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Multi-parameter optimization of attenuation data for characterizing grain size
distributions and application to bimodal microstructures
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aUniversité Paris-Saclay, CentraleSupélec, CNRS, Laboratoire de Mécanique des Sols, Structures et Matériaux, 91190 Gif-sur-Yvette, France

Abstract

In this paper, the effect on the ultrasonic attenuation of the grain size heterogeneity in polycrystals is analyzed. First,
new analytical developments allowing the extension of the unified theory of Stanke and Kino to general grain size
distributions are presented. It is then shown that one can additively decompose the attenuation coefficient provided
that groups of grains are defined. Second, the study is specialized to a bimodal distribution of the grain size for which
microstructures are numerically modeled by means of the software Neper. The additive partition of the attenuation co-
efficient into contributions coming from large and small grains motivates the derivation of an optimization procedure
for characterizing the grain size distribution. The aforementioned approach, which is based on a least squares mini-
mization, is at last presented and illustrated on both analytical and numerical attenuation data. It is thus shown that the
method provides satisfying approximations of volume fractions of large grains and modal equivalent diameters from
the frequency-dependent attenuation coefficient.

Keywords: Ultrasonic attenuation; Grain scattering; Bimodal grain size distributions; Inverse characterization;
Analytical modeling; Numerical modeling

1. Introduction

In the context of non-destructive evaluation of polycrystals, the attenuation resulting from the scattering of ul-
trasonic waves due to the grain microstructure can be used to deduce some features of the latter. Indeed, it has first
been emphasized that the scalar quantity α, called the attenuation coefficient, can be assumed proportional to dn−1 f n,
where d quantifies the mean grain size and f is the frequency of the ultrasonic signal [1, 2]. The value of the ex-
ponent n changes for the three scattering regions, which can be distinguished by the ratio between the wavelength
λ and the mean grain size d (i.e. the Rayleigh, stochastic and geometric scattering domains for λ � d, λ ≈ d and
λ � d respectively). Notice, however, that the limits between the three domains are not clearly specified and seem
to be material-dependent [3]. Thus, the relation between the morphology, namely, the size and shape of grains, and
the amplitude decay of elastic waves propagating in a polycrystal has been widely exploited for the non-destructive
evaluation of the grain size as in, among others, references [4, 3, 5, 6, 7, 8, 9, 10, 11].

Regarding theoretical contributions, two seminal theories can be cited. On the one hand, Stanke and Kino pro-
posed a unified theory valid in all frequency regions. These developments were based on the second-order Keller
approximation for weak anisotropic media composed of spherical grains with the same size and assuming single-
scattering [12, 13]. The weak-scattering Born approximation was further used to derive an explicit formula for the
attenuation coefficient in single-phase and untextured three-dimensional polycrystals with a cubic symmetry. On the
other hand, Weaver developed a multiple-scattering formalism for the mean Green’s function and the covariance of
the Green’s function. The latter, an energy density, is found to obey a radiative transfer equation for which a diffu-
sion limit can be taken [14]. By invoking the Born approximation, closed forms of the attenuation coefficient were
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obtained, which give good comparisons with Stanke and Kino’s model for both Rayleigh and stochastic regions but
fail in the geometric region [15]. Recently, using the framework proposed by Stanke and Kino, explicit formulas of
the attenuation coefficient in both two and three-dimensional cases were developed for untextured polycrystals with
equiaxed grains with cubic symmetry [16]. A rigorous analysis of the dimensionality of the grain scattering-induced
attenuation within those media was then carried out. The latter theoretical framework is considered and extended in
this paper.

In practice, the use of such analytical formulas in test setups is not straightforward. First, ultrasounds of a broad
frequency range can be used and involve more than one scattering domain for a given grain size. Hence, to interpret
the experimental data, analyses are generally carried out by identifying, in a more or less ad hoc way, an apparent
value of the exponent n. For example, in [10], the experimental analysis is performed with an apparent value n = 3.
Second, the grain morphology can itself complicate non-destructive testing. For instance, it has been shown that the
width of the grain size distribution strongly affects the attenuation curve except when the scattering region is restricted
to the Rayleigh region for the whole distribution [1, 2, 17]. This makes difficult the determination of the grain size
from the ultrasonic attenuation without any coupled metallographic observation [18]. In addition, polycrystals that
underwent recrystallization or heterogeneous grain growth, leading to a bimodal distribution of the grain size [19],
constitute another difficulty for accurately determining the mean grain size and hence, its evolution.

The present work focuses on the limitation of ultrasonic testing for polycrystals associated with a bimodal distri-
bution of the grain size. In the following, microstructures exhibiting such statistics are referred to as bimodal ones for
simplicity. Combining theoretical and numerical approaches, this work first aims at identifying the effect of a bimodal
distribution of the grain size on the scattering-induced attenuation. This aspect requires the ability to numerically
model bimodal microstructures with a realistic grain shape and to take into account the corresponding morphology
to compute the attenuation coefficient. Following former works [20, 21, 22], this can be done through the determi-
nation of the spatial correlation function (also called two-point correlation or autocorrelation function). Second, the
identified attenuation response is used to develop a characterization procedure for bimodal microstructures based on
reference attenuation results that can come from analytical, numerical or experimental data. This work then represents
a first step towards a real-time monitoring of polycrystalline materials, for which a bimodal distribution of the grain
size can be desired to achieve some chemical or mechanical properties [23, 24, 25, 26].

The comparison of experimental data resulting from multiple-scattering with analytical results based on single-
scattering only may lead to significant gaps [27, 28]. The gaps between analytical and experimental attenuation
relating to taking into account multiple-scattering, which make difficult the in-situ evaluation of the grain size, can
be circumvented by resorting to finite element modeling. Indeed, this allows to take into account the grain structures
without using simplifying assumptions. More specifically, discontinuous Galerkin methods, based on a piece-wise
polynomial approximation of the solutions of hyperbolic problems [29, 30], are considered in the present work. This
class of methods enables, through the solution of Riemann problems at the element interfaces, to grasp the complex
physical process of wave propagation in polycrystals. Therefore, numerical approaches allow, by considering realistic
morphologies of the grains resulting from EBSD or numerical generation as proposed by the software Neper [31]: (i)
accounting for multiple-scattering coming from the complex reflection of waves at grain interfaces; (ii) computing a
full-field solution for any sample geometries.

The paper is organized as follows. First, Section 2 is devoted to theoretical aspects to give a coherent framework.
The attenuation coefficient formulas derived in [16] for two and three-dimensional problems are recalled and extended
to a generic two-point correlation function. It is then shown that for bimodal microstructures made of equiaxed grains,
this function leads to an additive decomposition of the attenuation coefficient. Second, a procedure to numerically
model two and three-dimensional polycrystals with a bimodal distribution of the grain size and a realistic morphol-
ogy using the software Neper is presented in Section 3. The analysis of those bimodal microstructures shows that
the numerical models satisfy the additive property of the spatial correlation function. Then the frequency-dependent
attenuation coefficient is analytically evaluated and the influence of a bimodal distribution of the grain size is em-
phasized in Section 4. The inverse characterization procedure based on these observations is at last presented and
illustrated with analytical attenuation results, which are supplemented with numerical data in Section 5.
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2. Theoretical considerations

We first propose to briefly recall the derivation of attenuation coefficient formulas provided by the unified theory
of Stanke and Kino [12]. These developments involve the spatial correlation function that accounts for the microstruc-
tural morphology of polycrystalline media and is therefore of major importance for the computation of attenuation
curves. As a first result of this paper, semi-explicit equations are derived for the calculation of the frequency-dependent
attenuation coefficient accounting for a sample-defined autocorrelation function in two and three space dimensions.
Attention is next paid to the two-point correlation function for polycrystals whose grain size follows a bimodal dis-
tribution. It is then shown that in such cases the spatial correlation function, and hence the frequency-dependent
attenuation coefficient, breaks down additively into two contributions.

2.1. Analytical modeling of the attenuation

Let Ω ∈ Rdim (dim = 2, 3) be a domain occupied by a polycrystalline material characterized by the position-
dependent elastic stiffness tensor C(x) and the constant mass density ρ. Consider now the time harmonic elastic wave
equation in Ω with no source term:

L (u(x, ω)) ≡ ρω2u(x, ω) + ∇ · (C(x) : ε(u(x, ω))) = 0 (1)

where u(x, ω) is the Fourier transform with respect to time of the displacement field u(x, t), ∇ · (•) is the divergence
operator, and ε(•) the linearized strain tensor. The domain Ω is composed of Ng non-overlapping subdomains Ωi,
referred to as grains, such that:

Ω =

Ng⋃
i=1

Ωi (2)

Assuming single-phase, untextured and weakly-scattering polycrystals, explicit formulas of attenuation can be
derived for problems in two and three space dimensions [16] by using the unified theory of Stanke and Kino [12]
based on a general formulation established by Karal and Keller [13]. These developments are constructed upon the
search for the expected wave solution of an ensemble of possible inhomogeneous media 〈u(x, ω)〉, where 〈•〉 denotes
an ensemble averaging operator. For a particular heterogeneous medium, the inhomogeneity degree can be quantified
by the deviation of its elastic tensor compared to that of an equivalent homogeneous medium: δC(x) = C(x) − C0,
C0 = 〈C〉Θ being the Voigt average over all crystallographic orientations Θ as originally chosen in Stanke and Kino’s
or Weaver’s works [12, 14]. However, it worth noticing that this choice is not unique. For example, the Reuss average
or the self-consistent (SC) average can be used [32], but are not considered here. From now on, “0” superscripts refer
to the equivalent homogeneous medium.

Using the second-order Keller approximation, the following explicit equation for 〈u(x, ω)〉 can be obtained:

L0 (〈u(x, ω)〉) −
〈
L1

(∫
Ω

GT (x′, x)
)
· L1(

〈
u(x′, ω)

〉
)dx′

〉
= 0 (3)

in which G is the dyadic Green’s function tensor and L0(•) and L1(•) are respectively the homogeneous and pertur-
bation operators defined as:

L0 (u(x, ω)) = ρω2u(x, ω) + ∇ ·
(
C0 : ε(u(x, ω))

)
(4)

L1 (u(x, ω)) = ∇ · (δC : ε(u(x, ω))) (5)

The following assumptions:

• the single-phase setup along with the fact that the deviation of the elastic tensor in each grain is constant and
written as δCg,

• the elastic tensor components and the geometric characteristic functions of the grains vary independently,

• the deviation in the elastic tensor components vary independently from grain to grain,
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allow to rewrite the autocorrelation function of the elastic tensor as:〈
δC(x) ⊗ δC(x′)

〉
= 〈δCg ⊗ δCg)〉Θ W(r) (6)

where r = x − x′, and W(r) is the spatial correlation function of two points x and x′. For the untextured media under
consideration (i.e. statistically isotropic), a spherical symmetry is assumed: W(r) ≡ W(rn),∀n with ‖n‖ = 1 [33].

By seeking plane wave solutions of equation (3) and using the Born approximation (see [16] for an exhaustive
derivation), longitudinal and transverse attenuation coefficients can be written. Both expressions are composed of one
contribution induced by scattering into a same type of wave and another one generated by mode conversion [14]:

αL = αLL + αLT ; αT = αTT + αT L, (7)

with, in direction eJ:

αβγ =
∑

k,l,m,n

Im

k0β 〈δCJβJklδCmnJβJ〉

2C0
JβJJβJ

∫
Ω

Gγ
kmDβ,J

ln dΩ

 (8)

In equation (8), Im[•] denotes the imaginary part, k0β is the wave constant of a β-type wave in the Voigt average
homogeneous reference medium and eJβ indicates the polarization direction of the β-wave that propagates in the
direction eJ . Namely, Jβ = JδβL + PδβT , with eP ⊥ eJ for a transverse wave. Moreover, the components of the Green’s
tensor Gγ and the expression of Dβ,J(r) are respectively [16]:

Gγ(r) =
1 − c(γ)
4πρω2

(
Arr(k0γr)

r ⊗ r
r2 − AI(k0γr)I

)
(9)

Dβ,J(r) = ∇r
(
∇r

(
W(r)eik0βeJ ·r

))
(10)

where r = ‖r‖, c(γ) is a constant equal to 0 for γ = L and 2 for γ = T , i =
√
−1, and the expression of the functions

Arr(•) and AI(•) depending on the space dimension can be found in Appendix A.
The spatial correlation function W(r) describes the possibility that two points lie in the same crystal and therefore

accounts for the morphology of the polycrystalline microstructure. A semi-analytical attenuation model based on a
sample-defined spatial correlation function [21] has been employed to compute attenuation coefficient curves that are
better suited to the grain morphology of three-dimensional microstructures. To make a similar model available for
both two and three-dimensional solids, the first contribution of this work consists in extending the analytical results
presented in [16] by expanding generically the equation (10) as follows:

Dβ,J(r) = eik0βeJ ·r
[(

W ′′(r) −
W ′(r)

r

)
r ⊗ r

r2 − k2
0βW(r)eJ ⊗ eJ +

W ′(r)
r
{I + ik0β (r ⊗ eJ + eJ ⊗ r)}

]
(11)

in which usual prime notations are used for the derivatives of W(r). From equation (11), it is possible to derive
semi-analytical models for two and three-dimensional problems that enable the computation of attenuation coefficient
curves based on sample-defined spatial correlation functions (see Appendix A for details).

2.2. The spatial correlation function
Let us recall one important feature of the spatial correlation function W(r) in polycrystalline materials [33] that

allows rewriting the attenuation coefficient in particular cases. In analogy with multi-phase materials [33, 17], the
probability that the line segment of length r lies entirely, when thrown randomly in Ω, in one grain belonging to some
family k occupying the domain Ωk, is quantified by the autocorrelation function Wk

Ω
(r):

Wk
Ω(r) = Fk

∫ ∞
y=0(y − r)pk(y)H(y − r)dy∫ ∞

y=0 ypk(y)dy
= FkWk

Ωk (r) (12)

In equation (12), H(•) =
|•|+•

2• is the Heaviside step function and pk(y) is the chord-length probability density function
of the family k. Furthermore, Fk is the volume fraction of the phase k in Ω and Wk

Ωk (r) represents the probability that
the line segment is contained in on grain when thrown randomly in Ωk.
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The spatial correlation function in the whole domain Ω, which corresponds to a sum of probabilities, therefore
reads:

W(r) =
∑

k

FkWk
Ωk (r) (13)

By denoting αβγk the attenuation coefficient of the single-phase material k, the above decomposition, once intro-
duced in equation (10), yields the following additive decomposition of the attenuation coefficient in the multi-phase
case:

αβγ =
∑

k

Fkα
βγ
k (14)

This attenuation series can be seen as a discrete version of the formula used in [1, 2, 18], which has been developed
based on Roney’s model [34].

The discussion is now specialized to microstructures whose distribution of the grain size is bimodal. In this case,
the grains can be classified with respect to the family they belong to, that is, the one of small grains (SG) or the one
of large grains (LG). It then appears that, in analogy with the multi-phase case, the spatial correlation function in
bimodal microstructures can be written as:

W(r) = FLGWLG(r) + FS GWS G(r) (15)

and the attenuation coefficient takes the form of a convex combination:

α
βγ
Bimodal = FLGα

βγ
LG + (1 − FLG)αβγS G (16)

Equation (16) highlights that in addition to the dependence of the attenuation coefficient αβγ on the frequency
and the mean grain size, the volume fraction plays an important role for bimodal microstructures. Hence, given the
analytical formula (8), a numerical procedure can be developed in order to define (i) the modal grain sizes of the
distribution; (ii) the volume fraction of each family. This is the object of section 4.

3. Microstructures modeling

A procedure to numerically model two and three-dimensional bimodal microstructures is presented in this section.
Examples of geometry resulting from this approach are shown as well as the distribution of the equivalent diameter in
the samples. In addition, the sample-defined autocorrelation functions computed in these polycrystals are presented
and analyzed with regard to the previously highlighted additive decomposition property.

3.1. Generation of the geometry
The grains geometry associated with the microstructures considered here are constructed by means of the soft-

ware Neper [31]. Based on Laguerre tessellations combined with optimization processes, Neper allows generating
microstructures whose morphological properties follow some statistical distribution [35]. This approach is particu-
larly interesting in order to model bimodal distributions of the grain size that could not result from classical Voronoi
tessellations (which are a particular case of Laguerre tessellations). The measure used to characterize the grain size
is the equivalent diameter d, defined for two-dimensional and three-dimensional cases as the diameter of the circle of
equivalent area and the sphere of equivalent volume respectively. The procedure is as follows:

1– Given the two modal diameters (dS G, dLG), the volume (resp. the area) of the sample V and the volume fraction
FLG, compute the number of spherical (resp. circular) grains in each family: nS G and nLG.

2– Compute the arithmetic average of the equivalent diameter as:

d̄ =
nS GdS G + nLGdLG

nG , (17)

in which nG = nS G + nLG is the total number of grains. It is worth noticing that d̄ does not correspond to the
equivalent diameter but is only used as a parameter within Neper.
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3– Construct a log-normal bimodal distribution of the equivalent diameter as the arithmetic average of the monomodal
distributions:

d ∼
nS G

nG LN(µ =
dS G

d̄
, σS G) +

nLG

nG LN(µ =
dLG

d̄
, σLG) (18)

where µ denotes the expectation, and σi and ni

nG are the standard deviation and the numerical fraction of the
grains of family i respectively.

Remark 1. The log-normal distribution is here chosen for the equivalent diameter as it is well representative of
microstructures that underwent grain-growth for a standard deviation σ = 0.35 [35]. In this paper, the standard
deviations used are set to a low value σLG = σS G = 0.06 in order to better distinguish two families for bimodal
microstructures.

Examples of two and three-dimensional microstructures generated by following the above procedure are depicted
in figures 1 and 2 respectively. These geometries are obtained for the modal equivalent diameters of dS G = 160µm
and dLG = 240µm and three different volume fractions of large grains.

(a) FLG = 25% (b) FLG = 50% (c) FLG = 75%

Figure 1: Two-dimensional bimodal microstructures with the modal equivalent diameters dS G = 160µm and dLG =

240µm for three different volume fractions of large grains.

(a) FLG = 25% (b) FLG = 50% (c) FLG = 75%

Figure 2: Three-dimensional bimodal microstructures with the modal equivalent diameters dS G = 160µm and dLG =

240µm for three different volume fractions of large grains.

In what follows, two and three-dimensional domains of dimensions (x1, x2) ∈ [0, 9.6]×[0, 4.8]mm2 and (x1, x2, x3) ∈
[0, 4.8] × [0, 2.4] × [0, 0.6]mm3 are considered. The dimensions of the two-dimensional domain are set in such a way
that the size and number of the finite elements used for the numerical simulations presented in section 5 lead, for
the considered grain sizes, to good convergence for a moderate computational time. By extension, the lengths of the
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Figure 3: Comparison of the statistical distributions of equivalent diameter in two-dimensional bimodal microstruc-
tures with that of the corresponding monomodal microstructures for three volume fractions of large grains. First row:
dS G = 160µm and dLG = 240µm; Second row: dS G = 80µm and dLG = 240µm; Third row: dS G = 80µm and
dLG = 160µm.

three-dimensional solid are similar. Bimodal as well as monomodal distributions of the grain size based on the equiv-
alent diameters d = {80, 160, 240}µm and the volume fractions of large grains FLG = {0.25, 0.50, 0.75} are considered.
This results in three monomodal and nine bimodal microstructures (i.e. three combinations of equivalent diameters
and three volume fractions of large grains) for both two-dimensional and three-dimensional cases.

The analysis of the equivalent diameter distributions in these twenty-four polycrystals is presented in Figures 3 and
4, which show the comparison of the numerically constructed bimodal distributions and the associated monomodal
ones for two and three space dimensions respectively. The monomodal distributions depicted in the histograms are
weighted with the numerical fraction of grains of the same family in the bimodal microstructure. It is thus seen that the
procedure described above for generating bimodal microstructures leads to a bimodal distribution of the equivalent
diameter in which two modes can indeed clearly be identified. Moreover, even though bimodal and monomodal
distributions do not overlap perfectly, both statistics show good agreement. It finally enables validating the procedure
for generating bimodal microstructures with Neper, which until then was not really explicit.

3.2. Validation of numerical autocorrelation functions

It is now proposed to check the conformity of the considered microstructures with regard to the additive partition
of the spatial correlation function (15).

At first glance, determining the two-point correlation function W(r) for some polycrystal from equation (12) is
rather complex. It is however possible to approximate this function for numerical tessellations or EBSD data by
following [36], which is briefly recalled hereinafter.
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Figure 4: Comparison of the statistical distributions of equivalent diameter in three-dimensional bimodal microstruc-
tures with that of the corresponding monomodal microstructures for three volume fractions of large grains. First row:
dS G = 160µm and dLG = 240µm; Second row: dS G = 80µm and dLG = 240µm; Third row: dS G = 80µm and
dLG = 160µm.

Given an arbitrary direction n ∈ Rdim, one defines Ωn as the projection of Ω on the hyperplane through the origin
and orthogonal to n. Moreover, C ξ

n are lines parallel to n starting from any point ξ ∈ Ωn (see figure 5). Notice that
the lines C ξ

n have to intersect a non-zero number of grains denoted as Ng(ξ). The chord length `ξi is defined as the
length of the segment of C ξ

n contained in the ith grain. Then, discretizing the subset Ωn into Nξ points allows the
approximation of the spatial correlation function as:

W(r) ≈
Nξ∑
i=1

Ng(ξi)∑
j=1

〈
`
ξi
j − r

〉+

¯̀ (19)

where ¯̀ =

∑Nξ
i=1

∑Ng (ξi )
j=1 `

ξi

j∑Nξ
i=1 Ng(ξi)

is the mean chord length in Ω and 〈•〉+ =
|•|+•

2 is the positive part operator.

Equation (19) is used for the twenty-four numerical microstructures by superimposing lines parallel to the direction
e1 to the crystal images. The choice of the propagation direction e1 is made in accordance with the simulations of
Section 5. It is worth noticing that the computation of the chord lengths is straightforward owing to the ability of
Neper to rasterize tessellations2. Discrete values of the spatial correlation function are thus computed and W(r) is at
last reconstructed by means of a cubic spline function. However, in the following (Figure 6), some W(r) curves are
plotted using discrete markers for the sake of comparison clarity.

2The pixels or voxels size is set to h = 1.2 × 10−5m, which leads to Nξ = 400 in 2D and Nξ = 10000 in 3D.
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Figure 5: Schematic representation of the chords measure in a two-dimensional microstructure.

On the other hand, the conformity of the considered bimodal microstructures in terms of the spatial correlation
function W(r) with regard to theoretically expected weighted addition from two monomodal microstructures given
by (15) is looked at. The autocorrelation functions reconstructed from the numerical grain data and denoted by
WNum(r; FLG) are then compared to the theoretically expected one WTh(r; FLG), which is defined as follows:

WTh(r; FLG) = FLGWNum(r; 1) + (1 − FLG)WNum(r; 0) (20)

In (20), the functions WNum(r; 0) and WNum(r; 1) correspond to the monomodal cases FLG = 0 and FLG = 1 and
are reconstructed from the numerical grain data. Therefore, WTh(r; FLG) is in fact a theorectical-numerical hybrid
function since it comes from a theoretical formula (15) but used with two numerically evaluated functions WNum(r; 1)
and WNum(r; 0).

Figure 6 shows such comparisons for the considered bimodal microstructures in two and three space dimensions.
In each plot of the figure, three volume fractions of large grains are considered for one combination of modal equiv-
alent diameters and compared to the associated monomodal curves, which give rise to the bounding curves in each
plot.

It can first be seen that the bimodal spatial correlation functions lie between the monomodal limits for each
combination of modal diameters. Note also that the lower (resp. the higher) the volume fraction of large grains, the
closer the curve is to the extreme case for which the sample is made of small (resp. large) grains only. This is indeed
seen in figure 6 since the bimodal curves get closer of the lower bound curve with decreasing FLG in any case.

Second, each bimodal curve is also annotated with the L2 norm of the relative error between numerical and
expected results for bimodal distributions, which is calculated as follows:

ε =

∑i [WTh(ri; FLG) −WNum(ri; FLG)]2∑
i W2

Th(ri; FLG)

1/2

(21)

Thus, one sees that the reconstructed autocorrelation functions are very close to the expected ones. Notice however
that the highest errors occur for the highest ratio between large and small modal diameters for both two and three-
dimensional results, although they remain lower than 5%.

Remark 2. The spline interpolation of the grain data presented here makes straightforward the computation of the
attenuation coefficient (8) accounting for the morphology of the sample through equation (11). It must however be
emphasized that one has to ensure the fulfillment of the following condition [36]:

W ′(r = 0) = −

∑Nξ

i=1 Ng(ξi)
¯̀ (22)

which is a mathematical property of the autocorrelation function that may be not automatically satisfied by the nu-
merical approximation. Such computations of the attenuation coefficient are proposed in section 4.1.
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Figure 6: Comparison, for several volume fractions of large grains, between the spatial autocorrelation function
for bimodal distributions microstructures and the theoretically expected weighted addition from two monomodal
microstructures, with the L2 norm of the relative error between numerical and expected results ε annotated. First row:
two-dimensional cases; Second row: three-dimensional cases

3.3. Material parameters

In the remainder of the paper, untextured and single-phase polycrystals with equiaxed grains of cubic symmetry
are considered. Such polycrystals are modeled by setting to the grains a random orientation of the cubic axes with
respect to the Cartesian basis, which can be done by choosing Euler angles (ϕ1, φ, ϕ2) as:

ϕ1 = random [0, 2π[ , φ = arccos(random [−1, 1]), ϕ2 = random [0, 2π[ (23)

On the other hand, the values of material parameters for both the homogeneous reference medium and the poly-
crystals are gathered in table 1. The anisotropy degree for longitudinal and transverse waves of the considered poly-

C1111(GPa) C1122(GPa) C1212(GPa) ρ(kg/m3)
Single crystallite in cubic axes 134 110 36 4428

Equivalent homogeneous material 153 100 26.5 4428

Table 1: Material parameters for a BCC β-titanium metal [37].

crystalline material are low compared to unity [16]. Therefore, the equations developed in Appendix A for untextured,
single-phase and weakly-scattering materials hold. Furthermore, the elastic properties of the equivalent medium cor-
respond to the Voigt-averaged material over the set of orientations, as required [12].
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4. Influence of bimodal distributions of the grain size on the attenuation

In this section, the unified theory of Stanke and Kino embedding sample-defined autocorrelation functions, as
developed in section 2, is used for the computation of the analytical attenuation coefficient in bimodal microstructures.
This extension of the unified theory to distributions of the equivalent diameters that do not follow Poisson statistics
allows the calculation of the attenuation coefficient for two as well as three-dimensional problems which, to the
authors’ knowledge, is not possible in the 2D case when employing Weaver’s model as in [21, 22, 38]. Even though
problems in two space dimensions may seem irrelevant for modeling experimental non-destructive testing, which are
in essence three-dimensional, they are considered here so that the numerical simulations (as presented in section 5)
can be performed at an admissible computational cost.

The observations made on the analytical results in two and three space dimensions then motivate the development
of a procedure aiming at characterizing bimodal distributions of the equivalent diameter from attenuation data, which
is presented and illustrated in section 4.2.

4.1. Validation of the additive partition of sample-defined attenuation coefficients

The formulas presented in Appendix A allow the computation of analytical attenuation curves that take into ac-
count the autocorrelation functions determined as presented in the previous section. Figure 7 shows the longitudinal
frequency-dependent attenuation coefficient for the two and three-dimensional bimodal microstructures considered so
far. Once again, color markers are used for bimodal microstructures while thick solid grey or black lines correspond to
the associated monomodal ones. Moreover, the expected results coming from the additive partition of the attenuation
coefficient (16) are depicted using thin color lines for comparison purposes, the L2 norm of the relative errors being
also reported.
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Figure 7: Analytical sample-based attenuation curves for two- and three-dimensional microstructures: comparison
between bimodal and monomodal distribution of the grain size and the expected results based on equation (16).
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As for the spatial correlation function, one sees that the higher the volume fraction of large grains, the closer
the curve is to the extreme case for which the sample is made of large grains only (and conversely). Next, the error
computed between the theoretical evaluation of the attenuation coefficients for bimodal microstructures and the convex
combination (16) is always lower than or equal to 6%, which shows good agreement. As a result, in each figure all
the curves cross at the same point as expected with the convex combination (16).

In light of the above results, it seems possible to estimate the volume fraction of large grains in a bimodal mi-
crostructure based on the attenuation curve. Let us assume that the frequency-dependent attenuation coefficient cor-
responding to the modal equivalent diameters are known a priori, then, the volume fraction of large grains is in fact
the solution of equation (16). Nevertheless, such an approach is based on the knowledge of the modal equivalent
diameters and the corresponding attenuation curves, the former being the object of non-destructive testing as well.
The object of the following is to improve the outlined approach in order to deduce the volume fraction of large grains
as well as the two modal equivalent diameters from the attenuation data of a bimodal microstructure.

4.2. Inverse analysis: characterization of bimodal distributions of the grain size

We denote attenuation data collected experimentally on a bimodal distribution as the vector A whose N f lines
correspond to frequency values. The results of the previous section confirm that these data can be written as:

Ai = FLGα( fi, dLG) + (1 − FLG)α( fi, dS G) (24)

in which fi is the i-th frequency value, and α( fi, •) is well representative of monomodal microstructures. Then, the
set of parameters {FLG, dS G, dLG} that minimizes the errors between the left and right-hand sides of equation (24) can
be determined by using some well-known optimization procedures, such as nonlinear least squares. The problem
therefore reads:

{FLG, dS G, dLG} = arg min
F,d1,d2


N f∑
i=1

[
Ai − gB( fi, F, d1, d2)

]2

 (25)

gB( fi, F, d1, d2) = Fα( fi, d2) + (1 − F)α( fi, d1) (26)

This however let some freedom in the choice of α( f , d) in the model function gB.
Employing a minimization procedure raises the question of finding local or global minima and hence, ensuring

the solution’s uniqueness. Nevertheless, it is believed that the initial guess of the parameters can be controlled so as to
prevent any problem. Indeed, since the monomodal curves and the bimodal one must cross at the same point, initial
equivalent diameters dS G

0 and dLG
0 can be deduced from the solution of the following problem:

dS G
0 , dLG

0 = arg min
d1,d2

{∣∣∣∣α( f̃ , d1) − Ã
∣∣∣∣ +

∣∣∣∣α( f̃ , d2) − Ã
∣∣∣∣} (27)

f̃ ∈ { f : α( f , d1) = α( f , d2)} (28)

in which Ã is the interpolation of A at frequency f̃ . The use of such an initial guess in the least squares approach
should restrict the parameter space so that the solution of optimization (27) is satisfactory.

It is worth noticing this crossing point indicates that the same attenuation coefficient is obtained for two differ-
ent grain sizes. Therefore, regarding the frequency at which such a crossing point is observed for two monomodal
microstructures S G and LG, we believe that it should not correspond to the same scattering domain for the two mi-
crostructures. Indeed, according to the form α ∝ dn−1 f n, it is seen that the LG curve is above the S G one for a
given scattering domain. The intersection can then occur if the former presents an inflection, which would be due
to a change in its scattering domain. This for example means that if the frequency of the crossing point is in the
Rayleigh domain for the S G microstructure, it should at least be in the Rayleigh-to-stochsatic transition zone for the
LG microstructure. Furthermore, Figure 7 shows that the crossing occurs at a higher frequency in the 3D case than
in the 2D case, which is coherent with the conclusion of our previous work stating that the transition starts at higher
frequencies in the 3D case than in the 2D case [16].
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Remark 3. An equivalent monomodal microstructure can also be found by setting F = 1 in the model function
gB( f , d). The problem then becomes:

d̄ = arg min
d


N f∑
i=1

[
Ai − α( fi, d)

]2

 (29)

In what follows, optimizations (27) and (29) are referred to as bimodal fitting and monomodal fitting respectively.

Remark 4. Although this work focuses on bimodal distributions, the presented approach could be generalized to the
characterization of “spread” monomodal distributions of the equivalent diameter. Indeed, given the form of α in
equation (14), it should be possible to approximate a grain size distribution by seeking the equivalent diameters and
volume fractions of N families of grains. However, such an approach, which could allow to generalize the inversion
proposed in [18], is the object of future works.

As a first illustration, we propose to characterize two and three-dimensional bimodal microstructures with the
same morphology as before, for which the analytical attenuation curves are viewed as experimental data.

In order to construct the model function gB upon a representative function α( f , d), we propose to use theoretical
sample-based evaluations of the attenuation curve in monomodal microstructures having similar grain shapes as the
bimodal ones. Since such curves involve sample-defined spatial autocorrelation, they can only be known for dis-
crete equivalent diameters, in contrast with those resulting from the exponential form. Nevertheless, this limitation
can be overcome by reconstructing a surface by means of bivariate spline interpolation [39]. Figure 8 shows recon-
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Figure 8: Sample-based analytical attenuation coefficient in the (d, f ,α) space for monomodal microstructures.

structions based on the attenuation results of the two and three-dimensional microstructures of equivalent diameters
d = {80, 120, 160, 200, 240}µm using cubic interpolation in both directions d and f . The set of bimodal microstruc-
tures considered is then composed of those already considered plus one for which the associated monomodal results
are not known, that is FLG = 0.35, dLG = 190µm, dS G = 90µm.

First, each microstructure is assumed to be monomodal and problem (29) is solved. The results of that optimization
are shown in tables 2 and 3 for two-dimensional and three-dimensional cases. For each polycrystal, the L2 norm of
the relative error between the data and the optimized results, defined as:

εMono =


∑N f

i=1

(
Ai − α( fi, d̄)

)2

∑N f

k=1 A2
k


1/2

(30)

is also reported.
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Next, bimodal fittings (27), whose optimized parameters are also gathered in the tables, are performed. In these
cases, the error is computed as:

εBi =


∑N f

i=1

(
Ai − gB( fi, FLG, dS G, dLG)

)2

∑N f

k=1 A2
k


1/2

(31)

In most cases, the optimal equivalent diameter resulting from monomodal fittings is close to the weighted average:
FLGdLG + (1−FLG)dS G. Moreover, the monomodal errors are in any cases far greater than that of bimodal fittings, the

Input parameters Monomodal fitting Bimodal fitting
FLG (%) dS G dLG dopt εMono (%) Fopt

LG (%) dS G
opt dLG

opt εBi (%)
25 160 240 179 2.0 36 155 225 5.8 × 10−2

50 160 240 199 2.1 60 154 231 3.2 × 10−2

75 160 240 218 1.2 90 138 228 1.0 × 10−1

25 80 240 136 14 30 80 237 2.9 × 10−1

50 80 240 184 12 58 80 235 5.1 × 10−1

75 80 240 214 6.1 83 80 233 5.3 × 10−1

25 80 160 94 4.7 29 80 153 1.3 × 10−1

50 80 160 127 5.5 56 80 155 1.3 × 10−1

75 80 160 145 2.8 81 80 155 6.8 × 10−2

35 90 190 134 6.6 38 91 191 2.2 × 10−1

Table 2: Results of monomodal and bimodal fittings for two-dimensional bimodal microstructures.

Input parameters Monomodal fitting Bimodal fitting
FLG (%) dS G dLG dopt εMono (%) Fopt

LG (%) dS G
opt dLG

opt εBi (%)
25 160 240 180 3.2 27 159 238 3.9 × 10−2

50 160 240 203 4.5 54 156 240 1.9 × 10−2

75 160 240 223 3.0 77 157 240 2.7 × 10−2

25 80 240 209 42 29 80 237 8.2 × 10−2

50 80 240 224 26 55 80 237 1.1 × 10−1

75 80 240 234 14 75 80 240 4.2 × 10−2

25 80 160 87 8.4 29 80 159 2.7 × 10−2

50 80 160 97 14 54 80 159 6.6 × 10−2

75 80 160 154 8.0 77 84 159 4.5 × 10−2

35 90 190 154 22 42 87 183 2.9 × 10−2

Table 3: Results of monomodal and bimodal fittings for three-dimensional bimodal microstructures.

former being between 10 and 102 times larger than the latter. Furthermore, note that the higher the ratio dLG/dS G, the
higher the monomodal error. Therefore, a large value of εMono gives an indication about the non-monomodal nature of
the actual distribution of the equivalent diameter. On the other hand, the parameters resulting from the bimodal fitting
are in general close to the input data, even though they are not identical to the input data. These gaps may be reduced
by using additional monomodal attenuation curves to reconstruct the surface α( f , d). At last, analogously to the result
of monomodal fittings, one sees that the highest bimodal errors occur for high values of the ratio dLG/dS G.

The approach proposed here for the characterization of bimodal distribution of the grain size provides very en-
couraging results. On the one hand, using a set of attenuation curves in order to reconstruct an attenuation model
α( f , d) is something that can be done experimentally or numerically. This point allows to avoid gaps between col-
lected data resulting from multiple-scattering and the analytical results accounting for single-scattering. On the other
hand, solving an optimization problem over the whole frequency domain enables to get rid of the problems related to
the frequency exponent that varies depending on the scattering region.
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Nevertheless, the above illustrations emphasize that the proposed bimodal optimization can be improved since
the actual morphological parameters are not exactly recovered. Additional effort should then be done on the model
function and more specifically on the reconstruction of the surface α( f , d). Indeed, a cubic interpolation is performed
although it is well known that the dependency of the attenuation coefficient on d changes depending on the scattering
region. Two solutions could allow to circumvent this problem: (1) do a bivariate spline approximation with a polyno-
mial degree in direction d varying with respect to the scattering region; (2) use more discrete equivalent diameters for
the computation of reference attenuation curves in monomodal microstructures. Notice that the same remark holds
for the frequency dependency, which is solved in this work using option (2). Indeed, numerous sample points are used
in the frequency range so that the aforementioned approximation error is avoided.

5. Numerical modeling of a two-dimensional problem

The procedure presented in the previous section is now applied to numerical attenuation data in two space di-
mensions that are computed in polycrystals whose material parameters have been presented in section 3.3 (see table
1). This constitutes a first step towards the application of the approach to experimental characterization of bimodal
microstructures.

5.1. Properties of the continuum problem
We consider a two-dimensional domain made of a polycrystalline material, submitted to a time-varying traction

force on its left end as depicted in figure 9. This signal is taken as a sum of two Ricker signals varying with frequency

σ · e1 =

σd(t)
0
0

 h = 4.8 × 10−3 m

l = 9.6 × 10−3 m

e1

e2

Figure 9: Geometry and loading conditions of the considered problem

content centered to 5MHz and 10MHz, which is representative of a broad frequency range pulse. For such an external
loading, the valid frequency domain is limited to a range 4–16MHz, which leads to a range from 375µm to 1.5mm for
wavelengths for the β-titanium considered hereinafter [16]. Hence, the Rayleigh region and the Rayleigh-to-stochastic
transition domain are covered with respect to the considered grain sizes.

As before, monomodal and bimodal distributions of the equivalent diameter, whose characteristics are shown in
table 4, are considered.

The attenuation curves resulting from monomodal microstructures play the role of reference in order to build
a surface α( f , d) (i.e. the model function) as in section 4.2, while these computed in bimodal ones are used to
characterize the distribution of grain size.

5.2. Discretization
The numerical model is based on the following system of conservation laws, composed of the balance equation of

linear momentum with no source term and geometrical conservation laws:

∂U

∂t
+

dim∑
i=1

∂F · ei

∂xi
= 0,

U =

∣∣∣∣∣∣ ρv
C−1 : σ ; F · ei =

∣∣∣∣∣∣ −σ · ei

−
v⊗ei+ei⊗v

2

(32)
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d(µm) FLG (%) nG Number of samples
80 — 9167 5
120 — 4074 10
160 — 2291 10
200 — 1466 10
240 — 1018 20

240–80
25
50
75

7129
5092
3054

10

240–160
25
50
75

1972
1654
1335

10

160–80
25
50
75

7447
5728
4009

10

190–90 35 5276 10

Table 4: Number of grains in the considered microstructures and number of samples used for the simulations.

In system (32), the unknowns are respectively σ and v, the Cauchy stress tensor and the velocity vector. The solid
domain presented in figure 9 is then discretized as a Cartesian grid of space step ∆x = 12.0µm, in such a way that
the semi-discrete form of the above governing equations can be written by means of the discontinuous Galerkin (DG)
first-order approximation [29, 30, 40]. Note that such a finite element size leads to good convergence properties for
continuous Galerkin finite element schemes [41, 42], which have the same (second-order) accuracy as the considered
DG approach. At last, an explicit two-step second-order Runge-Kutta time-discretization is used to derive the discrete
system. The reader interested in more details about formulation, implementation and stability of DG methods for
anisotropic and piecewise homogeneous media should refer to references [30, 40, 43].

The microstructural morphology is managed by overlapping Neper rasterized tessellations to the Cartesian grid so
that each finite element can easily be identified as belonging to a grain. Then, the elastic tensor can be computed grain-
wise given Euler angles. Recall that for one morphology (i.e. one distribution of the equivalent diameter), several
spatial distributions of the cubic axes orientation are generated following (23), which allows considering a sufficient
amount of grains so that the application of the analytical models is appropriate. The number of samples considered in
each case is reported in the last column of table 4. Attenuation coefficients, whose computation is explained below,
are at last averaged over the samples.

5.3. Post-treatment of the ultrasonic data

The velocity solution provided by the finite element procedure in time domain is recorded at Npoints lying on the
free end of the sample. Those signals are then windowed in order to extract at each point the reflection of the incident
wave only. In order to take into account the dispersion resulting form the constitutive heterogeneities, the time window
is defined for one point as: t ∈

[
Tvmax − Tr/2, Tvmax + Tr/2

]
, where Tvmax is the time of maximum velocity at that point.

The average of the field computed on the free end is next transformed in the frequency domain for the homogeneous
reference solid and the heterogeneous sample. At last, the attenuation coefficient is computed as:

α( f ) =
1
D

log


∣∣∣vIso( f )

∣∣∣∣∣∣vS ample( f )
∣∣∣
 (33)

where D ≡ l is the propagation distance and v is the discrete Fourier transform of the velocity component v1.
Figure 10 shows the attenuation curves computed for nine of the two-dimensional bimodal microstructures con-

sidered so far. As before, the results are gathered by modal diameters so that the comparison with the associated
monomodal distributions is straightforward. First, in the considered frequency range, the attenuation curves resulting
from the simulation in monomodal microstructures exhibit similar shape as analytical ones (see the first row in figure
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Figure 10: Attenuation coefficient for several two-dimensional bimodal microstructures depending on the volume
fraction of large grains and the modal equivalent diameters.

7). Namely, the attenuation coefficient for the equivalent diameter d = 80µm increases much more than the two
others which almost tend to a plateau for f = 15MHz. However, numerical results lead to less smooth curves than
analytical ones, which is most likely due to multiple-scattering. Second, the dependence of the attenuation coefficient
on the volume fraction of large grains for bimodal microstructures is well observed. Indeed, the higher FLG, the closer
the results are to the monomodal curve associated to the large grains. Third, the comparison between Figures 7 and
10 shows that the crossing point of the attenuation curves occurs at a slightly different frequency in the analytical
and numerical results. One possible explanation for this difference could be the influence of the multiple scattering
captured in numerical simulations but ignored by analytical models. Finding a correlation between the gap in the
crossing point frequency and the degree of multiple scattering would be an interesting point to check in future work.
At last, for each combination of modal diameters, all the attenuation curves cross at the same point. Therefore, the nu-
merical study presented here agrees with the analysis performed on the theoretical attenuation coefficient for bimodal
microstructures. It is then proposed to apply the procedure described in section 4.2 to these numerical results in the
following.

5.4. Characterization of the microstructures by inversion
Given that numerical and analytical attenuation coefficients show some amplitude mismatch, it is proposed to base

the model function of optimization problems (27) and (29) upon numerical monomodal results. Thus, the numerical
data computed for monomodal microstructures with equivalent diameter d = {80, 120, 160, 200, 240}µm play now the
role of the reference solutions. The bivariate cubic spline reconstruction of the attenuation surface α( f , d) can be seen
in figure 11.

As in section 4.2, both monomodal and bimodal fitting are carried out for the attenuation data resulting from
numerical simulations. The optimal parameters enabling the characterization of the corresponding distribution of the
grain equivalent diameters as well as the errors between the numerical and optimized curves are presented in table
5. As one can see, the monomodal errors are similar to those computed for the analytical data in table 2 whereas
bimodal errors are greater in that case. This means that the optimization procedure struggles to fit parameters with the
numerical bimodal attenuation data. In addition, the comparison between monomodal and bimodal errors shows that
εBi < εMono for all the considered distributions of equivalent diameter. Therefore, in case we do not know a priori the
microstructure, a high monomodal error can indicate that the distribution of the grain size is actually bimodal. Then,
both errors take maximal values for a high ratio dLG/dS G, which has been already observed in section 4.2. In addition,
the results of the bimodal optimization for the combination dLG = 240µm, dS G = 80µm must be taken carefully.
Indeed, those values of the equivalent diameter are also the bounds of the definition domain of α( f , d). It is therefore
probable that these solutions are found by lack of other values α( f , d < 80µm) and α( f , d > 240µm), which would
explain the high amount of error while the set of optimized parameters are in that case very close from the actual one.
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Figure 11: Reconstruction of the attenuation coefficient surface for monomodal microstructures in the (d, f ,α) space
for two-dimensional cases.

Input parameters Monomodal fitting Bimodal fitting
FLG (%) dS G dLG dopt εMono (%) Fopt

LG (%) dS G
opt dLG

opt εBi (%)
25 160 240 176 2.7 50 148 207 1.2
50 160 240 192 3.4 61 149 224 1.4
75 160 240 217 3.1 90 117 228 1.8
25 80 240 80 14 28 80 240 2.3
50 80 240 205 20 57 80 240 2.9
75 80 240 222 8.9 82 80 236 2.7
25 80 160 89 6.6 32 80 148 1.7
50 80 160 126 10 41 91 175 1.4
75 80 160 151 6.1 78 80 161 1.2
35 90 190 126 11 49 83 165 1.1

Table 5: Solutions of optimization problems (29) and (27) applied to the two-dimensional numerical attenuation data
for bimodal distributions of the equivalent diameter.

We now focus on the last row of table 5, which concerns a bimodal distribution for which none of the monomodal
attenuation curves is known. One sees that the characterization of the distribution of equivalent diameter is very
good, even though the volume fraction of large grain is slightly overestimated. Figure 12 shows a comparison of the
numerical data and the optimized curves for this microstructure. Those curves highlight that the monomodal fitting is
close to the data for low frequencies only whereas the bimodal fitting agrees well in overall. This first emphasizes the
importance of considering a large frequency range for the optimization. Indeed, a monomodal solution can be found
if only a small portion of the attenuation curve is looked at, even though the distribution is really bimodal. Second, the
gaps between the monomodal fitting and the numerical data indicate that a bimodal distribution should be considered,
namely, better results should be computed with the bimodal fitting. Doing so, the model function can accurately be
fitted, which results in morphological parameters that describe the microstructure satisfactorily. However, it is believed
that increase the precision on the α( f , d) surface reconstruction would enhance the optimization as mentioned in the
previous section.

The results presented here pave the way for the use of the bimodal fitting in order to identify and characterize
bimodal distributions of the grain size in polycrystals. Indeed, the approach followed here for visualization purposes
has been applied to attenuation data provided by numerical simulations but could easily be extended to experimental
data. The key point of the method is that it requires a reliable model function which, in the present work, is recon-
structed from approximate solutions computed in monomodal microstructures, which may lack of accuracy. However,
it is believed that the experimenter having a precise attenuation database for monomodal microstructures is able to
accurately characterize bimodal ones.
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Figure 12: Comparison between numerical data and optimized curves for the bimodal distribution of the equivalent
diameters with modal values d = {90, 190}µm and volume fraction of large grains FLG = 0.35.

6. Concluding remarks

In this paper, the influence of bimodal distributions of the equivalent diameter in polycrystals has been inves-
tigated. First, the spatial correlation function W(r) in polycrystalline materials made of equiaxed grains has been
shown to yield an additive decomposition of the attenuation coefficient in section 2. More specifically, the volume
fraction of large grains plays an important role in the analytical expression of the frequency-dependent attenuation
coefficient. This property has then been confirmed in section 4 owing to the joint developments of a procedure to nu-
merically model bimodal microstructures with the software Neper and of analytical attenuation formulas in two and
three space dimensions taking into account a generic spatial correlation function. From these results, a least squares
minimization-based numerical procedure for characterizing bimodal distributions of the grains’ equivalent diameter
has been presented. The aforementioned approach has been shown to yield very good results for analytical attenuation
curves in both two and three space dimensions as well as two-dimensional numerical attenuation data. Namely, for
the considered bimodal microstructures, the volume fraction of large grains and the modal equivalent diameters of
both large and small grains have been satisfyingly approximated by applying the proposed inversion procedure to
attenuation curves.

The presented characterization method, which has been illustrated for analytical and numerical attenuation data,
could be applied to experimental ones. In that context, the model function’s surface α( f , d) could be built using either
experimental or numerical attenuation curves computed for monomodal distributions of the grain size. A numerical–
experimental mixed procedure however requires the use of numerical approaches accurate enough to guarantee a
good agreement between simulation and testing. On the other hand, the present study should be supplemented with
an analysis of the effect of the distributions width. Indeed, the same standard deviation has been considered for both
large grains and small grains in bimodal distributions, namely σLG = σS G. Nevertheless, it has been shown that
the distribution width has a measurable effect on attenuation in the Rayleigh and transition regions [17], in such a
way that variations of σLG and σS G should have an impact on the optimization procedure. Moreover, the attenuation
series (14) suggest that a grain size distribution can be discretized so that a multi-parameter optimization can be done,
which is similar to the approach presented in [2, 18]. Thick grain size distributions could thus be considered by using
thin monomodal distributions, namely, with a small deviation, to build the model function. For application to the
characterization of actual microstructures, the numerical modeling of thin distributions should highly increase the
flexibility of the approach, which once again strengthen the development of a mixed procedure. This is however, a
more long term perspective of the present research.
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Appendix A. Semi-analytical model

The equation (8) is developed in detail hereafter.
Let us first rewrite the equation for both two and three dimensional cases:

αβγ =



∑
k,l,m,n

Im

k0β 〈δCJβJklδCmnJβJ〉

2C0
JβJJβJ

∞∫
r=0

2π∫
θ=0

Gγ
km(r, θ)Dβ,J

ln (r, θ)rdrdθ

 in 2D

∑
k,l,m,n

Im

k0β 〈δCJβJklδCmnJβJ〉

2C0
JβJJβJ

∞∫
r=0

2π∫
θ=0

π∫
ϕ=0

Gγ
km(r, θ, ϕ)Dβ,J

ln (r, θ, ϕ)r2 sinϕdrdθdϕ

 in 3D

(A.1)

in which the expressions of the dyadic Green’s function tensor Gγ and Dβ,J are:

Gγ(r) =
1 − c(γ)
4πρω2

(
Arr(k0γr)

r ⊗ r
r2 − AI(k0γr)I

)
(A.2)

Dβ,J(r) = ∇r
(
∇r

(
W(r)eik0βeJ ·r

))
(A.3)

Depending on the space dimension, the expressions of functions Arr(•) and AI(•) read:

A3D
rr (k0γr) =

eik0γr

r3

[
3 − 3ik0γr − k2

0γr2
]

(A.4)

A3D
I (k0γr) =

eik0γr

r3

[
1 − ik0γr −

c(γ)
2

k2
0γr2

]
(A.5)

A2D
rr (k0γr) = iπ

k0γ

r
H(1)

1 (k0γr) −
k2

0γ

2

(
H(1)

0 (k0γr) − H(1)
2 (k0γr)

) (A.6)

A2D
I (k0γr) = iπ

k0γ

r
H(1)

1 (k0γr) − c(γ)
k2

0γ

2
H(1)

0 (k0γr)

 (A.7)

where H(1)
q (•) denotes the Hankel function of first kind.

The multiple integrals in equation (A.1) can be reduced to a single integration over the radius, which can highly
reduce the computational cost of numerical integration techniques. This is first done for two-dimensional problems by
expending the integrands according to equation (11) for k, l,m, n = P,Q such that eP is the propagation direction and eQ

is perpendicular to it. Then, the integration over θ can be performed. Those integrals, which involve Bessel functions
of the first kind, are denoted as ~2D

K (k0βr) in what follows (see [16] for further details). In two space dimensions, the

notation
∫ 2π
θ=0 Gγ

km(r, θ)Dβ,J
ln (r, θ)dθ = η

γβ,J
kmln(r), so that αβγ =

∑
k,l,m,n Im

[
k0β〈δCJβ JklδCmnJβ J〉

2C0
Jβ JJβ J

∫ ∞
r=0 η

βγ,J
kmln(r)rdr

]
, leads to the
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derivation of the following five non-zero terms:

4πρω2

1 − c(γ)
η
γβ,P
PPPP(r) = Arr(k0γr)

[(
W ′′ −

W ′

r

)
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]
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4πρω2

1 − c(γ)
η
γβ,P
QQQQ(r) = Arr(k0γr)

[(
W ′′ −

W ′

r

)
~2D

S 4 (k0βr) +
W ′

r
~2D

S 2 (k0βr)
]

−AI(k0γr)
[(

W ′′ −
W ′

r

)
~2D

S 2 (k0βr) +
W ′

r
~2D

S 0 (k0βr)
] (A.9)

4πρω2

1 − c(γ)
η
γβ,P
PPQQ(r) = Arr(k0γr)

[(
W ′′ −

W ′

r

)
~2D

S 2C2(k0βr) +
W ′

r
~2D

C2(k0βr)
]

−AI(k0γr)
[(

W ′′ −
W ′

r

)
~2D

S 2 (k0βr) +
W ′

r
~2D

S 0 (k0βr)
] (A.10)
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For three-dimensional cases, two additional terms have to be considered. In that case, one writes ηγβ,Jkmln(r) =
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∫ 2π
θ=0

∫ π
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Analogously to two-dimensional cases, the functions ~3D
K (k0βr) result from the integration over ϕ and their expressions

can be found in [16], and the integration over θ results in the multiplier 2π.
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