρ = 0.8, where q̂ = (1, θ, φ)

(a) Volume slice with x = 0.1 and y = 0.1 planes (b) Isosurface with ρ = 0.6

Figure 13: (Example 4.1) Maps of IDSM(z;y, q̂), where q̂ = (1, 0°, 45°) = (0, 0, 1) = p̂t

.

(a) Volume slice with x = 0.1 and y = 0.1 planes (b) Isosurface with ρ = 0.6

Figure 14: (Example 4.1) Maps of IDSMP(z;y)

5 Illustration with experimental far-field data

Additional results obtained using experimental data are presented thanks to Fresnel experimental data
(http://www.fresnel.fr/3Ddatabase/index.php), the details of which being found in [42]. The fre-
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Figure 15: (Example 4.1) Jaccard index of I∞
DSM(z;y, q̂ = p̂t) and I∞

DSMP(z;y)

Figure 16: (Example 4.2) Maps of IDSM(z;y, q̂) using isosurface with ρ = 0.5, where q̂ = (1, θ, φ)

(a) Volume slice with x = 0.1 and y =

0.1 planes
(b) Volume slice with x = −0.2 and
y = −0.1 planes

(c) Isosurface with ρ = 0.6

Figure 17: (Example 4.2) Maps of IDSM(z;y, q̂), where q̂ = (1, 0°, 45°) = p̂t

.

quency is chosen as f0 = 3GHz to be close to the our theoretical condition, the corresponding wave-
length being then λ0 ≈ 0.1m. Among a various types of defects, two small dielectric sphere of same
radii αm ≈ 0.25λ0, permittivity εm = 2.6ε0 with r1 = (0.25λ0, 0, 0) and r2 = (−0.25λ0, 0, 0) is selected
(experimental file name is TwoSpheres_PP.exp and TwoSpheres_TP.exp). The region of interest Ω is a
cube of 2.5λ0 side length evenly discretized in 41× 41× 41 voxels. The DSMP is obtained by considering
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(a) Volume slice with x = 0.1 and y =

0.1 planes
(b) Volume slice with x = −0.2 and
y = −0.1 planes

(c) Isosurface with ρ = 0.6

Figure 18: (Example 4.2) Maps of IDSMP(z;y)
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Figure 19: (Example 4.2) Jaccard index of I∞
DSM(z;y, q̂ = p̂t) and I∞

DSMP(z;y)

q̂t ∈ S2, t = 1, 2, · · · , 201.
It is worth note that

• Since the locations of receivers and transmitters are far from the center (1.796m ≈ 18λ0) in the
experimental configuration, the scattered electric field can be regarded as the far-field pattern.

• Due to the limitation of the experimental setup, only N = 36 observation directions are considered,
but many L = 81 incident fields can be applied. However, thanks to the reciprocity of the roles of
the source and the receiver can be exchanged [43].

• To adjust our theoretical approach, the transformed scattered field Ẽ∞(x,y) = PE∞(x,y) is used

for imaging. Here P = [r̂r ; θ̂r; φ̂r ] ∈ R3×3 is the transition matrix given by (95).

N = 81 directions of observation are evenly distributed in polar angle θr from 30° to 150° with a 15°
step and in azimuthal angle φr from 0° to 320° with a 40° step. The two tangential components (along
with θr and φr) of the scattered field are measured. Due to the design of experimental system, L = 27
incident plane wave polarized along θt and located only on the azimuthal plane have been recorded, the
impinging directions are defined as θt = 90° and φt varying from 50° to 310° with a 10° step. Among those
L incidences only the one characterized by θ = 90° and φ = 50° has been used for the reconstruction of
the inhomogeneities.

The results are presented Figures 20, 21, and 22. The choice of the test dipole as q̂ = p̂t provides
excellent results, but a little unexpected artifact is found. But we can eliminate it have to get better
results to retrieve the location of the inhomogeneities with only a single impinging direction. In other
words, the DSMP has a few better accuracy than tradition DSM in experimental data case while they
have almost the same efficiency in synthetic data case. The Jaccard index in Figure 23 can confirm this
observation.
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Figure 20: Maps of I∞
DSM(z;y, q̂) using isosurface with ρ = 0.8, where q̂ = (1, θ, φ)

(a) Volume slice with x = −0.2 and y =

−0.1 planes
(b) Volume slice with x = 0.1 and y =

0.1 planes
(c) Isosurface with ρ = 0.7

Figure 21: Maps of I∞
DSM(z;y, q̂), where q̂ = (1, 180°, 45°) = p̂t

.

(a) Volume slice with x = −0.2 and y =

−0.1 planes
(b) Volume slice with x = 0.1 and y =

0.1 planes
(c) Isosurface with ρ = 0.7

Figure 22: Maps of I∞
DSMP(z;y)

6 Conclusion

In this article, the analytical expressions of the DSM indicator function within the small obstacle hypoth-
esis are provided in both near-field and far-field configuration thanks to the asymptotic formula of the
scattered field. With such an analysis, we explain the reasons for which DSM can localize the targets and
for which some artifacts might appear. Moreover, the relation of the choice of the test dipole polarization
and the efficiency of DSM is exhibited, and some methods to provide a better option is proposed with
a theoretical validation. The approach is validated using synthetic data and experimental data when
available.

Throughout this work, we only consider the full-view configuration. However, it might be impossible to
obtain data in such a setting in real applications. Hence, the analysis of DSM in restricted configurations
such as mono-static and limited-view configurations is of interest.
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Appendix

Proof of Lemma 4.2

For fixed ẑ, choose an orthogonal matrix A depending on ẑ such that A−1ẑ = AT ẑ = ẑ′ = (0, 0, 1)T , i.e.,
ẑ′ is “north pole”. Then the transformation x̂ = Ax̂′ leads that

∫

S2

f (ẑ · x̂)Ym
n (x̂)dS(x̂) =

∫

S2

f (ẑ · Ax̂′)Ym
n (Ax̂′) dS(x̂′) =

∫

S2

f (ẑ′ · x̂)Ym
n (Ax̂′) dS(x̂) (96)

Because the orthonormal matrix A is isometry, the function Ym
n (Ax̂) is again a spherical harmonic of

order n and it can be expressed as

Ym
n (Ax̂) =

n∑

k=−n

ak Y
k
n(x̂) where ak =

∫

S2

Ym
n (Ax̂)Y−k

n (x̂)dS(x̂). (97)

We know that

Re (Ym
n (Ax̂)) =

n∑

k=−n

Re (ak)Re
(
Yk

n(x̂)
)
− Im (ak) Im

(
Yk

n(x̂)
)
,

Im (Ym
n (Ax̂)) =

n∑

k=−n

Re (ak) Im
(
Yk

n(x̂)
)
+ Im (ak)Re

(
Yk

n(x̂)
)
.

(98)

By introducing (98) in (96) and by expressing x̂ in spherical coordinates x̂ = (sin θ cosφ, sin θ sinφ, cos θ)T

(note that ẑ′ · x̂ = cos θ), the following expressions are obtained

∫

S2

f(ẑ · x̂)Re (Ym
n (x̂)) dS(x̂)

=

n∑

k=−n

∫

S2

f (ẑ′ · x̂)
[
Re (ak)Re

(
Yk

n(x̂)
)
− Im (ak) Im

(
Yk

n(x̂)
)]

dS(x̂)

=

n∑

k=−n

√
(2n+ 1)(n− |k|)!

4π(n+ |k|!)

∫ π

0

∫ 2π

0

f(cos θ)P |k|
n (cos θ) [Re (ak) cos(kφ) − Im (ak) sin(kφ)] dφ sin θdθ

= Re (a0)

√
2n+ 1

4π

(
2π

∫ π

0

f(cos θ)Pn(cos θ) sin θdθ

)
.

(99)
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and
∫

S2

f(ẑ · x̂)Im (Ym
n (x̂)) dS(x̂)

=

n∑

k=−n

∫

S2

f (ẑ′ · x̂)
[
Re (ak) Im

(
Yk

n(x̂)
)
+ Im (ak) Re

(
Yk

n(x̂)
)]

dS(x̂)

=

n∑

k=−n

√
(2n+ 1)(n− |k|)!

4π(n+ |k|!)

∫ π

0

∫ 2π

0

f(cos θ)P |k|
n (cos θ) [Re (ak) sin(kφ) + Im (ak) cos(kφ)] dφ sin θdθ

= Im (a0)

√
2n+ 1

4π

(
2π

∫ π

0

f(cos θ)Pn(cos θ) sin θdθ

)
.

(100)

By substituting x̂ = ẑ′ in (97) and from Yk
n(ẑ

′) = 0 for k 6= 0,

Ym
n (ẑ) = Ym

n (Aẑ′) =
n∑

k=−n

ak Y
k
n (ẑ

′) = a0

√
2n+ 1

4π
Pn(1) = a0

√
2n+ 1

4π
, (101)

so that

Re (Ym
n (ẑ)) = Re (a0)

√
2n+ 1

4π
and Im (Ym

n (ẑ)) = Im (a0)

√
2n+ 1

4π
. (102)

Finally, (99), (100), and (102) imply (62) which complets the proof.
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