Parameter selection in Gaussian process interpolation: An empirical study of selection criteria - CentraleSupélec
Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2023

Parameter selection in Gaussian process interpolation: An empirical study of selection criteria

Résumé

This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choosing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a family of Bayesian procedures to perform predictions about the unknown function, and must choose a member of the family that will hopefully provide good predictive performances. We base our study on the general concept of scoring rules, which provides an effective framework for building leave-one-out selection and validation criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that the choice of an appropriate family of models is often more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show that the regularity parameter of a Matérn covariance can be selected effectively by most selection criteria.
Fichier principal
Vignette du fichier
Petit et al. - 2023 - Parameter Selection in Gaussian Process Interpolat.pdf (856.96 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-03285513 , version 1 (13-07-2021)
hal-03285513 , version 2 (25-03-2022)
hal-03285513 , version 3 (10-11-2022)
hal-03285513 , version 4 (07-08-2023)
hal-03285513 , version 5 (03-01-2024)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Sébastien Petit, Julien Bect, Paul Feliot, Emmanuel Vazquez. Parameter selection in Gaussian process interpolation: An empirical study of selection criteria. SIAM/ASA Journal on Uncertainty Quantification, 2023, 11 (4), pp.1308-1328. ⟨10.1137/21M1444710⟩. ⟨hal-03285513v5⟩
464 Consultations
596 Téléchargements

Altmetric

Partager

More