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On preserving-excitation properties of Kreisselmeier’s regressor
extension scheme

Stanislav Aranovskiy1,2, Rosane Ushirobira3, Marina Korotina1,2, Alexey Vedyakov2

Abstract—In this work, we consider the excitation preser-
vation problem of Kreisselmeier’s regressor extension scheme.
We analyze this problem within the context of the Dynamic
Regressor Extension and Mixing procedure. The well-known
qualitative result is that such a scheme preserves excitation. We
perform a quantitative analysis and derive lower bounds on the
resulting regressor signal considering both persistent and interval
excitation cases. We also show that the resulting signal is excited
if and only if the original regressor is. Studying the dynamics of
the novel regressor, we provide a lower bound on its derivative.
Illustrative simulations support our theoretical results.

I. INTRODUCTION

The linear regression equation (LRE) plays a central role in
adaptive parameter estimation and adaptive control. It can be
found in system identification [1], in model-reference adaptive
control [2]–[4] and adaptive pole-placement [5], in filtering
and prediction [6], in reinforcement learning [7], and several
other areas. The linear regression model is given by

𝑦(𝑡) = 𝜙⊤ (𝑡)\ +𝑤(𝑡), (1)

where 𝑦(𝑡) ∈ Rℓ is the output signal, 𝜙(𝑡) ∈ R𝑛×ℓ is the regres-
sor, 𝑤(𝑡) ∈ Rℓ is an additive distortion, e.g., a measurement
noise, and \ ∈ R𝑛 is the vector of unknown constant parame-
ters. The signals 𝑦 and 𝜙 are known (e.g., they are measured),
and the distortion signal 𝑤 is unknown. The purpose is to
estimate the vector of parameters \ using the measurements 𝑦

and 𝜙.
There exist various approaches to tackle the parameter esti-

mation problem, where two traditional strategies are the least-
squares method and the gradient estimator. The convergence of
parameter estimation schemes relies on the essential premise
of a good richness of the regressor 𝜙, realized by the definition
of the persistence of excitation (PE) condition, see Definition 1
in Section II. In recent years, various efforts to ease the PE
requirement have been suggested, such as concurrent [8], [9],
or composite learning [10], [11]. Within this methodology, a
dynamic data stack is built to record online historical data
discretely, and the convergence of parameter estimation is
managed following the interval excitation (IE) condition, a
weaker requirement than the persistence of excitation, see Def-
inition 2 in Section II. In [12], several fixed-time convergence
algorithms have been proposed under the IE assumption on the
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regressor, and the PE relaxation has also been examined in [13]
in the context of model reference control. To summarize, the
persistence of excitation and interval (or sufficient) excitation
are nowadays two crucial components in convergence analysis
of parameter estimation algorithms.

The Dynamic Regressor Extension and Mixing (DREM)
procedure has been recently introduced in [14], [15]. This
procedure allows for translating the LRE (1) to a set of 𝑛

scalar LREs for each element of the vector \ separately.
The DREM approach has been successfully applied to a
variety of adaptive control problems and applications, such as
direct model reference control [16], time-varying frequency
estimation [17], electrical drives velocity estimation [18], and
power system applications [19], [20]. The DREM procedure
also ensures the element-wise transient monotonicity prevent-
ing oscillations and peaking, independently of the excitation
conditions. Moreover, each element of the estimate of \ is
tuned with a separate scalar gain, which does not affect
transients for other elements making the gain tuning more
straightforward and transparent.

Two fundamental steps are involved in the DREM method:
the dynamic regressor extension (DRE) and mixing steps. In
the first step, the original LRE (1) is linearly extended to
obtain an extended LRE with a square matrix regressor. In
the second step, a nonlinear transformation is employed on
the previously generated data to obtain a set of 𝑛 scalar
independent LRE for each component of the vector \ sharing
the same new scalar regressor. Finally, an estimator is applied,
e.g., a standard gradient estimator or an estimator with the
fixed-time convergence [12].

Linearly extending the dynamics in the first step of the
DREM procedure is a key point. The question is how to
perform such an extension so that the excitation level, either
PE or IE, of the regressor 𝜙 is preserved. A poor choice can
compromise the convergence even if the original regressor 𝜙 is
PE, as it has been shown in [14]. In the discrete-time domain,
a summation over a fixed window has been proposed in [21],
but a priori knowledge about the original regressor 𝜙 must be
available for choosing the window size. This choice problem
has also been considered in [22] for a particular class of LRE,
where the regressor consists of a finite sum of sinusoidal
signals, and the upper frequency bound is known.

One possible dynamics extension preserving the excitation,
widely used in adaptive control, is Kreisselmeier’s regressor
extension introduced in [23]. For the LRE (1), Kreisselmeier’s
regressor extension scheme generates extended matrices Φ and
𝑌 as solutions of

¤Φ(𝑡) = −𝑎Φ(𝑡) +𝜙(𝑡)𝜙⊤ (𝑡), ∀𝑡 ∈ R+, (2)
¤𝑌 (𝑡) = −𝑎𝑌 (𝑡) +𝜙(𝑡)𝑦(𝑡), (3)



where Φ(0) = Φ0 ≥ 0, 𝑌 (0) = 𝑌0, and 𝑎 > 0 is a scalar tuning
parameter. The PE preservation properties of (2) are well-
known and are summarized in the following implication:

𝜙 is PE ⇒Φ(𝑡) > 0 (4)

for all 𝑡 ≥ 𝑇 , where 𝑇 is the excitation interval of 𝜙, see
Definition 1 in Section II. This PE preservation property of
(2) motivates its use in the DREM scheme; the authors in
[24], [25] proposed such a choice referring to it as Memory
Regressor Extension.

Specifically, within the DREM context, we are interested
in the scalar signal Δ that is the determinant of the extended
matrix Φ,

Δ(𝑡) := det(Φ(𝑡)) ,∀𝑡 ∈ R+, (5)

and for which (4) implies the positiveness and thus the PE
property:

𝜙 is PE ⇒ Δ(𝑡) > 0, ∀𝑡 > 𝑇 ⇒ Δ is PE. (6)

The proof of the implication (4) and thus (6) is well-known and
can be found, e.g., in [3, Theorem 4.3.3], where the integral
cost gradient adaptation algorithm is considered. However, to
the best of our knowledge, only the qualitative results (4),
(6) are available nowadays, and there is no quantitative result
for estimating the lower bound of Δ based on the excitation
characteristics of 𝜙 and parameters of (2).

This paper aims to close this gap by providing a quantitative
analysis of excitation preservation via Kreisselmeier’s scheme.

Novelty and Contribution. This paper’s contribution is the
analysis of Kreisselmeier’s scheme’s properties in the context
of the DREM procedure. Specifically, besides the discussed
implication 𝜙 is PE ⇒ Δ is PE, we estimate the lower bound
of Δ as a function of the excitation characteristics of 𝜙 and the
gain 𝑎 in (2). Moreover, we show that the inverse implication
holds and Δ is PE only if 𝜙 is PE; to the best of our knowledge,
this intuitive observation was not rigorously proven before. We
also study the Interval Excitation property of 𝜙 and show that it
is preserved as well; we also provide the quantitative analysis
of the resulting interval excitation of Δ.

A preliminary version of the present article was published
in [26]. The novelties in the paper are its several extensions,
such as the output 𝑦 is in Rℓ , the equivalence of the PE
condition in Theorem 1, and the proof of Theorem 1. Also,
an interval excitation analysis of the dynamic extension is
given in Proposition 1. Also, compared to [26], the proof of
Proposition 2 is added, and the simulations are revised.

The organization of this paper is as follows. In Section II,
some basic material is provided, together with a brief descrip-
tion of the DREM method. The main results on PE and IE
conditions for the extension of the dynamics are provided in
Section III, and the regressor dynamics is studied in Section
IV. In Section V, the numerical simulations illustrate our
results.

Notation. The set of positive integers is denoted by N,
and the set of reals is denoted by R. For 𝑚,𝑛 ∈ N, 𝑚,𝑛 :=
{𝑝 ∈ N | 𝑚 ≤ 𝑝 ≤ 𝑛} if 𝑚 ≤ 𝑛 and ∅, otherwise. The matrix
𝐼𝑛 is the 𝑛 × 𝑛 identity matrix, for all 𝑛 ∈ N. For a vector
𝑥 ∈ R𝑛, |𝑥 | denotes the Euclidean norm of 𝑥. For a function

𝑓 : R+ → R, we say that 𝑓 ∈ L2 if
∫ 𝑡

0 𝑓 2 (𝑠)𝑑𝑠 converges to a
constant as 𝑡 tends to +∞. If the integral does not converge,
we write 𝑥 ∉ L2.

II. BACKGROUND MATERIAL

The persistence of excitation (PE): First, we present the
definition of the (𝑇, `)-PE property.

Definition 1. A bounded signal 𝜙 : R+ → R𝑛×ℓ is (𝑇, `)-
persistently excited if there exist 𝑇 > 0 and ` > 0 such that for
all 𝑡 ∈ R+, ∫ 𝑡+𝑇

𝑡

𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠 ≥ `𝐼𝑛.

This property is further denoted as 𝜙 ∈ PE, or 𝜙 is PE.

The persistence of excitation property and its connec-
tion with the exponential convergence in various estimation
schemes are widely known. One relaxation of this condition
is the interval (or sufficient) excitation that is used in, e.g.,
concurrent and composite learning algorithms [8], [9].

Definition 2. A bounded signal 𝜙 : R+ → R𝑛×ℓ is (𝑡1,𝑇, `)-
interval excited if there exist 𝑡1 ≥ 0, 𝑇 > 0, and ` > 0 such
that ∫ 𝑡1+𝑇

𝑡1

𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠 ≥ `𝐼𝑛.

The fundamental difference is that the persistence of exci-
tation is uniform in time, whereas the interval excitation holds
for the particular time interval starting at 𝑡1. If 𝑡1 = 0, then the
interval excitation is also called the initial excitation, see [10].

The gradient estimators [2]: For all 𝑡 ∈ R+, the gradient
estimator for the LRE (1) is given by

¤̂\ (𝑡) = Γ𝜙(𝑡)
(
𝑦(𝑡) −𝜙⊤ (𝑡)\̂ (𝑡)

)
, (7)

where \̂ denotes the estimate of \ and Γ > 0 is the gain matrix.
Define the estimation error \̃ (𝑡) := \̂ (𝑡) − \, ∀𝑡 ∈ R+. Then the
error dynamics is given by

¤̃\ (𝑡) = −Γ𝜙(𝑡)𝜙⊤ (𝑡)\̃ (𝑡) +Γ𝜙(𝑡)𝑤(𝑡),∀𝑡 ∈ R+.

In the noise-free scenario, i.e., assuming 𝑤 ≡ 0, the gradient
estimator ensures exponential convergence to zero of the error
\̃ if and only if the regressor 𝜙 is PE. Otherwise, the gradient
estimator is input-to-state stable with respect to the noise 𝑤.
Some sufficient (but not necessary) and necessary (but not
sufficient) conditions for asymptotic convergence when 𝜙 is
not PE have been discussed in [27] for ℓ = 1. However, they
are slightly technical and can hardly be applied in practice.

The DREM procedure [14]: To apply the DREM procedure,
we start by performing the dynamic regressor extension step,
where the goal is to generate an LRE for the same vector of
unknown parameters \ as in (1) but with a square 𝑛×𝑛 matrix
regressor. To this end, we apply Kreisselmeier’s regressor
extension scheme given by (2), (3) with zero initial conditions;
see [14] for other possible schemes. Due to the linearity, the
matrices Φ and 𝑌 generated by (2) and (3), respectively, satisfy
the extended LRE

𝑌 (𝑡) = Φ(𝑡)\ +𝑊 (𝑡),∀𝑡 ∈ R+, (8)



where 𝑊 :R+ →R𝑛 is the result of the distortion 𝑤 propagation
in (3).

Next, the mixing step is applied to obtain a set of 𝑛 scalar
equations. Recall that for any square and possibly singular
𝑛 × 𝑛 matrix 𝐴, we have adj(𝐴) 𝐴 = det(𝐴)𝐼𝑛, where adj(·)
is the adjoint (also called adjugate) matrix. Multiplying (8)
by adj(Φ(𝑡)) on the left and setting Y(𝑡) := adj(Φ(𝑡))𝑌 (𝑡),
W(𝑡) := adj(Φ(𝑡))𝑊 (𝑡), ∀𝑡 ∈ R+, we get

Y𝑖 (𝑡) = Δ(𝑡)\𝑖 +W𝑖 (𝑡), (9)

where Y𝑖 , \𝑖 , and W𝑖 are 𝑖-th elements of the vectors Y, \, and
W, respectively, 𝑖 ∈ 1, 𝑛, and the scalar function Δ :R+ →R is
defined in (5). It is worth noting that for a bounded regressor
𝜙, the vector W is also bounded, and 𝑤 ≡ 0 implies W ≡ 0.

The set of 𝑛 scalar LRE (9) sharing the same bounded
scalar regressor Δ is the main result of the DREM procedure.
Applying the gradient estimator to (9) as

¤̂\𝑖 (𝑡) = 𝛾𝑖 Δ(𝑡)
(
Y𝑖 (𝑡) −Δ(𝑡)\̂𝑖 (𝑡)

)
, (10)

where 𝛾𝑖 > 0 is a scalar tuning parameter, we obtain

¤̃\𝑖 (𝑡) = −𝛾𝑖Δ2 (𝑡)\̃𝑖 (𝑡) +𝛾𝑖Δ(𝑡)W𝑖 (𝑡),

and thus

\̃𝑖 (𝑡) = 𝑒−𝛾𝑖
∫ 𝑡

0 Δ2 (𝜏 )𝑑𝜏\𝑖 (0)+𝛾𝑖
∫ 𝑡

0
𝑒−𝛾𝑖

∫ 𝑡

𝑠
Δ2 (𝜏 )𝑑𝜏Δ(𝑠)W𝑖 (𝑠)𝑑𝑠.

Assuming the noise-free scenario 𝑤 ≡ 0, the following prop-
erties hold:
P1: Δ ∉ L2 ⇔ |\̃ | → 0 asymptotically;
P2: Δ is PE ⇔ |\̃ | → 0 exponentially fast;
P3: (the element-wise monotonicity) for all 𝑖 ∈ 1, 𝑛 for 𝑡𝑏 ≥

𝑡𝑎 ≥ 0 it holds |\̃𝑖 (𝑡𝑏) | ≤ |\̃𝑖 (𝑡𝑎) |;
P4: (the element-wise tuning) variations in the gain 𝛾𝑖 affect

the transients for \̂𝑖 only.
Concerning the case 𝑤 . 0, the estimator (10) is input-to-

state stable with respect to W𝑖 if Δ ∈ PE, which is a similar
result as for the standard gradient estimator discussed above.
Moreover, as it has been shown in [28], if W𝑖 ∈ L2 and Δ∉L2,
then \̃𝑖 is bounded.

To get the exponential convergence with the DREM pro-
cedure, the PE property of Δ must be satisfied. As discussed
above, it motivates the use of Kreisselmeier’s regressor exten-
sion scheme (2), (3) yielding the implication (6). However, to
evaluate the exponential convergence rate or the input-to-state
gain with respect to W𝑖 , one has to estimate the characteristics
of the new regressor Δ. These characteristics depend on the
excitation of 𝜙 and the parameter 𝑎 in (2); in the following
section, we analyze this dependence.

Remark 1. Let us remark that the computation of the adjoint
matrix adj(Φ) can be avoided. So the elements Y𝑖 in (9) can
be computed using Cramer’s rule as

Y𝑖 (𝑡) = det
(
Φ𝑌,𝑖 (𝑡)

)
,∀𝑡 ∈ R+,

where Φ𝑌,𝑖 is the matrix Φ where the 𝑖th column is replaced
by the vector 𝑌 , and 𝑖 ∈ 1, 𝑛. This can be beneficial when only
some elements of the parameter vector \ are estimated.

III. THE EXCITATION-PRESERVING REGRESSOR
EXTENSION

A. Excitation propagation

Consider Kreisselmeier’s regressor extension (2), (3). The
applicability of (2), (3) for the DREM procedure and the
implication (6) can be derived from the proof of Theorem
4.3.3 in [3]. However, in that theorem, only the lower bound’s
positiveness on the smallest eigenvalue of the matrix Φ is
established. Extending that result, we present the following
theorem providing precise lower bounds for the determinant
of the matrix Φ. We also show that the inverse implication in
(6) holds supporting a somewhat intuitive observation that the
dynamic extension (2) does not create new excitation.

Theorem 1. Consider the bounded signal 𝜙 : R+ → R𝑛×ℓ and
let Φ : R+ → R𝑛×𝑛 be a solution of (2) for some initial value
Φ(0) = Φ0 ≥ 0. Let Δ : R+ → R be the determinant of Φ. Then
if 𝜙 is (𝑇, `)-PE, then for any positive integer 𝑞 ≥ 1 and for
all 𝑡 ≥ 𝑞𝑇 , it holds

Δ(𝑡) ≥ `𝑛

(
𝑞∑︁
𝑘=1

𝑒−𝑎𝑘𝑇

)𝑛
(11)

and
liminf
𝑡→∞

Δ(𝑡) ≥
( `

𝑒𝑎𝑇 −1

)𝑛
. (12)

Moreover, the following implication holds

𝜙 ∈ PE ⇔ Δ ∈ PE. (13)

Proof: The proof consists of two parts. First, we show
that if 𝜙 is (𝑇, `)-PE, then the inequalities (11) and (12) hold
proving the direct implication in (13). Next, we show that the
inverse implication in (13) also holds.

Part 1: 𝜙 ∈ PE implies the inequalities (11), (12) and Δ ∈ PE.
The solution of (2) is given by

Φ(𝑡) = 𝑒−𝑎𝑡Φ(0) +
∫ 𝑡

0
𝜓(𝑡, 𝑠)𝑑𝑠, ∀𝑡 ∈ R+, (14)

where
𝜓(𝑡, 𝑠) := 𝑒−𝑎 (𝑡−𝑠)𝜙(𝑠)𝜙⊤ (𝑠).

Consider 𝑡 ≥ 𝑇 and let 𝑞 ≥ 1 be a positive integer number such
that 𝑡 ≥ 𝑞𝑇 . The integral term in (14) can be rewritten as∫ 𝑡

0
𝜓(𝑡, 𝑠)𝑑𝑠 =

∫ 𝑡−𝑞𝑇

0
𝜓(𝑡, 𝑠)𝑑𝑠+

𝑞∑︁
𝑘=1

∫ 𝑡−𝑘𝑇+𝑇

𝑡−𝑘𝑇
𝜓(𝑡, 𝑠)𝑑𝑠.

For any positive integer 𝑘 ≤ 𝑞 it holds∫ 𝑡−𝑘𝑇+𝑇

𝑡−𝑘𝑇
𝜓(𝑡, 𝑠)𝑑𝑠 = 𝑒−𝑎𝑡

∫ 𝑡−𝑘𝑇+𝑇

𝑡−𝑘𝑇
𝑒𝑎𝑠𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠

≥ 𝑒−𝑎𝑡𝑒𝑎 (𝑡−𝑘𝑇 )`𝐼𝑛 = `𝑒−𝑎𝑘𝑇 𝐼𝑛.

Then

Φ(𝑡) ≥ `

𝑞∑︁
𝑘=1

𝑒−𝑎𝑘𝑇 𝐼𝑛 +
∫ 𝑡−𝑞𝑇

0
𝜓(𝑡, 𝑠)𝑑𝑠+ 𝑒−𝑎𝑡Φ(0). (15)

For Φ(0) ≥ 0, the sum of the last two terms in the right-hand
side of this inequality is a semi positive-definite matrix,∫ 𝑡−𝑞𝑇

0
𝜓(𝑡, 𝑠)𝑑𝑠+ 𝑒−𝑎𝑡Φ(0) ≥ 0.



Then from (15) it follows that for all 𝑡 ≥ 𝑞𝑇 the smallest
eigenvalue of Φ(𝑡) is not less than `

∑𝑞

𝑘=1 𝑒
−𝑎𝑘𝑇 . Thus

det (Φ(𝑡)) ≥ `𝑛

(
𝑞∑︁
𝑘=1

𝑒−𝑎𝑘𝑇

)𝑛
,

and (11) follows.
The PE property follows by noting that for 𝑡 ≥ 𝑇 it holds

Δ(𝑡) ≥ `𝑛𝑒−𝑎𝑛𝑇 > 0,

and Δ is strictly separated from zero for all 𝑡 ≥ 𝑇 .
To get the inequality (12), we choose 𝑞 as the largest integer

such that 𝑡 ≥ 𝑞𝑇 . Then 𝑞 →∞ as 𝑡 →∞. Since

lim
𝑞→∞

𝑞∑︁
𝑘=1

𝑒−𝑎𝑘𝑇 =
1

𝑒𝑎𝑇 −1
,

the asymptotic lower bound (12) for Δ(𝑡) follows.

Part 2: Δ ∈ PE ⇒ 𝜙 ∈ PE. Now we will show that if Δ is
PE, then 𝜙 is also PE. More precisely, we will show that if 𝜙

is bounded and there exist 𝑇 > 0 and ` > 0 such that for all
𝑡 ∈ R+ ∫ 𝑡+𝑇

𝑡

Δ(𝑠)2𝑑𝑠 ≥ `,

then there exist 𝐿 > 0 and 𝛼 > 0 such that for all 𝑡 ∈ R+∫ 𝑡+𝐿

𝑡

𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠 ≥ 𝛼𝐼𝑛.

Since the matrix Φ given by (14) is bounded for bounded
𝜙, it follows that all its eigenvalues are non-negative and also
bounded, and there exists a constant 𝑐 > 0 such that1

𝑐_𝑚 (Φ(𝑡)) ≥ Δ2 (𝑡),∀𝑡 ∈ R+,
where _𝑚 (Φ) is the smallest eigenvalue of Φ. Then∫ 𝑡+𝑇

𝑡

_𝑚 (Φ(𝑠)) 𝑑𝑠 ≥ `

𝑐
. (16)

From (14) it follows that for 𝑠 ≥ 𝑡

Φ(𝑠) = 𝑒−𝑎 (𝑠−𝑡 )Φ(𝑡) +
∫ 𝑠

𝑡

𝑒−𝑎 (𝑠−𝜏 )𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏.

Then recalling (16), for any positive integer 𝑘 it holds∫ 𝑡+𝑘𝑇

𝑡

_𝑚 (Φ(𝑠)) 𝑑𝑠

=

∫ 𝑡+𝑇

𝑡

_𝑚

(
𝑒−𝑎 (𝑠−𝑡 )Φ(𝑡) +

∫ 𝑠

𝑡

𝑒−𝑎 (𝑠−𝜏 )𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
𝑑𝑠

≥
∫ 𝑡+𝑘𝑇

𝑡

_𝑚

(
𝑒−𝑎 (𝑠−𝑡 )Φ(𝑡)

)
𝑑𝑠

+
∫ 𝑡+𝑘𝑇

𝑡

_𝑚

(∫ 𝑠

𝑡

𝑒−𝑎 (𝑠−𝜏 )𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
𝑑𝑠 ≥ 𝑘

`

𝑐
.

Note that∫ 𝑡+𝑘𝑇

𝑡

_𝑚

(
𝑒−𝑎 (𝑠−𝑡 )Φ(𝑡)

)
𝑑𝑠

= _𝑚 (Φ(𝑡))
∫ 𝑡+𝑘𝑇

𝑡

𝑒−𝑎 (𝑠−𝑡 )𝑑𝑠 ≤ 1
𝑎
_𝑚 (Φ(𝑡))

1A conservative estimate of 𝑐 is 𝑐 =
(
sup𝑡 _𝑀 (Φ(𝑡 ) )

)2𝑛−1, where _𝑀 (Φ)
is the largest eigenvalue of Φ.

for 𝑎 > 0. Choose 𝑐0 as 𝑐0 := 1
𝑎

sup𝑡 _𝑚 (Φ(𝑡)). Then we have
that for any 𝑘∫ 𝑡+𝑘𝑇

𝑡

_𝑚

(∫ 𝑠

𝑡

𝑒−𝑎 (𝑠−𝜏 )𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
𝑑𝑠 ≥ 𝑘

`

𝑐
− 𝑐0. (17)

Note that

_𝑚

(∫ 𝑠

𝑡

𝑒−𝑎 (𝑠−𝜏 )𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
≤ _𝑚

(∫ 𝑠

𝑡

𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
,

and for all 𝑠 satisfying 𝑡 ≤ 𝑠 ≤ 𝑡 + 𝑘𝑇 it holds

_𝑚

(∫ 𝑠

𝑡

𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
≤ _𝑚

(∫ 𝑡+𝑘𝑇

𝑡

𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
.

Thus ∫ 𝑡+𝑘𝑇

𝑡

_𝑚

(∫ 𝑠

𝑡

𝑒−𝑎 (𝑠−𝜏 )𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
𝑑𝑠

≤
∫ 𝑡+𝑘𝑇

𝑡

_𝑚

(∫ 𝑠

𝑡

𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
𝑑𝑠

≤
∫ 𝑡+𝑘𝑇

𝑡

_𝑚

(∫ 𝑡+𝑘𝑇

𝑡

𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
𝑑𝑠

= 𝑘𝑇_𝑚

(∫ 𝑡+𝑘𝑇

𝑡

𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
. (18)

Finally, combining (17) and (18) yields

_𝑚

(∫ 𝑡+𝑘𝑇

𝑡

𝜙(𝜏)𝜙⊤ (𝜏)𝑑𝜏
)
≥ `

𝑐𝑇
− 𝑐0
𝑘𝑇

.

Since 𝑐 and 𝑐0 are constants and do not depend on 𝑘 , we can
choose the positive integer 𝑘 ≥ 1 such that 𝑘 > 𝑐0𝑐

`
. Then 𝜙(𝑡)

is PE with 𝐿 = 𝑘𝑇 and 𝛼 =
`

𝑐𝑇
− 𝑐0

𝑘𝑇
> 0.

B. Interval Excitation

In the vein of Theorem 1, it can be also shown that the
dynamic extension (2) preserves the interval excitation (in the
sense of Definition 2) as well.

Proposition 1. Consider the bounded signal 𝜙 : R+ → R𝑛×ℓ
and let Φ : R+ → R𝑛×𝑛 be a solution of (2) for some initial
value Φ(0) = Φ0 ≥ 0. Let the signal Δ : R+ → R be the
determinant of Φ. If the signal 𝜙 is (𝑡1,𝑇, `)-interval excited
for some 𝑡1 ≥ 0, 𝑇 > 0, and ` > 0, then the signal Δ is (𝑡1,𝑇,𝛼)-
interval excited for some 𝛼 > 0.

Proof: As it is discussed in the proof of Theorem 1, the
solution of (2) is given by (14). Then for 𝑡1 ≤ 𝑡 ≤ 𝑡1 +𝑇

Φ(𝑡) = 𝑒−𝑎 (𝑡−𝑡1 )Φ(𝑡1) +
∫ 𝑡

𝑡1

𝑒−𝑎 (𝑡−𝑠)𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠,

and∫ 𝑡1+𝑇

𝑡1

_𝑚 (Φ(𝑡)) 𝑑𝑡 ≥
∫ 𝑡1+𝑇

𝑡1

_𝑚

(∫ 𝑡

𝑡1

𝑒−𝑎 (𝑡−𝑠)𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠
)
𝑑𝑡

≥
∫ 𝑡1+𝑇

𝑡1

𝑒−𝑎 (𝑡−𝑡1 ) 𝑓 (𝑡)𝑑𝑡,

where 𝑓 : R+ → R is defined as

𝑓 (𝑡) = _𝑚

(∫ 𝑡

𝑡1

𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠
)
.



The function 𝑓 is continuous and non-decreasing, 𝑓 (𝑡1) = 0
and (due to the interval excitation) 𝑓 (𝑡1+𝑇) ≥ `. The function
𝑓 is not necessarily differentiable; however, since 𝜙 is bounded
it admits a Lipschitz constant, i.e., there exists a positive
constant 𝜌 > 0 such that for any 𝑠 ≥ 𝑡1 and ℎ ≥ 0 it holds

0 ≤ 𝑓 (𝑠+ ℎ) − 𝑓 (𝑠) ≤ 𝜌ℎ,

and 𝜌𝑇 ≥ `. Define 𝜏 := `

𝜌
≤ 𝑇 . Then for all 𝑡 ∈

[𝑡1 +𝑇 − 𝜏, 𝑡1 +𝑇] it holds

𝑓 (𝑡) ≥ 𝜌 (𝑡 − (𝑡1 +𝑇 − 𝜏)) .

Thus ∫ 𝑡1+𝑇

𝑡1

𝑒−𝑎 (𝑡−𝑡1 ) 𝑓 (𝑡)𝑑𝑡

≥
∫ 𝑡1+𝑇

𝑡1+𝑇−𝜏
𝑒−𝑎 (𝑡−𝑡1 ) 𝜌 (𝑡 − (𝑡1 +𝑇 − 𝜏)) 𝑑𝑡

=
𝜌

𝑎2 𝑒
−𝑎𝑇 (𝑒𝑎𝜏 −1− 𝑎𝜏) .

Finally, recalling that Δ(𝑡) ≥ (_𝑚 (Φ(𝑡)))𝑛, the (𝑡1,𝑇,𝛼)-
interval excitation follows:∫ 𝑡1+𝑇

𝑡1

Δ2 (𝑡)𝑑𝑡 ≥ 𝛼,

where

𝛼 :=
(
𝜌

𝑎2 𝑒
−𝑎𝑇

(
𝑒

𝑎`

𝜌 −1− 𝑎`

𝜌

))2𝑛
> 0. (19)

Theorem 1 and Proposition 1 justify using (2), (3) for the
dynamic regressor extension step of the DREM procedure.
Under this choice, the persistence of excitation and the interval
excitation properties of the original regressor are always
preserved. The obtained bounds (11), (12), and (19) allow
for performance evaluation of the DREM-enhanced estimation
algorithms, e.g., the convergence rate estimation.

IV. DYNAMICS OF THE REGRESSOR Δ

In Theorem 1, we provide useful lower bounds (11), (12) for
the DREM-generated new regressor Δ when Kreisselmeier’s
regressor extension scheme (2) is used. However, it is also of
interest to study the dynamics of Δ. In this section, we present
such a study.

Let us consider a time evaluation of Δ that is the determinant
of the time-dependent matrix Φ. The matrix Φ is a solution of
(2), so Δ obeys Jacobi’s formula (see Theorem 8.1 in [29]):

¤Δ(𝑡) = tr
(
adj(Φ(𝑡)) ¤Φ(𝑡)

)
, ∀𝑡 ∈ R+,

where Δ(0) = det (Φ(0)) and tr denotes the matrix trace.
Substituting (2), we obtain for all 𝑡 ∈ R+:

¤Δ(𝑡) = tr
(
−𝑎 adj(Φ(𝑡))Φ(𝑡) + adj(Φ(𝑡)) 𝜙(𝑡)𝜙(𝑡)⊤

)
= −𝑎𝑛Δ(𝑡) + tr

(
adj(Φ(𝑡)) 𝜙(𝑡)𝜙(𝑡)⊤

)
,

where we recall that the dimension of 𝜙 is 𝑛× ℓ. Let 𝜙𝑘 ∈ R𝑛
be the 𝑘-th column of 𝜙, 𝑘 ∈ 1, ℓ. Due to elementary properties
of the matrix trace function, it follows for all 𝑡 ≥ 0,

tr
(
adj(Φ(𝑡)) 𝜙(𝑡)𝜙(𝑡)⊤

)
=

ℓ∑︁
𝑘=1

𝜙𝑘 (𝑡)⊤ adj(Φ(𝑡)) 𝜙𝑘 (𝑡),

and we obtain

¤Δ(𝑡) = −𝑎𝑛Δ(𝑡) +
ℓ∑︁

𝑘=1
𝜙𝑘 (𝑡)⊤ adj(Φ(𝑡)) 𝜙𝑘 (𝑡). (20)

Recall that the eigenvalues of an adjoint matrix can be
estimated as follows. Let _1,Φ, . . . , _𝑛,Φ denote the eigenvalues
of Φ. Applying Schur’s Lemma, it is then straightforward to
show that the eigenvalues of adj(Φ) are given by

_𝑖,adj(Φ) = Π 𝑗≠𝑖_ 𝑗 ,Φ, ∀𝑖 = 1, . . . , 𝑛,

and for all 𝑖 = 1, . . . , 𝑛 it holds

_𝑖,adj(Φ)_𝑖,Φ = det (Φ) .

In particular

min
𝑖

_𝑖,adj(Φ) max
𝑖

_𝑖,Φ = det (Φ) . (21)

Let _𝑀 denote the maximum eigenvalue of Φ. Since for
𝑡 ≥ 0, Φ(𝑡) ≥ 0, then _𝑀 (𝑡) = 0 implies that all eigenvalues of
Φ(𝑡) are zeros, and so are the eigenvalues of adj(Φ(𝑡)). That
implies for all 𝑡 ≥ 0 and all 𝑘 ∈ 1, ℓ,

𝜙𝑘 (𝑡)⊤ adj(Φ(𝑡)) 𝜙𝑘 (𝑡) = 0.

On the other hand, if _𝑀 (𝑡) > 0, then due to (21)

𝜙⊤𝑘 (𝑡) adj(Φ(𝑡)) 𝜙𝑘 (𝑡) ≥ |𝜙𝑘 (𝑡) |2
Δ(𝑡)
_𝑀 (𝑡) , ∀𝑡 ∈ R+.

Recall that for the induced matrix norm ∥𝜙∥ it holds∑ℓ
𝑘=1 |𝜙𝑘 |2 ≥ ∥𝜙∥2. Then the derivation above yields the fol-

lowing proposition.

Proposition 2. Let Φ be a solution of (2) and let _𝑀 denote
the maximum eigenvalue of Φ and Δ = det (Φ). Then:

• if _𝑀 = 0, then ¤Δ = 0;
• if _𝑀 > 0, then

¤Δ(𝑡) ≥
(
−𝑎𝑛+ ∥𝜙(𝑡)∥2

_𝑀 (𝑡)

)
Δ(𝑡), ∀𝑡 ∈ R+.

It is also worth noting that an upper bound of the maximum
eigenvalue _𝑀 can be estimated given an upper bound of 𝜙.

V. SIMULATIONS

To illustrate the results obtained in Section III, we consider
the problem of magnitude and phase estimation for sinusoidal
signals with known frequencies. To illustrate that the presented
results hold not only for scalar linear regression models, we
choose ℓ = 2 and 𝑛 = 3. Consider

𝑦1 (𝑡) = 𝐵+ 𝐴 sin(𝑡 +𝜓) +𝑤1 (𝑡),
𝑦2 (𝑡) = 𝐴cos(2𝑡 +𝜓) +𝑤2 (𝑡)

where the scalars 𝐵, 𝐴 > 0, and 𝜓 ∈ [−𝜋, 𝜋) are the unknown
parameters, and 𝑤1, 𝑤2 are the measurement distortions. These
signals can be rewritten as the LRE (1) with

𝑦(𝑡) =
[
𝑦1 (𝑡) 𝑦2 (𝑡)

]⊤
, \ =

[
𝐵 𝐴cos(𝜓) 𝐴 sin(𝜓)

]⊤
,

𝜙(𝑡) =
[
1 sin(𝑡) cos(𝑡)
0 cos(2𝑡) −sin(2𝑡)

]⊤
, 𝑤 =

[
𝑤1
𝑤2

]
.
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Fig. 1. The estimation error \̃ under the standard gradient algorithm (7).
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Fig. 2. The new regressor Δ, the lower bound (11), and the asymptotic lower
bound (12).

Obviously, the values 𝐴, 𝐵, and 𝜓 can be reconstructed given
\.

It is straightforward to verify that the regressor 𝜙 is (2𝜋,2𝜋)-
PE, i.e., for all 𝑡 ≥ 0∫ 𝑡+2𝜋

𝑡

𝜙(𝑠)𝜙⊤ (𝑠)𝑑𝑠 ≥ 2𝜋𝐼3.

For simulations, we set 𝐵 = −1, 𝐴 = 2
√

2, and 𝜓 = 3
4𝜋

providing
\ =

[
−1 −2 1

]⊤
.

First, we consider the noise-free scenario, i.e., 𝑤 ≡ 0. We
apply the standard gradient algorithm (7) with Γ = 𝐼3 and
\̂ (0) = 0; the simulation results are depicted in Fig. 1. Since
𝜙 is PE, the estimation error \̃ converges to zero; however,
the transients exhibit oscillations. Then we apply the dynamic
regressor extension (2), (3), where the only tuning parameter
is chosen as 𝑎 = 0.1. The new regressor Δ computed as
(5) is depicted in Fig. 2 with the lower bound (11) and
with the asymptotic lower bound (12). Finally, the estimation
error transient \̃ for the DREM procedure with the gradient
estimator (10) with 𝛾𝑖 = 1, 𝑖 = 1,2,3, are depicted in Fig. 3 and
illustrate performance improvement for the standard gradient
estimator; note the monotonicity of the transients.

Next, to evaluate the measurement noise sensitivity, we let
both 𝑤1 and 𝑤2 be random uniformly distributed between −1
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Fig. 3. The estimation error \̃ under the DREM procedure (2), (3) and the
gradient estimator (10).

TABLE I
MSE OF ESTIMATION ERROR \̃𝑖 , 𝑖 = 1, 2, 3, FOR THE STANDARD

GRADIENT ALGORITHM (7) AND THE DREM (2), (3), (10).

\̃1 \̃2 \̃3
MSE·105 for (7) 12.6 18.8 8.3
MSE·105 for (2), (3), (10) 0.85 0.44 0.44

and 1. For results comparison, we compute the mean squared
error value,

𝑀𝑆𝐸 (\̃𝑖) =
1
50

∫ 100

50
\̃2
𝑖 (𝑠)𝑑𝑠, 𝑖 = 1,2,3.

The results are summarized in Table I and illustrate the filter-
ing properties of Kreisselmeier’s regressor extension scheme.

VI. CONCLUSION

The recently proposed DREM procedure provides signifi-
cant performance improvement in linear regression parameter
estimation, where the principal degree of freedom is the
choice of the dynamic extension. In this paper, we have
studied a particular choice of this procedure as Kreisselmeier’s
regressor extension (2), (3) that ensures the preservation of
the persistence of excitation property. We have analyzed the
excitation propagation properties and estimated the lower
bound of the new regressor Δ. We have also shown that the
interval excitation property is also preserved and provided
quantitative analysis of the new regressor’s interval excitation.
The obtained results are valuable for further use of the DREM
procedure for linear regression estimation.
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