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On preserving-excitation properties of a dynamic regressor extension
scheme

Stanislav Aranovskiy1,2, Rosane Ushirobira3, Marina Korotina2, Alexey Vedyakov2

Abstract—In this work, we consider the excitation preservation
problem within the context of the Dynamic Regressor Extension
and Mixing procedure. To ensure that the input excitation is not
lost, we apply the Kreisselmeier’s regressor extension scheme and
prove that this choice always preserves both the persistent and
the interval input excitations. We also provide a lower bound on
the resulting excitation level and study the dynamics of the novel
regressor. Illustrative simulations support our theoretical results.

I. INTRODUCTION

The investigation of physical phenomena by mathematical
modeling leads frequently to the problem of estimating model
parameters. Indeed, the differential equations appearing in the
model under consideration may contain parameters that are
difficult to determine in advance. Through the years, numerous
research works, in several disciplines, have been dedicated to
this fundamental problem.

The linear regression equation (LRE) plays a central role in
adaptive parameter estimation and adaptive control. It can be
found in system identification [1], in model-reference adaptive
control [2], [3] and adaptive pole-placement [4], in filtering
and prediction [5], in reinforcement learning [6], and several
others areas. The linear regression model is given by

H(C) = q> (C)\ +F(C), (1)

where H(C) ∈ Rℓ is the output signal, q(C) ∈ R=×ℓ is the regres-
sor, F(C) ∈ Rℓ is an additive distortion, e.g., a measurement
noise, and \ ∈ R= is the vector of unknown constant parame-
ters. The signals H and q are known (e.g., they are measured),
and the distortion signal F is unknown. The purpose is to
estimate the vector of parameters \ using the measurements H
and q.

The convergence of various parameter estimation schemes
relies on the essential premise of an adequate richness of the
regressor q, realized by the definition of the persistence of ex-
citation (PE) condition, see Section II. In recent years, various
efforts to ease the PE requirement have been suggested, such
as concurrent [7], [8], or composite learning [9], [10]. Within
this methodology, a dynamic data stack is built to discretely
record online historical data, and the convergence of parameter
estimation is managed following the interval excitation (IE)
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condition, a weaker requirement than the persistence of exci-
tation. In [11], several fixed-time convergence algorithms have
been proposed under the IE assumption on the regressor, and
the PE relaxation has been also examined in [12] in the context
of model reference control. To summarize, the persistence of
excitation and interval (or sufficient) excitation are nowadays
two crucial components in convergence analysis of parameter
estimation algorithms.

Among many approaches to tackle parameter estimation
problems, two traditional strategies can be used: the least-
squares method and the gradient method. Many different ver-
sions of these procedures are known, such as the least-squares
estimator with forgetting factor, the normalized gradient es-
timator, to mention a few [2], [3]. A disadvantage of these
techniques is that even if there is a guarantee for the weak
monotonicity of a (weighted) norm of the estimation errors,
the estimation transients for each component of the vector
\ may be rather unpredictable, presenting notable oscillations
and peaking phenomena. Furthermore, usual tuning procedures
for these estimators involve the tuning of a gain matrix, and
they can be delicate, involving many trial-and-error attempts.
For instance, it has been proved in [13] that the amplification
of the gains for gradient estimators does not always produce
accelerated transients, and it provokes pikes augmentation.

The Dynamic Regressor Extension and Mixing (DREM)
procedure has been recently introduced in [14], and in [15],
the authors propose an interpretation of this procedure as
a functional Luenberger observer. The DREM approach has
been successfully applied to a variety of adaptive control
problems and applications, such as direct model reference
control [16], time-varying frequency estimation [17], electrical
drives velocity estimation [18], and power system applications
[19], [20]. Among many advantages, the DREM procedure
ensures an element-wise transient monotonicity preventing
oscillations and peaking, independently of the excitation con-
ditions. Moreover, each element of the estimate of \ is tuned
with a separate scalar gain, that does not affect transients for
other elements making the gain tuning simpler and transparent.

Two fundamental steps are involved in the DREM method,
namely the dynamic regressor extension (DRE) and mixing
steps. In the first step, a linear dynamic operator is introduced
to extend the original linear regression equation (1) and to
obtain an extended matrix regressor. In the second step,
a nonlinear transformation is employed on the previously
generated data to obtain a set of = scalar independent LRE
for each component of the vector \ sharing the same new
scalar regressor. Finally, the gradient estimator is applied to
each of these scalar equations.

To choose the linear operator for extending the dynamics
in the first step of the DREM procedure is a key point. The



question is how to chose such an operator that the excitation
level of the regressor q is preserved. A poor choice of this
operator can compromise the convergence even if the original
regressor q is PE, as it has been shown in [14]. In the discrete-
time domain, a summation over a fixed window has been
proposed in [21], but a priori knowledge about the original
regressor q must be available for choosing the window size.
This choice problem has also been considered in [22] for a
particular class of LRE, where the regressor consists of a finite
sum of sinusoidal signals, and the upper frequency bound is
known.

One possible dynamics extension, widely used in adaptive
control, is the Kreisselmeier’s regressor extension introduced
in [23], see also the Integral Cost Gradient Adaptation algo-
rithm [3, Section 4.3]. The authors in [24], [25] have used the
Kreisselmeier’s regressor extension in the DREM procedure,
calling it the memory regressor extension; however, these
papers do not address the excitation preservation properties
of such a choice.

This paper aims to close this gap and to study in detail the
applicability of the Kreisselmeier’s scheme. To this end, we
investigate under which conditions it preserves the PE and IE
properties of the original regressor.

Novelty and contribution. The contribution of this paper is
the analysis of the properties of the Kreisselmeier’s scheme in
the context of the DREM procedure. We show that both PE and
IE properties of the original regressor are always preserved,
and that the novel regressor is PE if and only if the original
regressor is PE. We derive the lower bound of the resulting
excitation level and show its dependence on the parameters of
the Kreisselmeier’s scheme. Finally, we study the dynamics of
the novel regressor and provide some bounds on it.

A preliminary version of the present article was published
in [26]. The novelties in the paper are its several extensions,
such as the output H is in Rℓ , the equivalence of the PE
condition in Theorem 1, and the proof of Theorem 1. Also,
an interval excitation analysis of the dynamic extension is
given in Proposition 1. Also, compared to [26], the proof of
Proposition 2 is added, and the simulations are revised.

The organization of this paper is as follows. In Section II,
some basic material is provided, together with a brief descrip-
tion of the DREM method. The main results on PE and IE
conditions for the extension of the dynamics are provided in
Section III, and the regressor dynamics is studied in Section
IV. In Section V, the numerical simulations illustrate our
results.

Notation. The set of positive integers is denoted by N. For
<,= ∈ N, <,= is the set of elements of N greater or equal
than < and smaller or equal than =. The matrix �= is the =×=
identity matrix, for all = ∈N\ {0}. For a signal G :R+→R and
a linear operator H , we denote the action of this operator on
the signal G as H[G]. For a function G : R+→ R, we say that
G ∈ L2 if

∫ C
0 G

2 (B)3B converges to a constant as C tends to +∞.
If the integral does not converge, we write G ∉ L2.

II. BACKGROUND MATERIAL

The persistence of excitation (PE): First, we present the
definition of the (), `)-PE property.

Definition 1. A bounded signal q : R+ → R=×ℓ is (), `)-
persistently exciting if there exist ) > 0 and ` > 0 such that
for all C ∈ R+, ∫ C+)

C

q(B)q> (B)3B ≥ `�=.

This property is further denoted as q ∈ PE, or q is PE.

The persistence of excitation property and its connec-
tion with the exponential convergence in various estimation
schemes are widely known. One relaxation of this condition
is the interval (or sufficient) excitation that is used in, e.g.,
concurrent and composite learning algorithms [7], [8].

Definition 2. A bounded signal q : R+ → R=×ℓ is (C1,), `)-
interval exciting if there exist C1 ≥ 0, ) > 0, and ` > 0 such
that ∫ C1+)

C1

q(B)q> (B)3B ≥ `�=.

The fundamental difference is that the persistence of exci-
tation is uniform in time, whereas the interval excitation holds
for the particular time interval starting at C1. If C1 = 0, then the
interval excitation is also called the initial excitation, see [9].

The gradient estimators [2]: For all C ∈ R+, the gradient
estimator for the LRE (1) is given by

¤̂\ (C) = Γq(C)
(
H(C) −q> (C)\̂ (C)

)
, (2)

where \̂ denotes the estimate of \ and Γ > 0 is the gain matrix.
Define the estimation error \̃ (C) := \̂ (C) − \, ∀C ∈ R+. Then the
error dynamics is given by

¤̃\ (C) = −Γq(C)q> (C)\̃ (C) +Γq(C)F(C),∀C ∈ R+.

In the noise-free scenario, i.e., assuming F ≡ 0, the gradient
estimator ensures exponential convergence to zero of the error
\̃ if and only if the regressor q is PE. In this case, the gradient
estimator is also input-to-state stable with respect to the noise
F. Some sufficient (but not necessary) and necessary (but not
sufficient) conditions for asymptotic convergence when q is
not PE have been discussed in [27] for ℓ = 1. However, they
are somewhat technical and can be hardly applied in practice.

The DREM procedure [14]: To apply the DREM procedure,
we start by performing the dynamic regressor extension step.
For that, we introduce a linear, ℓ-input =-output, bounded-
input bounded-output (BIBO)–stable operator H and define
the vector . : R+→ R= and the matrix Φ : R+→ R=×= by:

. :=H[H], Φ :=H[q>] .

Due to the linearity of the operator H and the BIBO stability,
these signals satisfy

. (C) = Φ(C)\ +, (C),∀C ∈ R+, (3)

where , :=H[F]. For example, the operator H can produce
an LTI system or can be chosen as a delay operator, as
proposed in [14].

Next, a mixing step is applied to obtain a set of = scalar
equations. Recall that for any square and possibly singular
=×= matrix �, we have adj (�) � = det(�)�=, where adj (·) is



the adjoint (also called adjugate) matrix. Multiplying (3) by
adj (Φ(C)) from the left, we get

Y8 (C) = Δ(C)\8 +W8 (C), (4)

where 8 ∈ 1, =, the scalar function Δ : R+→ R is defined as

Δ(C) := detΦ(C),∀C ∈ R+, (5)

and Y(C) := adj (Φ(C)). (C), W(C) := adj (Φ(C)), (C), ∀C ∈ R+.
It is worth noting that for a bounded regressor q, the vector
W is also bounded, and F ≡ 0 implies W ≡ 0.

The set of = scalar LRE (4) sharing the same bounded
scalar regressor Δ is the main result of the DREM procedure.
Applying the gradient estimator to (4) as

¤̂\8 (C) = W8 Δ(C)
(
Y8 (C) −Δ(C)\̂8 (C)

)
, (6)

where W8 > 0 is a scalar tuning parameter, we obtain

¤̃\8 (C) = −W8Δ2 (C)\̃8 (C) +W8Δ(C)W8 (C),

and thus

\̃8 (C) = 4−W8
∫ C

0 Δ
2 (g)3g\8 (0)+W8

∫ C

0
4−W8

∫ C

B
Δ2 (g)3gΔ(B)W8 (B)3B.

Assuming the noise-free scenario F ≡ 0, the following prop-
erties hold:

P1: Δ ∉ L2⇔ |\̃ | → 0 asymptotically;
P2: Δ is PE ⇔ |\̃ | → 0 exponentially fast;
P3: (the element-wise monotonicity) for all 8 ∈ 1, = for C0 ≤ C1

it holds |\̃8 (C0) | ≤ |\̃8 (C1) |;
P4: (the element-wise tuning) variations in the gain W8 affect

the transients for \̂8 only.

Concerning the case F . 0, the estimator (6) is input-to-state
stable with respect toW8 if Δ ∈ PE, which is a similar result as
for the standard gradient estimator discussed above. Moreover,
as it has been shown in [28], if W8 ∈ L2 and Δ ∉ L2, then \̃8
is bounded.

The property P1 illustrates the new convergence condition,
namely the non-square-integrability of Δ. As shown in [14],
this condition is weaker than PE for q, where the price paid is
the asymptotic convergence instead of the exponential one. To
get the exponential convergence with the DREM procedure,
the PE property of Δ must be satisfied. Therefore, the main
design question when applying the DREM procedure is to
choose an operatorH such that the PE property of the original
regressor q is preserved. Such a choice is discussed in the
following section.

Remark 1. Let us remark that the computation of the adjoint
matrix adj (Φ) can be avoided in numerical implementations
of the DREM estimator. So the elements Y8 in (4) can be
computed using the Cramer’s rule as

Y8 (C) = detΦ. ,8 (C),∀C ∈ R+,

where Φ. ,8 is the matrix Φ where the 8-th column is replaced
with the vector . , and 8 ∈ 1, =.

III. THE EXCITATION-PRESERVING REGRESSOR
EXTENSION

A. Excitation propagation

Consider the Kreisselmeier’s regressor extension [23] given
by

¤Φ(C) = −0Φ(C) +q(C)q> (C), (7)
¤. (C) = −0. (C) +q(C)H(C) (8)

for some initial values Φ(0) = Φ0 ≥ 0 and . (0) = .0, where
the scalar 0 > 0 is the tuning parameter. As it is discussed
in [21], [25], the scheme (7), (8) can be seen either as an
LTI filter applied to the signals qq> and qH, or as an LTV
operator Hq chosen such that the relationship HD =Hq [D] for
an input signal D(C) ∈ Rℓ and an output signal HD (C) ∈ R= have
the following linear time-varying state-space representation:

¤G(C) = −0G(C) +q(C)D(C),
HD (C) = G(C),

where G(C) ∈ R= is the internal state vector. Then the Kreis-
selmeier’s regressor extension (7), (8) corresponds to Φ =

Hq [q>] and . =Hq [H], where the use of the ℓ-input =-output
operator Hq for the ℓ×= matrix q> implies that the operator
is applied to the each column of q>, and the resulting vectors
are then collected to the =×= matrix Φ. Thus, the scheme (7),
(8) is a valid choice for the dynamic regressor extension step
of the DREM procedure.

The regressor extension (7), (8) is widely used in adaptive
control. Particularly, it was recently used in [12], [29] to
obtain the matrix equation . (C) =Φ(C)\, ∀C ∈ R+. Applicability
of (7), (8) for the DREM procedure can be derived from
the proof of Theorem 4.3.3 in [3], where the integral cost
gradient adaptation algorithm is considered. However, in that
Theorem, only the positiveness of the lower bound on the
smallest eigenvalue of the matrix Φ is established. Extending
that the result, we present the following theorem showing that
(7) preserves the persistence of excitation and the determinant
of Φ is PE if and only if q is PE and providing a more precise
asymptotic lower bound for the determinant of the matrix Φ.

Theorem 1. Consider the bounded signal q : R+→ R=×ℓ and
let Φ : R+→ R=×= be a solution of (7) for some initial value
Φ(0) = Φ0 ≥ 0. Then the following implication holds

q ∈ PE⇔ Δ ∈ PE,

where Δ : R+ → R is the determinant of Φ. Moreover, if q
is (), `)-PE, then for any positive integer @ ≥ 1 and for all
C ≥ @) , it holds

Δ(C) ≥ `=
(
@∑
:=1

4−0:)

)=
(9)

and
liminf
C→∞

Δ(C) ≥
( `

40) −1

)=
. (10)

Proof: The proof consists of two parts. First, we prove
that q ∈ PE implies Δ ∈ PE, and then we prove that the inverse
implication also holds.



Part 1: q ∈ PE⇒ Δ ∈ PE. First we show that if q is (), `)-
PE, then Δ is also PE and the inequalities (9) and (10) hold.

The solution of (7) is given by

Φ(C) = 4−0CΦ(0) +
∫ C

0
k(C, B)3B, ∀C ∈ R+, (11)

where
k(C, B) := 4−0 (C−B)q(B)q> (B).

Consider C ≥ ) and let @ ≥ 1 be a positive integer number such
that C ≥ @) . The integral term in (11) can be rewritten as∫ C

0
k(C, B)3B =

∫ C−@)

0
k(C, B)3B+

@∑
:=1

∫ C−:) +)

C−:)
k(C, B)3B.

For any positive integer : ≤ @ it holds∫ C−:) +)

C−:)
k(C, B)3B = 4−0C

∫ C−:) +)

C−:)
40Bq(B)q> (B)3B

≥ 4−0C40 (C−:) )`�= = `4
−0:) �=.

Then

Φ(C) ≥ `
@∑
:=1

4−0:) �= +
∫ C−@)

0
k(C, B)3B+ 4−0CΦ(0). (12)

For Φ(0) ≥ 0, the sum of the last two terms in the right-hand
side of this inequality is a semi positive-definite matrix,∫ C−@)

0
k(C, B)3B+ 4−0CΦ(0) ≥ 0.

Then from (12) it follows that for all C ≥ @) the smallest
eigenvalue of Φ(C) is not less than `

∑@

:=1 4
−0:) . Thus

detΦ(C) ≥ `=
(
@∑
:=1

4−0:)

)=
,

and (9) follows.
The PE property follows by noting that for C ≥ ) it holds

Δ(C) ≥ `=4−0=) > 0,

and Δ is strictly separated from zero for all C ≥ ) .
To get the inequality (10), we choose @ as the largest integer

such that C ≥ @) . Then @→∞ as C→∞. Since

lim
@→∞

@∑
:=1

4−0:) =
1

40) −1
,

the asymptotic lower bound (10) for Δ(C) follows.

Part 2: Δ ∈ PE⇒ q ∈ PE. Now we will show that if Δ is
PE, then q is also PE. More precisely, we will show that if q
is bounded and there exist ) > 0 and ` > 0 such that for all
C ∈ R+ ∫ C+)

C

Δ(B)23B ≥ `,

then there exist ! > 0 and U > 0 such that for all C ∈ R+∫ C+!

C

q(B)q> (B)3B ≥ U�=.

Since the matrix Φ given by (11) is bounded for bounded
q, it follows that all its eigenvalues are non-negative and also
bounded, and there exists a constant 2 > 0 such that1

2_< (Φ(C)) ≥ Δ2 (C),∀C ∈ R+,

where _< (Φ) is the smallest eigenvalue of Φ. Then∫ C+)

C

_< (Φ(B)) 3B ≥
`

2
. (13)

From (11) it follows that for B ≥ C

Φ(B) = 4−0 (B−C)Φ(C) +
∫ B

C

4−0 (B−g)q(g)q> (g)3g.

Then recalling (13), for any positive integer : it holds∫ C+:)

C

_< (Φ(B)) 3B

=

∫ C+)

C

_<

(
4−0 (B−C)Φ(C) +

∫ B

C

4−0 (B−g)q(g)q> (g)3g
)
3B

≥
∫ C+:)

C

_<

(
4−0 (B−C)Φ(C)

)
3B

+
∫ C+:)

C

_<

(∫ B

C

4−0 (B−g)q(g)q> (g)3g
)
3B ≥ : `

2
.

Note that∫ C+:)

C

_<

(
4−0 (B−C)Φ(C)

)
3B

= _< (Φ(C))
∫ C+:)

C

4−0 (B−C)3B ≤ 1
0
_< (Φ(C))

for 0 > 0. Choose 20 as 20 := 1
0

supC _< (Φ(C)). Then we have
that for any :∫ C+:)

C

_<

(∫ B

C

4−0 (B−g)q(g)q> (g)3g
)
3B ≥ : `

2
− 20. (14)

Note that

_<

(∫ B

C

4−0 (B−g)q(g)q> (g)3g
)
≤ _<

(∫ B

C

q(g)q> (g)3g
)
,

and for all B satisfying C ≤ B ≤ C + :) it holds

_<

(∫ B

C

q(g)q> (g)3g
)
≤ _<

(∫ C+:)

C

q(g)q> (g)3g
)
.

Thus ∫ C+:)

C

_<

(∫ B

C

4−0 (B−g)q(g)q> (g)3g
)
3B

≤
∫ C+:)

C

_<

(∫ B

C

q(g)q> (g)3g
)
3B

≤
∫ C+:)

C

_<

(∫ C+:)

C

q(g)q> (g)3g
)
3B

= :)_<

(∫ C+:)

C

q(g)q> (g)3g
)
. (15)

1A conservative estimate of 2 is 2 =
(
supC _" (Φ(C))

)2=−1, where _" (Φ)
is the largest eigenvalue of Φ.



Finally, combining (14) and (15) yields

_<

(∫ C+:)

C

q(g)q> (g)3g
)
≥ `

2)
− 20
:)
.

Since 2 and 20 are constants and do not depend on : , we can
choose the positive integer : ≥ 1 such that : > 202

`
. Then q(C)

is PE with ! = :) and U = `

2)
− 20
:)

> 0.
In the vein of Theorem 1, it can be also shown that the

dynamic extension (7) preserves the interval excitation (in the
sense of Definition 2) as well.

Proposition 1. Consider the bounded signal q : R+ → R=×ℓ
and let Φ : R+→ R=×= be a solution of (7) for some initial
value Φ(0) = Φ0 ≥ 0. Let the signal Δ : R+ → R be the
determinant of Φ. If the signal q is (C1,), `)-interval exciting
for some C1 ≥ 0, ) > 0, and ` > 0, then the signal Δ is (C1,),U)-
interval exciting for some U > 0.

Proof: As it is discussed in the proof of Theorem 1, the
solution of (7) is given by (11). Then for C1 ≤ C ≤ C1 +)

Φ(C) = 4−0 (C−C1)Φ(C1) +
∫ C

C1

4−0 (C−B)q(B)q> (B)3B,

and∫ C1+)

C1

_< (Φ(C)) 3C ≥
∫ C1+)

C1

_<

(∫ C

C1

4−0 (C−B)q(B)q> (B)3B
)
3C

≥
∫ C1+)

C1

4−0 (C−C1) 5 (C)3C,

where 5 : R+→ R is defined as

5 (C) = _<
(∫ C

C1

q(B)q> (B)3B
)
.

The function 5 is continuous and non-decreasing, 5 (C1) = 0
and (due to the interval excitation) 5 (C1+)) ≥ `. The function
5 is not necessarily differentiable; however, since q is bounded
it admits a Lipschitz constant, i.e., there exists a positive
constant d > 0 such that for any B ≥ C1 and ℎ ≥ 0 it holds

0 ≤ 5 (B+ ℎ) − 5 (B) ≤ dℎ,

and d) ≥ `. Define g := `

d
≤ ) . Then for all C ∈

[C1 +) − g, C1 +)] it holds

5 (C) ≥ d (C − (C1 +) − g)) .

Thus ∫ C1+)

C1

4−0 (C−C1) 5 (C)3C

≥
∫ C1+)

C1+) −g
4−0 (C−C1) d (C − (C1 +) − g)) 3C

=
d

02 4
−0) (40g −1− 0g) .

Finally, recalling that Δ(C) ≥ (_< (Φ(C)))=, the (C1,),U)-
interval excitation follows:∫ C1+)

C1

Δ2 (C)3C ≥ U,

where

U :=
(
d

02 4
−0)

(
4

0`

d −1− 0`
d

))2=
> 0.

It is worth noting that the inverse implication in Proposition
(1) does not hold. I.e., if Δ is (C1,),U)-interval exciting for
some C1 > 0, it does not imply that q is (C1,), `)-interval
exciting for the same C1 and ) . It is reasonable to expect that
(given zero initial condition in (7)) q is (0, C1 +), `)-interval
exciting, however, this claim is not rigorously proven here.

Theorem 1 motivates the use of (7), (8) as a reasonable
choice for the dynamic regressor extension step of the DREM
procedure. Under this choice, the persistence of excitation and
the interval excitation properties of the original regressor are
always preserved and no prior knowledge about the regressor
q (e.g., the excitation period length )) is required. Moreover,
after the first excitation interval, the new regressor Δ remains
strictly positive for all C, where the lower asymptotic bound
on Δ can be computed as in (10).

IV. DYNAMICS OF THE REGRESSOR Δ

Theorem 1 provides the lower bounds (9), (10) for the
dynamic regressor extension (7). However, it is also of interest
to study the dynamics of the DREM-generated new regressor
Δ. In this section, we present such a study for the particular
case ℓ = 1, i.e., for the scalar output case. Extension of the
results presented in this section to a more general case remains
an open question.

Let us consider a time evaluation of Δ that is the determinant
of the time-dependent matrix Φ. The matrix Φ is a solution of
(7), so Δ obeys Jacobi’s formula (see Theorem 8.1 in [30]):

¤Δ(C) = tr
(
adj (Φ(C)) ¤Φ(C)

)
, ∀C ∈ R+,

where Δ(0) = detΦ(0) and tr denotes the matrix trace.
Substituting (7), we obtain for all C ∈ R+:
¤Δ(C) = tr

(
−0 adj (Φ(C))Φ(C) + adj (Φ(C)) q(C)q(C)>

)
= −0=Δ(C) + tr

(
adj (Φ(C)) q(C)q(C)>

)
,

where = is the dimension of q. Next, due to elementary
properties of the matrix trace function, it follows for all C ≥ 0,

tr
(
adj (Φ(C)) q(C)q(C)>

)
= q(C)> adj (Φ(C)) q(C),

and we obtain

¤Δ(C) = −0=Δ(C) +q(C)> adj (Φ(C)) q(C). (16)

Remark 2. Note that (16) holds only in the case ℓ = 1 when
q(C) is a vector and not a matrix.

Recall that the eigenvalues of an adjoint matrix can be
estimated as follows. Let _1,Φ, . . . , _=,Φ denote the eigenvalues
of Φ. Applying Schur’s Lemma, it is then straightforward to
show that the eigenvalues of adj (Φ) are given by

_8,adj(Φ) = Π 9≠8_ 9 ,Φ, ∀8 = 1, . . . , =,

and for all 8 = 1, . . . , = it holds

_8,adj(Φ)_8,Φ = det (Φ) .

In particular

min
8
_8,adj(Φ)max

8
_8,Φ = det (Φ) . (17)



Let _" denote the maximum eigenvalue of Φ. Since for
C ≥ 0, Φ(C) ≥ 0, then _" (C) = 0 implies that all eigenvalues of
Φ(C) are zeros, and so are the eigenvalues of adj (Φ(C)). That
implies for all C ≥ 0,

q(C)> adj (Φ(C)) q(C) = 0.

On the other hand, if _" (C) > 0, then due to (17)

‖q(C)‖2 Δ(C)
_" (C)

≤ q> (C) adj (Φ(C)) q(C), ∀C ∈ R+.

The derivation above yields the following proposition.

Proposition 2. Let Φ be a solution of (7) and let _" denote
the maximum eigenvalue of Φ and Δ = detΦ. Then:
• if _" = 0, then ¤Δ = 0;
• if _" > 0, then

¤Δ(C) ≥
(
−0=+ ‖q(C)‖

2

_" (C)

)
Δ(C), ∀C ∈ R+.

It is also worth noting that an upper bound of the maximum
eigenvalue _" can be estimated given an upper bound of q.

V. SIMULATIONS

To illustrate the results obtained in Section III, we consider
the problem of magnitude and phase estimation for sinusoidal
signals with known frequencies. To illustrate that the presented
results hold not only for scalar linear regression models, we
choose ℓ = 2 and = = 3. Consider

H1 (C) = �+ � sin(C +k),
H2 (C) = �cos(2C +k)

where �, � > 0, and k ∈ [−c, c) are the unknown parameters.
These signals can be rewritten as the LRE (1) with

H(C) =
[
H1 (C) H2 (C)

]>
, \ =

[
� �cos(k) � sin(k)

]>
,

q(C) =
[
1 sin(C) cos(C)
0 cos(2C) −sin(2C)

]>
,

and F ≡ 0. Obviously, the values �, �, and k can be recon-
structed given \.

It is straightforward to verify that the regressor q is (2c,2c)-
PE, i.e., for all C ≥ 0∫ C+2c

C

q(B)q> (B)3B ≥ 2c�3.

For simulations, we set � = −1, � = 2
√

2, and k = 3
4c

providing
\ =

[
−1 −2 1

]>
.

First, we apply the standard gradient algorithm (2) with
Γ = �3 and \̂ (0) = 0; the simulation results are depicted in
Fig. 1. Since q is PE, the estimation error \̃ converges to
zero; however, the transients exhibit oscillations.

Then we apply the dynamic regressor extension (7), (8),
where the only tuning parameter is chosen as 0 = 0.1. The
new regressor Δ computed as (5) is depicted in Fig. 2 with
the lower bound (9) and with the asymptotic lower bound (10).

Finally, the estimation error transient \̃ for the DREM
procedure with the gradient estimator (6) with W8 = 1, 8 = 1,2,3,
are depicted in Fig. 3 and illustrate performance improvement
for the standard gradient estimator; note the difference in the
time scale and the monotonicity of the transients.
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Fig. 1. The estimation error \̃ under the standard gradient algorithm (2).
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Fig. 2. The new regressor Δ, the lower bound (9), and the asymptotic lower
bound (10).

VI. CONCLUSION

The recently proposed DREM procedure provides signifi-
cant performance improvement in linear regression parameter
estimation, where the main degree of freedom is the choice
of the dynamic extension operator. In this paper, we have
studied a special choice of this operator as the Kreisselmeier’s
regressor extension (7), (8) that ensures the preservation of
the persistence of excitation property. In particular, we have
proved that the determinant of the extended matrix is persis-
tently exciting if and only if the original regressor is, where
the asymptotic lower bound of the excitation constant is also
provided. Moreover, we have shown that the suggested choice
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Fig. 3. The estimation error \̃ under the DREM procedure (7), (8) and the
gradient estimator (6).



also preserves the interval excitation property. This result
alleviates the main design question of the DREM procedure.
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