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Parameter Selection in Gaussian Process Interpolation: An Empirical Study of
Selection Criteria\ast 

S\'ebastien J. Petit\dagger \ddagger , Julien Bect\ddagger , Paul Feliot\dagger , and Emmanuel Vazquez\ddagger 

Abstract. This article revisits the fundamental problem of parameter selection for Gaussian process interpola-
tion. By choosing the mean and the covariance functions of a Gaussian process within parametric
families, the user obtains a family of Bayesian procedures to perform predictions about the un-
known function and must choose a member of the family that will hopefully provide good predictive
performances. We base our study on the general concept of scoring rules, which provides an effec-
tive framework for building leave-one-out selection and validation criteria and a notion of extended
likelihood criteria based on an idea proposed by Fasshauer et al. [``Optimal"" scaling and stable com-
putation of meshfree kernel methods, 2009], which makes it possible to recover standard selection
criteria, such as the generalized cross-validation criterion. Under this setting, we empirically show
on several test problems of the literature that the choice of an appropriate family of models is often
more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-
one-out selection criterion). Moreover, our numerical results show that the regularity parameter of
a Mat\'ern covariance can be selected effectively by most selection criteria.

Key words. Gaussian processes interpolation, model choice, parameter selection, scoring rules, likelihood,
regularity
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1. Introduction. Regression and interpolation with Gaussian processes (GPs), or kriging,
is a popular statistical tool for nonparametric function estimation, originating from geostatis-
tics and time series analysis and later adopted in many other areas, such as machine learning
and the design and analysis of computer experiments (see, e.g., [43, 44, 46] and references
therein). It is widely used for constructing fast approximations of time-consuming computer
models, with applications to calibration and validation [6, 32], engineering design [23, 31],
Bayesian inference [10, 53], and the optimization of machine learning algorithms [8]---to name
but a few.

A GP prior is characterized by its mean and covariance functions. They are usually chosen
within parametric families (for instance, constant or linear mean functions and Mat\'ern covari-
ance functions), which transfers the problem of choosing the mean and covariance functions
to that of selecting parameters. The selection is most often carried out by optimization of a
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PARAMETER SELECTION FOR GP INTERPOLATION 1309

criterion that measures the goodness of fit of the predictive distributions, and a variety of such
criteria---the likelihood function, the leave-one-out (LOO) squared-prediction-error criterion
(hereafter denoted by LOO-SPE), and others---is available from the literature. The search for
arguments to guide practitioners in the choice of one particular selection criterion is the main
motivation of this study.

Remark 1.1. In a fully Bayesian approach, one does not select a particular value for the
parameters but instead averages the predictions over a posterior distribution on the parameters
[5, 29, 44]. This approach may be preferred for more robust predictions (see, e.g., [7]) but
comes at a higher computational cost. For this reason, the present article will set aside the
fully Bayesian approach and concentrate on the plug-in approach, where only one parameter
value is chosen to carry out predictions.

The two most popular methods for parameter selection are maximum likelihood (ML) and
cross validation (CV) based on LOO criteria, which were introduced in the field of computer
experiments by the seminal work of [16]. Since then, despite a fairly large number of publi-
cations dealing with ML and CV techniques for the selection of a GP model, the literature
has remained in our view quite sparse about the relative merits of these methods from both
theoretical and empirical perspectives.

For instance, in the framework of interpolation and infill asymptotics, where observations
accumulate in some bounded domain, [55] and [56] show that some combinations of the pa-
rameters of a Mat\'ern covariance function can be estimated consistently by ML. Again, in the
case of infill asymptotics, with the additional assumption of a one-dimensional GP with an
exponential covariance function, [4] show that estimation by LOO is also consistent. (Simi-
lar results exist in the expanding asymptotic framework, where observations extend over an
ever-increasing horizon.)

The practical consequences of the aforementioned results are somewhat limited in our
view because practitioners are primarily interested in the quality of the predictions. Knowing
that the parameters of a GP can be estimated consistently is intellectually reassuring but may
be considered of secondary importance. These results are indeed about the statistical model
itself, but they say little about the prediction properties of the model. Besides, there does
not exist at present, to our knowledge, some theoretically based evaluation of the relative
performances of ML and CV selection criteria under infill asymptotics.

Turning now to empirical comparisons of selection criteria for GP interpolation, the first
attempt in the domain of computer experiments can be traced back to the work of [16, 17].
The authors introduce CV and ML---which can be seen as a special kind of CV---and present
some simple experiments using tensorized covariance functions, from which they conclude, ``Of
the various kinds of cross-validation [they] have tried, maximum likelihood seems the most
reliable."" Additional experiments have been conducted by several authors, but no consensus
emerges from these studies: [2, 33, 47] conclude in favor of CV, whereas [34] advocate ML. The
reference textbook of Santner, Williams, and Notz [44, section 3.4.2] echoes the conclusions
of [2].

These studies are limited to a rather small number of test functions and covariance func-
tions, which may explain the discrepancy in the conclusions of those experiments. In par-
ticular, only [2] considers the popular and versatile Mat\'ern covariance functions. Moreover,
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1310 S. J. PETIT, J. BECT, P. FELIOT, AND E. VAZQUEZ

most studies focus only on the accuracy of the posterior mean---only [47] and [2] provide re-
sults accounting for the quality of the posterior variance---whereas the full posterior predictive
distribution is used in most GP-based methods (see, e.g., [12, 31]).

This article presents two main contributions. First, we improve on the results of the liter-
ature by providing an empirical ranking of selection criteria for GP interpolation, according
to several metrics measuring the quality of posterior predictive distributions on a large set
of test functions from the domain of computer experiments. To this end, we base our study
on the general concept of scoring rules [26, 57], which provides an effective framework for
building selection and validation criteria. We also introduce a notion of extended likelihood
criteria, borrowing an idea from Fasshauer and coauthors [21, 22] in the literature of radial
basis functions.

Second, we provide empirical evidence that the choice of an appropriate family of models
is often more important---and sometimes much more important, especially when the size of
the design increases---than the choice of a particular selection criterion (e.g., likelihood versus
LOO-SPE). More specifically, in the case of the Mat\'ern family, this leads us to assess and
ultimately recommend the automatic selection of a suitable value of the regularity parameter
against the common practice of choosing beforehand an arbitrary value of this parameter.

These recommendations are complementary to those of [46], where a particular emphasis
is placed on choosing the regularity of the covariance function, and [11], where the influence
of the design and the influence of the choice of the mean and covariance functions are studied
empirically and ranked (in the case where the parameters are selected by ML).

The article is organized as follows. Section 2 briefly recalls the general framework of GP
regression and interpolation. Section 3 reviews selection criteria for GP model parameters.
After recalling the general notion of scoring rules, we present a broad variety of selection cri-
teria from the literature. Section 4 presents experimental results on the relative performances
of these criteria. Section 5 presents our conclusions and perspectives.

2. General framework. Let us consider the general GP approach for a scalar-valued deter-
ministic computer code with input space \BbbX \subseteq \BbbR d. The output of the computer code z :\BbbX \rightarrow \BbbR is
modeled by a random function (Z(x))x\in \BbbX , which, from a Bayesian perspective, represents prior
knowledge about z. If we assume that Z(\cdot ) is observed on a design \BbbX n = \{ x1, . . . , xn\} of size
n, the data correspond to a sample \bfz n \in \BbbR n of the random vector \bfZ n = (Z(x1), . . . ,Z(xn))

T.
The GP assumption makes it possible to easily derive posterior distributions. More pre-

cisely, it is assumed that Z(\cdot ) is a GP, with (prior) mean E(Z(x)) =
\sum L

l=1 \beta l\phi l(x), where the
\beta 1, . . . , \beta L are unknown regression parameters and \phi 1, . . . , \phi l are known regression functions,
and with (prior) covariance cov (Z(x),Z(y)) = k\vargamma (x, y), where \vargamma \in \Theta \subseteq \BbbR q is a vector of pa-
rameters. Throughout the article, the covariance matrix of \bfZ n will be denoted by \bfK \vargamma . As
is often the case in applications, we assume that the prior mean of Z(\cdot ) is constant (hence,
L= 1 with \phi 1 = 1). Note also that this is in accordance to the recommendation in [11].

One of the most popular covariance functions for GP regression is the anisotropic station-
ary Mat\'ern covariance function [35] popularized by [46],

k\vargamma (x, y) = \sigma 2 2
1 - \nu 

\Gamma (\nu )

\Bigl( \surd 
2\nu h

\Bigr) \nu 
\scrK \nu 

\Bigl( \surd 
2\nu h

\Bigr) 
, h=

\biggl( d\sum 
j=1

(xj  - yj)
2

\rho 2j

\biggr) 1/2

,(2.1)
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PARAMETER SELECTION FOR GP INTERPOLATION 1311

Table 1
Popular Mat\'ern subfamilies.

\nu = 1
2

\nu = 3
2

\nu = 5
2

\nu =+\infty 
a.k.a. exponential squared exponential

k\vargamma (x, y) \sigma 2e - h \sigma 2(1 +
\surd 
3h)e - 

\surd 
3h \sigma 2(1 +

\surd 
5h+ 5h2

3
)e - 

\surd 
5h \sigma 2e - 

h2

2

where \Gamma is the gamma function, \scrK \nu is the modified Bessel function of the second kind, and \vargamma 
denotes the vector of parameters \vargamma = (\sigma 2, \rho 1, . . . , \rho d, \nu )\in \Theta = (0,\infty )d+2. The parameter \sigma 2 is
the variance of Z(\cdot ), the \rho i's are range parameters which characterize the typical correlation
length on each dimension, and \nu is a regularity parameter, whose value controls the mean-
square differentiability of Z(\cdot ). Recall (see Table 1) that the Mat\'ern covariance function with
\nu = 1/2 corresponds to the so-called exponential covariance function, and the limiting case
\nu \rightarrow \infty can be seen as the squared exponential (also called Gaussian) covariance function.

Because \scrK \nu has a closed-form expression when \nu  - 1
2 is an integer and is more expensive to

evaluate numerically in other cases, most implementations choose to restrict \nu to half-integer
values. Moreover, a widespread practice (in applications and research papers) consists in
selecting a particular value for \nu (e.g., \nu = 1/2, \nu = 3/2, or the limiting case \nu \rightarrow \infty ) once and
for all.

Since the family of Mat\'ern covariance functions is widely used in practice, we focus ex-
clusively on this family in this work.

Once a GP model has been chosen, the framework of GP interpolation allows one to build
predictive distributions. More precisely, denoting by \theta = (\beta ,\vargamma ) \in \BbbR \times (0, +\infty )d+2 the vector
of the parameters of the model, the usual predictive distribution for an unobserved Z(x) at
x\in \BbbR d is the Gaussian posterior distribution \scrN (\mu \theta (x), \sigma 

2
\theta (x)), where\biggl\{ 

\mu \theta (x) = \beta + \bfk \vargamma (x)
T\bfK  - 1

\vargamma \bfz \circ n,

\sigma 2
\theta (x) = k\vargamma (x,x) - \bfk \vargamma (x)

T\bfK  - 1
\vargamma \bfk \vargamma (x),

(2.2)

with \bfk \vargamma (x) = (k\vargamma (x,x1), . . . , k\vargamma (x,xn))
T and \bfz \circ n = \bfz n  - \beta \bfone n and where \bfone n = (1, . . . ,1)T \in \BbbR n.

Using this framework, the user obtains a family of Bayesian procedures, indexed by \theta , to
perform predictions about the unknown computer code at hand and must choose a member
of the family that will hopefully provide good predictive performances.

3. Selection of a GP model from a parameterized family.

3.1. Scoring rules. Goodness-of-fit criteria for probabilistic predictions have been studied
in the literature under the name of scoring rules by [26]. A (negatively oriented) scoring rule is
a function S ( \cdot , z) :\scrP \rightarrow \BbbR \cup \{  - \infty ,+\infty \} , acting on a class \scrP of probability distributions on \BbbR ,
such that S (P, z) assigns a loss for choosing a predictive distribution P \in \scrP while observing
z \in \BbbR . Scoring rules make it possible to quantify the quality of probabilistic predictions.

Example 3.1 (squared prediction error [SPE]). Denoting by \mu the mean of a predictive
distribution P , the SPE

S\mathrm{S}\mathrm{P}\mathrm{E} (P, z) = (z  - \mu )2(3.1)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1312 S. J. PETIT, J. BECT, P. FELIOT, AND E. VAZQUEZ

accounts for the deviation of z from \mu . Note that S\mathrm{S}\mathrm{P}\mathrm{E} ignores subsequent moments and
therefore predictive uncertainties.

Example 3.2 (negative log predictive density [NLPD]). Denoting by p the probability
density of P ,

S\mathrm{N}\mathrm{L}\mathrm{P}\mathrm{D} (P, z) = - log(p(z))(3.2)

tells how likely z is according to P . It can be proved [9] that any (proper) scoring rule that
only depends on p(z) can be reduced to S\mathrm{N}\mathrm{L}\mathrm{P}\mathrm{D}.

Example 3.3 (continuous ranked probability score [CRPS]). Let U and U \prime be two in-
dependent random variables with distribution P . The CRPS quantifies the deviation of U
from z:

S\mathrm{C}\mathrm{R}\mathrm{P}\mathrm{S} (P, z) = E(| U  - z| ) - 1

2
E(| U  - U \prime | ) .(3.3)

Since S\mathrm{C}\mathrm{R}\mathrm{P}\mathrm{S} (P, z) =
\int 
(P (U \leq u) - 1z\leq u)

2 du, the CRPS can also be seen as a (squared) dis-
tance between the empirical cumulative distribution u \mapsto \rightarrow 1z\leq u and the cumulative distribution
of P [48].

Note that if absolute values in (3.3) are replaced by squared values, then S\mathrm{S}\mathrm{P}\mathrm{E} is recovered.
The CRPS can also be extended to the so-called energy and kernel scores [26] by observing
that (x, y) \mapsto \rightarrow | x - y| is a conditionally negative kernel.

Example 3.4 (interval score [IS]). The IS rule at level 1 - \alpha is defined, for \alpha \in (0,1), by

S\mathrm{I}\mathrm{S}
1 - \alpha (P ; z) = (u - l) +

2

\alpha 
(l - z)1z\leq l +

2

\alpha 
(z  - u)1z>u,(3.4)

where l and u are the \alpha /2 and 1 - \alpha /2 quantiles of P . The first term penalizes large intervals,
while the second and third terms penalize intervals not containing z.

When the predictive distribution P is Gaussian, which is the case when P is the posterior
distribution of a GP Z at a given point, the aforementioned scoring rules all have closed-
form expressions. More precisely, for P = \scrN (\mu ,\sigma 2), we simply have S\mathrm{S}\mathrm{P}\mathrm{E} (P, z) = (z  - \mu )2

and S\mathrm{N}\mathrm{L}\mathrm{P}\mathrm{D} (P, z) = 1
2 log 2\pi \sigma 

2 + 1
2(z  - \mu )2/\sigma 2. S\mathrm{I}\mathrm{S}

1 - \alpha can be obtained by taking the standard
expressions of the \alpha /2 and 1 - \alpha /2 quantiles of P , and it can be shown that

S\mathrm{C}\mathrm{R}\mathrm{P}\mathrm{S} (P, z) = \sigma 

\biggl( 
z  - \mu 

\sigma 

\Bigl( 
2\Phi 

\biggl( 
z  - \mu 

\sigma 

\biggr) 
 - 1
\Bigr) 
+ 2\phi 

\biggl( 
z  - \mu 

\sigma 

\biggr) 
 - 1\surd 

\pi 

\biggr) 
,

where \phi and \Phi stand, respectively, for the probability density function and the cumulative
distribution function of the standard Gaussian distribution.

Note that all aforementioned scoring rules penalize large values of | z  - \mu | . When | z  - \mu | \ll 
1, different scoring rules yield different penalties, as reported in Table 2.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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PARAMETER SELECTION FOR GP INTERPOLATION 1313

Table 2
Scoring rules behavior as | \mu  - z| \ll 1.

\sigma \ll | \mu  - z| \sigma \simeq | \mu  - z| \sigma \gg | \mu  - z| 
S\mathrm{S}\mathrm{P}\mathrm{E} (P,z) 0 0 0

S\mathrm{N}\mathrm{L}\mathrm{P}\mathrm{D} (P,z) +\infty  - \infty log
\bigl( \surd 

2\pi \sigma 
\bigr) 

S\mathrm{C}\mathrm{R}\mathrm{P}\mathrm{S} (P,z) 0 0 \propto \sigma 
S\mathrm{I}\mathrm{S}
1 - \alpha (P,z) 0 0 \propto \sigma 

3.2. Selection criteria.

3.2.1. LOO selection criteria. Scoring rules make it possible to build criteria for choosing
the parameters of a GP. More precisely, to select \theta based on a sample \bfz n = (z1, . . . , zn)

T, one
can minimize the mean score

JS
n (\theta ) =

1

n

n\sum 
i=1

S(P\theta , - i, zi),(3.5)

where S is a scoring rule and P\theta , - i denotes the distribution of Z(xi) conditional on Z(xj) = zj ,
j \not = i.

Selection criteria written as (3.5) correspond to the well-established LOO method, which
has been proposed in the domain of computer experiments by [16] and is now used in many
publications (see, e.g., [43] and also [57], who formally adopt the point of view of the scoring
rules but for model validation instead of parameter selection).

Efficient computation of predictive distributions. LOO predictive densities can be computed
using fast algebraic formulas [13, 20]. More precisely, the predictive distribution P\theta , - i is a
normal distribution \scrN (\mu \theta , - i, \sigma 

2
\theta , - i) with

\mu \theta , - i = zi  - 
\bigl( 
\bfK  - 1

\vargamma \bfz \circ n
\bigr) 
i

(\bfK  - 1
\vargamma )i,i

and \sigma 2
\theta , - i =

1

(\bfK  - 1
\vargamma )i,i

.(3.6)

Remark 3.5. Equation (3.6) provides a numerically convenient expression for \mu \theta , - i, which
apparently involves zi. However, zi appears twice in the expression, and the two occurences
cancel out when the matrix product is written explicitly.

Furthermore, [39] show that, using reverse-mode differentiation, it is possible to compute
mean scores Jn and their gradients with a O(n3+dn2) computational cost, which is the same
computational complexity as for computing the likelihood function and its gradient (see, e.g.,
[43]).

The particular case of LOO-SPE. The LOO selection criterion

J\mathrm{S}\mathrm{P}\mathrm{E}
n (\theta ) =

1

n

n\sum 
i=1

(\mu \theta , - i  - zi)
2 ,(3.7)

based on the scoring rule (3.1), will be referred to as LOO-SPE. This criterion, also called
prediction sum of squares (PRESS) [1, 50] or LOO squared bias [16], is well known in statistics

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

4/
23

 to
 9

0.
16

.1
14

.4
9 

by
 J

ul
ie

n 
B

ec
t (

ju
lie

n.
be

ct
@

ce
nt

ra
le

su
pe

le
c.

fr
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1314 S. J. PETIT, J. BECT, P. FELIOT, AND E. VAZQUEZ

and machine learning and has been advocated by some authors [2, 3, 33, 44, 47] to address
the case of ``misspecified"" covariance functions.

However, note that \sigma 2 cannot be selected using J\mathrm{S}\mathrm{P}\mathrm{E}
n . When J\mathrm{S}\mathrm{P}\mathrm{E}

n is used, \sigma 2 is generally
chosen (see, e.g., [2, 16] and Remark 3.6) to satisfy

1

n

n\sum 
i=1

(zi  - \mu \theta , - i)
2

\sigma 2
\theta , - i

= 1 ,(3.8)

which will be referred to as Cressie's rule for \sigma 2 in reference to the claim by [14] that (3.8)
should hold approximately for a good GP model.

Other scoring rules for LOO. The selection criteria using the NLPD scoring rule (3.2)
and the CRPS scoring rule (3.3) will be referred to as the LOO-NLPD and LOO-CRPS
criteria, respectively. The LOO-NLPD criterion has been called preditive deficiency in [16]
and Geisser's surrogate predictive probability in [47]. The LOO-CRPS criterion has been
considered in [57] as a criterion for model validation (see also [18] for an application to model
selection) and more recently in [39, 40] as a possible criterion for parameter selection as well.

Remark 3.6. Note that Cressie's rule (3.8) can be derived by minimizing the LOO-NLPD
criterion with respect to \sigma 2.

Remark 3.7. In order to limit the number of selection criteria under study, the IS rule is
only used for validation in this work.

3.2.2. ML and generalizations. We can safely say that the most popular method for
selecting \theta from data is ML estimation---and related techniques, such as restricted ML esti-
mation. The ML estimator is obtained by maximizing the likelihood function or, equivalently,
by minimizing the negative log-likelihood (NLL) selection criterion. Denoting by p\theta (\bfz n) the
joint density of \bfZ n, the NLL selection criterion may be written as

J\mathrm{N}\mathrm{L}\mathrm{L}
n (\theta ) = - log(p\theta (\bfz n)) =

1

2

\Bigl( 
n log(2\pi ) + logdet\bfK \vargamma + (\bfz \circ n)

T\bfK  - 1
\vargamma \bfz \circ n

\Bigr) 
.(3.9)

As pointed out by [16], the NLL criterion is closely related to the LOO-NLPD criterion
through the identity

J\mathrm{N}\mathrm{L}\mathrm{L}
n (\theta ) = - log(p\theta (z1)) - 

n\sum 
i=2

log(p\theta (zi | z1, . . . , zi - 1)),

which makes appear the densities of the Z(xi)'s conditional on Z(xj) = zj , j < i (whereas the
LOO-NLPD criterion involves the densities of the Z(xi)'s conditional on Z(xj) = zj , j \not = i).

One can minimize (3.9) in closed form with respect to \sigma 2 given other parameters. Writing
\bfK \vargamma = \sigma 2\bfR \vargamma and canceling \partial J\mathrm{N}\mathrm{L}\mathrm{L}

n (\theta )/\partial \sigma 2 = (n\sigma 2  - (\bfz \circ n)
T\bfR  - 1

\vargamma \bfz \circ n)/(2\sigma 
4) yields

\sigma 2
\mathrm{N}\mathrm{L}\mathrm{L} =

1

n
(\bfz \circ n)

T\bfR  - 1
\vargamma \bfz \circ n ,(3.10)

which will be referred to as the profiling rule for \sigma 2.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/0

4/
23

 to
 9

0.
16

.1
14

.4
9 

by
 J

ul
ie

n 
B

ec
t (

ju
lie

n.
be

ct
@

ce
nt

ra
le

su
pe

le
c.

fr
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PARAMETER SELECTION FOR GP INTERPOLATION 1315

Injecting (3.10) into (3.9) yields a profile likelihood selection criterion that can be
written as

J\mathrm{P}\mathrm{L}
n (\theta ) = log\sigma 2

\mathrm{N}\mathrm{L}\mathrm{L} +
1

n
log det\bfR \vargamma = log

\Bigl( 1
n
(\bfz \circ n)

T\bfR  - 1
\vargamma \bfz \circ n

\Bigr) 
+

1

n
log det\bfR \vargamma .(3.11)

Following Fasshauer and coauthors [21, 22], we consider now a family of selection criteria
that extends (3.11) Using the factorization \bfR \vargamma = \bfQ \Lambda \bfQ T, where \bfQ = (\bfq 1, . . . , \bfq n) is an
orthogonal matrix of (orthonormal) eigenvectors and \Lambda = diag(\lambda 1, \cdot \cdot \cdot , \lambda n), notice that

exp
\bigl( 
J\mathrm{P}\mathrm{L}
n (\theta )

\bigr) 
=

1

n
(\bfz \circ n)

T\bfR  - 1
\vargamma \bfz \circ n \cdot (det\bfR \vargamma )

1/n

\propto 

\Biggl( 
n\sum 

i=1

\Bigl( 
\bfitq Ti \bfz 

\circ 
n

\Bigr) 2
/\lambda i

\Biggr) \Biggl( 
n\prod 

i=1

\lambda j

\Biggr) 1/n

.
(3.12)

This suggests a generalization of the likelihood criterion that we shall call Fasshauer's H\"olderized
likelihood (HL), defined as

J\mathrm{H}\mathrm{L}, p, q
n (\theta ) =

\Biggl( 
n\sum 

i=1

(\bfitq Ti \bfz 
\circ 
n)

2/\lambda p
i

\Biggr) 1/p
\left(  1

n

n\sum 
j=1

\lambda q
j

\right)  1/q

,(3.13)

with q \in [ - \infty ,+\infty ] p \in \BbbR \setminus \{ 0\} and where \sigma 2 can be chosen using the rules (3.8) or (3.10)
since J\mathrm{H}\mathrm{L}, p, q

n (\theta ) does not depend on \sigma 2. Due to the standard property of generalized means\bigl( 
1
n

\sum n
i=1 x

q
i

\bigr) 1

q
q\rightarrow 0 - \rightarrow n

\surd 
x1 \cdot \cdot \cdot xn), (3.12) is recovered by taking p= 1 and letting q\rightarrow 0. Moreover,

two other known selection criteria can be obtained for particular values of p and q, as detailed
below.

Generalized CV. Taking p = 2 and q =  - 1 in (3.13) yields the generalized CV (GCV)
criterion

J\mathrm{G}\mathrm{C}\mathrm{V}
n (\theta ) = n - 1

\bigl( 
J\mathrm{H}\mathrm{L},2, - 1
n (\theta )

\bigr) 2
,(3.14)

which was originally proposed as a rotation-invariant version of PRESS [27] for linear mod-
els. It has also been shown to be efficient for the selection of the smoothing parameter of
polyharmonic splines [50] and for the selection of the degree of a spline [51].

The GCV selection criterion is a weighted SPE criterion, which can also be written as

J\mathrm{G}\mathrm{C}\mathrm{V}
n (\theta ) =

1

n

n\sum 
i=1

w2
i (\theta )(zi  - \mu \theta , - i)

2 , wi(\theta ) =
\~\sigma 2

\sigma 2
\theta , - i

,(3.15)

with \~\sigma 2 = ( 1n
\sum n

i=1
1

\sigma 2
\theta , - i

) - 1. Notice that wi(\theta ) is lower when \sigma \theta , - i is larger, which happens

when points are either isolated or lying on the border/envelope of \BbbX n. Equation (3.15) shows
that, similarly to the LOO criteria of section 3.2.1, the GCV criterion can be computed, along
with its gradient, in O(n3 + dn2) time. However, since \~\sigma depends on the data, the J\mathrm{G}\mathrm{C}\mathrm{V}

n

criterion cannot be formally derived from a scoring rule.
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1316 S. J. PETIT, J. BECT, P. FELIOT, AND E. VAZQUEZ

Kernel alignment. The kernel alignment (KA) selection criterion [15]

J\mathrm{K}\mathrm{A}
n (\theta ) = - (\bfz \circ n)

T\bfK \vargamma \bfz 
\circ 
n

\| \bfK \vargamma \| F \| \bfz \circ n\| 2
,(3.16)

where \| \cdot \| F stands for the Frobenius matrix norm, measures the (opposite of the) alignment
of \bfz \circ n with the eigenvector of \bfK \vargamma corresponding to the largest eigenvalue. This criterion is
related to (3.13) with p= - 1 and q= 2:

J\mathrm{K}\mathrm{A}
n (\theta ) = - 1

\surd 
n\| \bfz \circ n\| 2J

\mathrm{H}\mathrm{L}, - 1,2
n (\theta )

.(3.17)

Thus, minimizing the KA criterion (3.16) is equivalent to minimizing J\mathrm{H}\mathrm{L}, - 1,2
n when the mean

\beta is known (otherwise, \bfz \circ n also depends on \theta ). The KA criterion is noticeably cheaper than
the others, as it does not require to invert \bfK \vargamma and can therefore be computed along with its
gradient in O(dn2) time.

Remark 3.8. The KA criterion as written above is only suitable for selecting covariance
parameters and cannot be used to select both the mean \beta and the range parameters as is done
in this study. Indeed, the criterion is minimized when both \beta and the range parameters \rho j go
to infinity.

Remark 3.9. We choose to focus in this article on two well-known selection criteria (NLL
and GCV) that can be seen as special cases of (3.13), corresponding, repectively, to (p, q)
equal to (1,0), (2, - 1). The study of new selection criteria, obtained for other values of (p, q),
is left for future work.

3.3. Hybrid selection criteria. When considering several parameterized models---or, equiv-
alently, when dealing with discrete parameters, such as half-integer values for the regularity
parameter of the Mat\'ern covariance---some authors suggest to use one selection criterion to
select the parameters in each particular model and a different one to select the model itself.

For instance, in [31], the authors select the parameters of a power-exponential covariance
function using the NLL selection criterion (i.e., the ML method) and then select a suitable
transformation of the output of the simulator, in a finite list of possible choices, using the
LOO-SPE criterion. Similarly, the NLL selection criterion is combined in [18] with a variety
of model-validation criteria, including LOO-CRPS and LOO-NLPD.

In section 4, we will denote by NLL/SPE the hybrid method that selects the variance and
range parameters of a Mat\'ern covariance function using the NLL criterion and then minimizes
the LOO-SPE criterion to select the regularity parameter \nu in a finite list of values.

4. Numerical experiments.

4.1. Methodology. We investigate the problem of parameter selection with an experimen-
tal approach consisting of four ingredients: (1) a set of unknown functions z to be predicted
using evaluation results on a finite design \BbbX n = \{ x1, . . . , xn\} \subset \BbbX ; (2) the GP regression method
that constructs predictive distributions P\theta ,x of z at given x's in \BbbX , indexed by parameter \theta ;
(3) several selection criteria Jn to choose \theta ; and (4) several criteria to assess the quality of the
P\theta ,xs. Details about each of these ingredients are given below (starting from the last one).
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PARAMETER SELECTION FOR GP INTERPOLATION 1317

Criteria to assess the quality of the P\theta ,x's. A natural way to construct a criterion to assess
the quality of the P\theta ,x's is to choose a scoring rule S and to consider the mean score on a test
set \BbbX \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

N = \{ x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}1 , . . . , x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}N \} \subset \BbbX of size N :

R(\theta ; S) =
1

N

N\sum 
i=1

S(P\theta ,x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}
i

, z(x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}i )) .(4.1)

Selection criteria. We shall consider the selection criteria Jn presented in section 3, namely,
the LOO-SPE, LOO-NLPD, LOO-CRPS, NLL, GCV, and NLL/SPE selection criteria. Given
a function f and a design \BbbX n, each selection criterion Jn yields a parameter \theta Jn

.

Remark 4.1. We do not include KA in our list of selection criteria since it is not suitable to
select the mean \beta (cf. Remark 3.8). Note that experiments in the zero-mean case [38] suggest
that the KA criterion performs poorly when compared to the other criteria considered in the
article.

Parameterized GP models. In this work, models are implemented using a custom version
of the GPy [28] Python package (see Supplementary Material (M144471 01.pdf [local/web
1.28MB]), hereafter abbreviated as SM). We assume no observation noise, which corresponds
to the interpolation setting. A constant mean function and the anisotropic Mat\'ern covariance
function (2.1) are used. The parameter, to be selected, is \theta = (\beta ,\sigma 2, \rho 1, . . . , \rho d, \nu ). The
regularity parameter \nu is either set a priori to \nu = \chi + 1/2, with \chi \in \{ 0,1,2,3,4, d,2d,\infty \} , or
selected automatically to a value denoted by \widehat \nu .

Remark 4.2. Since the covariance matrix of \bfZ n can be nearly singular when the range
parameters take large values, we define upper bounds on these values in order to avoid the
use of nugget or jitter (see, e.g., [37, 42]). Details are provided in the SM (M144471 01.pdf
[local/web 1.28MB]).

Test functions. The test functions used in the study are described in the next section.
They are grouped into collections, and we provide averaged values of mean-score metrics of
the form (4.1) for each collection.

4.2. Test functions.

4.2.1. Design of a low-pass filter. Fuhrl\"ander and Sch\"ops [24] consider the problem of
computing, using a frequency-domain PDE solver, the scattering parameters s\omega of an elec-
tronic component called stripline low-pass filter, at several values of the excitation pulsation
\omega . The geometry of the stripline filter is illustrated in Figure 1. It is parameterized using
six real valued factors concatenated in a vector x \in \BbbR d, d= 6. The objective is to satisfy the
low-pass specifications | s2k\pi (x)| \geq  - 1 dB for 0 \leq k \leq 4 and | s2k\pi (x)| \leq  - 20 dB for 5 \leq k \leq 7.
Meeting such requirements is a difficult and time-consuming task.

In this article, we consider the quantities Re(s2\pi ), Re(s6\pi ), Re(s10\pi ), and Re(s14\pi ), where
Re(z) denotes the real part of a complex number z. For three different design sizes n \in 
\{ 10d,20d,50d\} , we randomly sample M = 100 subsets \BbbX n of size n from a database of 10000
simulation results and use the remaining N = 10000  - n points as test sets. The data are
standardized so that the output values have zero mean and unit variance on the test sets. The
metric (4.1) is computed and averaged on these M repetitions.

4.2.2. Other test functions. We supplement the above engineering problem with a collec-
tion of test functions from the literature. More precisely, we consider the Goldstein--Price func-
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1318 S. J. PETIT, J. BECT, P. FELIOT, AND E. VAZQUEZ

Figure 1. A low-pass filter design problem in CST Studio Suite.

Table 3
Twelve benchmark problems.

Problem Goldstein--Price Mystery GKLSk=0 GKLSk=1 GKLSk=2 Rosenbrock Borehole

d \{ 1,2\} 2 \{ 2,5\} \{ 2,5\} \{ 2,5\} \{ 2,5\} 8

tion [19], a one-dimensional version of the Goldstein--Price function (see SM (M144471 01.pdf
[local/web 1.28MB]) for details), the Mystery function [33], the Borehole function [54], sev-
eral collections obtained from the GKLS simulator [25], and the rotated Rosenbrock collection
from the BBOB benchmark suite [30].

The GKLS simulator has a ``smoothness"" parameter k \in \{ 0,1,2\} controlling the presence of
nondifferentiabilities on some nonlinear subspaces---the trajectories being otherwise infinitely
differentiable. For both GKLS and Rosenbrock, two different values of the input dimension
were considered (d = 2 and d = 5). The resulting set of 12 problems---considering that
changing the value of k or d defines a new problem---is summarized in Table 3.

For each problem, we consider three design sizes n \in \{ 10d,20d,50d\} . For the GKLS
and Rosenbrock collections, we used the collections of test functions provided by the authors
(M = 100 and 15 functions, respectively). They are evaluated on random space-filling designs
\BbbX n (see below).

For the Goldstein--Price function, the one-dimensional version of the Goldstein--Price func-
tion, the Mystery function, and the Borehole function, we evaluate each test function on
M = 100 random space-filling designs \BbbX n.

Random space-filling designs are obtained using pseudomaximin Latin hypercube sampling
obtained from 1000 random draws (see, e.g., [41]). Test sets are constructed using a Sobol'
sequence \BbbX \mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}

N of size N = 10000 for the evaluations of the functions. To make the results
comparable, all functions are centered and normalized to unit variance on the test sets.

4.3. Results and findings.

4.3.1. A close look at one of the problems. Tables 4 and 5 provide a detailed view of the
results obtained on one of the test problems---namely, the output Re(s2\pi ) with n= 10d= 60
of the low-pass filter case (see section 4.2.1).
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Table 4
Averages (over the M = 100 designs) of the R(\theta ;S\mathrm{S}\mathrm{P}\mathrm{E}) values for Re(s2\pi ) with n = 10d = 60. For

comparison, the rightmost column gives the optimal value R \star obtained by direct minimization of the score (4.1);

see SM (M144471 01.pdf [local/web 1.28MB]) for more details. Using J
\mathrm{N}\mathrm{L}\mathrm{L}/\mathrm{S}\mathrm{P}\mathrm{E}
n as a selection criterion, which

also selects \nu (see section 3.3), we have R(\theta ;S\mathrm{S}\mathrm{P}\mathrm{E}) = 2.00\cdot 10 - 5. The gray scale highlights the order of magnitude
of the discrepancies.

Scoring rule: SSPE NLL LOO-SPE LOO-NLPD LOO-CRPS GCV R�

ν = 1/2 2.56 · 10−2 2.78 · 10−2 2.43 · 10−2 2.43 · 10−2 2.35 · 10−2 2.09 · 10−2

ν = 3/2 7.41 · 10−5 8.95 · 10−5 7.15 · 10−5 7.73 · 10−5 7.13 · 10−5 6.00 · 10−5

ν = 5/2 1.66 · 10−5 2.30 · 10−5 1.61 · 10−5 1.73 · 10−5 1.91 · 10−5 1.02 · 10−5

ν = 7/2 1.95 · 10−5 3.14 · 10−5 2.41 · 10−5 2.51 · 10−5 3.27 · 10−5 1.07 · 10−5

ν = 9/2 2.58 · 10−5 4.25 · 10−5 3.26 · 10−5 3.48 · 10−5 5.25 · 10−5 1.53 · 10−5

ν = 13/2 3.26 · 10−5 6.38 · 10−5 4.11 · 10−5 4.14 · 10−5 1.11 · 10−4 1.90 · 10−5

ν = 25/2 4.23 · 10−5 6.79 · 10−5 5.93 · 10−5 5.57 · 10−5 1.16 · 10−4 2.30 · 10−5

ν = ∞ 4.87 · 10−5 7.47 · 10−5 5.79 · 10−5 5.90 · 10−5 9.08 · 10−5 2.56 · 10−5

ν ∈ {1/2, · · · ,∞} 1.69 · 10−5 3.37 · 10−5 2.13 · 10−5 2.26 · 10−5 2.70 · 10−5 8.99 · 10−6

Table 5
Same as Table 4 but for averages of R(\theta ;S\mathrm{I}\mathrm{S}

0.95). Using J
\mathrm{N}\mathrm{L}\mathrm{L}/\mathrm{S}\mathrm{P}\mathrm{E}
n gives R(\theta ;S\mathrm{I}\mathrm{S}

0.95) = 2.18 \cdot 10 - 2.

Scoring rule: SIS
0.95 NLL LOO-SPE LOO-NLPD LOO-CRPS GCV

ν = 1/2 1.05 · 100 9.86 · 10−1 9.10 · 10−1 1.03 · 100 8.91 · 10−1

ν = 3/2 4.25 · 10−2 4.46 · 10−2 3.86 · 10−2 4.09 · 10−2 3.82 · 10−2

ν = 5/2 1.91 · 10−2 2.09 · 10−2 1.76 · 10−2 1.88 · 10−2 1.88 · 10−2

ν = 7/2 2.08 · 10−2 2.50 · 10−2 2.16 · 10−2 2.40 · 10−2 2.51 · 10−2

ν = 9/2 2.53 · 10−2 3.14 · 10−2 2.84 · 10−2 3.20 · 10−2 3.54 · 10−2

ν = 13/2 3.04 · 10−2 4.02 · 10−2 3.55 · 10−2 3.89 · 10−2 4.59 · 10−2

ν = 25/2 3.70 · 10−2 4.38 · 10−2 4.46 · 10−2 4.59 · 10−2 5.23 · 10−2

ν = ∞ 4.16 · 10−2 4.70 · 10−2 4.61 · 10−2 4.94 · 10−2 5.62 · 10−2

ν ∈ {1/2, · · · ,∞} 1.95 · 10−2 2.82 · 10−2 2.15 · 10−2 2.43 · 10−2 2.50 · 10−2

The results presented in these tables are the scores R(\theta ;S), averaged over the M = 100
repetitions, where \theta is selected using different selection criteria (along columns) and the reg-
ularity of the Mat\'ern covariance varies or is selected automatically (along rows). The scoring
rule for assessing the quality of the predictions is the SPE in Table 4 and the IS at level 95\% in
Table 5. (A similar table, not shown here, is presented in the SM (M144471 01.pdf [local/web
1.28MB]) for the CRPS.)

For comparison, Table 4 also provides the optimal values R \star obtained by direct mini-
mization of the score (4.1). They can be used to assess the loss of predictive accuracy of the
selected models, which are constructed using a limited number of observations, with respect
to the best model that could have been obtained if the test data had also been used to select
the parameters.

Tables 4 and 5 support the fact that, for this particular problem, the NLL and NLL/SPE
criteria may be seen as slightly better choices for selecting \theta in terms of the SPE and the IS
scores both for a prescribed regularity \nu and when \nu is selected automatically (the NLL/SPE
being only available for the latter case). The other selection criteria, however, are never very
far behind---at most a factor of approximately two for both metrics. Elements provided as
SM (M144471 01.pdf [local/web 1.28MB]) show similar findings using the CRPS validation
score.
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Table 6
Averages over the repetitions of the empirical coverage C0.95(\theta ) for the function s2\pi . Using J

\mathrm{N}\mathrm{L}\mathrm{L}/\mathrm{S}\mathrm{P}\mathrm{E}
n gives

C0.95(\theta ) = 0.93.

C0.95 NLL LOO-SPE LOO-NLPD LOO-CRPS GCV
ν = 1/2 0.993 0.923 0.929 0.890 0.932
ν = 3/2 0.992 0.912 0.929 0.927 0.936
ν = 5/2 0.965 0.883 0.898 0.893 0.905
ν = 7/2 0.927 0.842 0.838 0.823 0.837
ν = 9/2 0.879 0.802 0.790 0.768 0.767
ν = 13/2 0.828 0.762 0.741 0.720 0.728
ν = 25/2 0.788 0.751 0.714 0.700 0.709
ν = ∞ 0.763 0.745 0.715 0.696 0.698
ν ∈ {1/2, · · · ,∞} 0.963 0.824 0.838 0.824 0.828

Strikingly enough, for both scoring rules, the variations of the average score are much
larger when the model changes (with \nu ) than when the selection criterion changes. If a
Mat\'ern covariance function with fixed regularity is used, as is often done in practice, then the
best results are obtained for all criteria when \nu = 5/2. The values of R\ast (Table 4) confirm that
this is indeed the best fixed-\nu model on this problem for the SPE score. Since this optimal
value was not known beforehand, it is a relief to see (cf. the last row of each table) that
comparable performances can be achieved on this problem by selecting \nu automatically.

Finally, we can also study the impact of the selection criterion and that of \nu on confidence
intervals at level 95\%. This is a useful complement to the results obtained using the IS for
model validation. For a Gaussian predictive distribution P\theta ,x at x \in \BbbX with mean \mu \theta (x) and
variance \sigma 2

\theta (x), the natural confidence interval at level 95\% is

I0.95\theta (x) = [\mu \theta (x) - 1.96\sigma \theta (x), \mu \theta (x) + 1.96\sigma \theta (x)] .(4.2)

Then, denoting by z :\BbbX \rightarrow \BbbR the unknown data-generating function and given a test set\bigl\{ 
x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}i , i= 1 . . . , N

\bigr\} 
\in \BbbX N(4.3)

at which the values of z are known, define the empirical coverage as

C0.95(\theta ) =
1

N

N\sum 
i=1

1z(x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}
i )\in I0.95

\theta (x\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{t}
i ) .(4.4)

Table 6 reports the averaged values of C0.95(\theta ) over the M repetitions for the data-generating
function s2\pi . Notice that when \nu is large, empirical coverages are low, indicating that the
confidence intervals are probably too small. Notice also that the NLL selection criterion tends
to produce well-calibrated confidence intervals on this test function for \nu = 5/2 or when \nu is
selected automatically.

4.3.2. Statistical analysis of the benchmark results. Tables similar to Tables 4 and 5
have been produced for all the (4 + 12) \times 3 = 48 combinations of problem and design size
for the three scoring rules (SPE, CRPS, and IS). We present in this section some graphical
summaries and statistical analyses of these results. The individual tables are provided in
the SM (M144471 01.pdf [local/web 1.28MB]).
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Figure 2. Box plots of R/R0 for different selection criteria in the case where \nu is automatically selected.
Each box plot is constructed using all problems and design sizes (16 \times 3 = 48 combinations). For a given
problem, R denotes the score, averaged over the repetitions, and R0 stands for the best value of R (among all
models and selection criteria). The left (resp., right) panel uses the S\mathrm{S}\mathrm{P}\mathrm{E} (resp., S\mathrm{I}\mathrm{S}

0.95) as a quality assessment
criterion. The box plots are sorted according to their upper whisker. Graydashed lines: R/R0 = 2,4,6,8,10.

3/2 ν̂ 5/2 7/2 1/2 9/2 11/2 ∞ 21/2

100

101

R
/R

0

ν̂ 7/2 5/2 9/2 13/2 25/2 ∞ 3/2 1/2

100

101

102

103

R
/R

0

Figure 3. Box plots of R/R0 using J\mathrm{N}\mathrm{L}\mathrm{L}
n as a selection criterion and S\mathrm{S}\mathrm{P}\mathrm{E} as a quality assessment criterion

for different choices of regularity. Left: all 5d GKLS problems. Right: all low-pass filter problems. Each box
plot is constructed using all problems in the given class and all design sizes (left: 3\times 3 = 9 combinations; right:
4 \times 3 = 12 combinations). For a given problem, R denotes the score, averaged over the repetitions, and R0

stands, as in Figure 2, for the best value of R (among all models and selection criteria). The box plots are
sorted according to their upper whisker. Gray dashed lines: R/R0 = 2,4,6,8,10.

Comparison of the selection criteria. Figure 2 compares the distributions of the average
values of the SPE and IS scores for all selection criteria in the case of a Mat\'ern covariance
function with automatically selected regularity. As a preliminary observation, note that for
most criteria (except GCV), the variations of the ratio R/R0 for the SPE score remain under
four (second horizontal dashed line), which is to be compared to the possibly large variations
due to a poor choice of covariance models (see the right plot in Figure 3 below).

A closer look at Figure 2 reveals that the rankings of criteria obtained for both scoring
rules are almost identical. The ranking for the CRPS scoring rule (not shown) is the same
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as the one for SPE. GCV provides the worst performance for all scoring rules, followed by
LOO-NLPD, while NLL dominates the ranking (for all scoring rules as well).

Remark 4.3. Observe in Figure 2 that LOO-SPE is, surprisingly, much less accurate than
NLL according to S\mathrm{S}\mathrm{P}\mathrm{E}. More generally, choosing a scoring rule S for the LOO criterion does
not guarantee the highest precision according to this particular score.

Comparison of the covariance models. Figure 3 compares the average values of R(\theta ;S\mathrm{S}\mathrm{P}\mathrm{E})
when the NLL selection criterion is used on the set of GKLS problems, which have low
regularities, and on the set of low-pass filter problems, which contain very smooth instances.

Observe first that the fixed-\nu models rank differently on these two sets of problems, as
expected considering the actual regularity of the underlying functions: Low values of \nu per-
form better on the GKLS problems and worse on the low-pass filter case. Furthermore, it
appears that underestimating the regularity (on the low-pass filter case) has much more severe
consequences than overestimating it (on the GKLS problems) according to the SPE score and
as suggested by the theoretical results of [46], [36], [49], and [45, section 6].

Another important conclusion from Figure 3 is that very good results can be obtained by
selecting the regularity parameter \nu automatically, jointly with the other parameters (using
the NLL criterion in this case). On the GKLS problems, the results with selected \nu are not
far from those of the best fixed-\nu model under consideration (\nu = 3/2); in the low-pass filter
case, they are even better than those obtained with the best fixed-\nu models (\nu = 5/2 or 7/2).
In other words, the regularity needs not be known in advance to achieve good performances,
which is a very welcome practical result. This conclusion is also supported for NLL by the
additional results provided in the SM (M144471 01.pdf [local/web 1.28MB]) for the other
problems and for the three scoring rules.

Concerning the other selection criteria, the situation is more contrasted (see SM
(M144471 01.pdf [local/web 1.28MB])): The automatic selection of \nu using these criteria
still performs very well for smooth problems but not always, in particular with GCV, for the
less regular problems of the GKLS class. This is especially true when the sample size is small
(n= 10d).

Robustness. LOO-SPE is commonly claimed in the literature (see, notably, [2]) to provide
a certain degree of robustness with respect to model misspecification. According to this
claim, LOO-SPE would be expected to somehow mitigate the loss of predictive accuracy with
respect to likelihood-based approaches incurred by an ill-advised choice of covariance function.
Our detailed results (see SM (M144471 01.pdf [local/web 1.28MB])) suggest that this effect
indeed exists when the regularity is severely underestimated (e.g., \nu = 1/2 for the low-pass
filter problems) but is actually quite small and should not be used to motivate the practice
of setting \nu to an arbitrary value. A similar effect exists for LOO-CRPS, LOO-NLPD, and
GCV as well. Quite surprisingly, NLL turns out to be more robust than LOO-SPE (and the
other criteria) in the case of oversmoothing.

Coverage. To further complement the study, we analyze the results in terms of empirical
coverage, as defined in section 4.3.1. Figure 4 shows the variations of the empirical coverage
as a function of the covariance model on the GKLS test functions. As expected, choosing
large values of \nu for these test functions tends to produce undercoverage, that is, (too) small
confidence intervals or slightly overconfident predictions. Figure 4 also shows the effect of
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∞ 21/2 11/2 9/2 7/2 5/2 ν̂ 3/2 1/2
0.0

0.25

0.5

0.75

0.95
1.0

C
ov
er
ag

e
(9
5%

)

LOO-CRPSLOO-NLPD LOO-SPE GCV NLL NLL/SPE
0.0

0.25

0.5

0.75

0.95
1.0

Figure 4. Box plots of C0.95(\theta ) (averaged over the repetitions for each test function). Left: for several
regularities and using the NLL criterion on all 5d GKLS problems; right: for several selection criteria and for
\nu automatically selected on the whole set of test functions.

the selection criterion (when \nu is automatically selected) on the whole set of test functions.
As in section 4.3.1, it seems that the NLL selection criterion yields better calibrated confidence
intervals.

Sensitivity analysis. We observed in section 4.3.1 and in the paragraphs above that the
choice of the model---more specifically, of the regularity parameter of the Mat\'ern covariance
function---was more important than that of a particular selection criterion. To confirm this
finding, a global sensitivity analysis of the logarithm of the score has been performed for each
combination of problem and design size. The score, for a given scoring rule, depends on three
discrete factors: the selection criterion, the regularity \nu of the Mat\'ern covariance function,
and the repetition index (recall that for each problem, we have a collection of M repetitions,
with M = 100 or 15, depending on the problem). Only fixed values of \nu are considered in this
analysis (no automatic selection), and therefore the NLL/SPE method, which coincides with
NLL for fixed \nu , is not included as a level for the criterion factor. The factors are considered
independent and uniformly distributed in the definition of the Sobol' sensitivity indices.

We present in Figure 5, for the case of the SPE scoring rule, the first-order Sobol' sensitivity
indices with respect to \nu and the total Sobol' sensitivity indices with respect to the selection
criterion as functions of the total variance. Observe that, for the problems where the total
variance is large, the total index with respect to the selection criterion is typically close
to zero, which indicates a negligible impact of the selection criterion on the variations of
R. On the other hand, first-order indices with respect to \nu are typically above 80\% on
problems with large variations of R. This indicates situations where the influence of \nu is very
important.

Note that it also means that the influence of \nu dominates the variability due to the ran-
domness of the design over the repetitions, which apparently counterbalances the conclusions
of [11], where large variations of the prediction errors are reported when the design varies.
However, [11] is in the case of small designs, and from a fully Bayesian point of view, the
posterior distribution of \theta is very often very spread out in this case, potentially leading to
poor parameter selection, as also noted in [7]. In our setting, however, our primary focus is
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Figure 5. Sensitivity analysis of log10(R) for S\mathrm{S}\mathrm{P}\mathrm{E}, for each problem and design size. The top plots show
the first-order Sobol' indices for \nu , i.e., the contribution of \nu to the variance of S\mathrm{S}\mathrm{P}\mathrm{E} measured as the ratio of
the variance of the expectation of S\mathrm{S}\mathrm{P}\mathrm{E} when \nu is fixed to the total variance of S\mathrm{S}\mathrm{P}\mathrm{E}. Values close to one tell us
that the variations of \nu explain almost all the variations of S\mathrm{S}\mathrm{P}\mathrm{E}. The bottom plots show the total Sobol' indices
of the selection criterion, i.e., the variance explained by the selection criterion, taking every interaction into
account. Values close to zero tell us that the variations of S\mathrm{S}\mathrm{P}\mathrm{E} are not explained by variations of the selection
criterion. Each point represents the variations of log10(R) for one of the 16 problems from section 4.2.2, split
by design size. The model explains almost all the variations for problems exhibiting significant fluctuations of
log10(R) (at the right of the figure).

to study the problem of model selection, and so we have chosen to consider ``informative""
designs in our experiments (using maximin Latin hypercube sampling and design sizes n with
n\geq 10d).

Similar conclusions hold for the other scoring rules (results not shown; see SM
(M144471 01.pdf [local/web 1.28MB])).

5. Conclusions. A large variety of selection criteria for GP models is available from the
literature, with little theoretical or empirical guidance on how to choose the right one for
applications. Our benchmark study with the Mat\'ern family of covariance functions in the
noiseless (interpolation) case indicates that the NLL selection criterion---in other words, the
ML method---provides performances that are, in most situations and for all the scoring rules
that were considered (SPE, CRPS, and IS at 95\%), better than or comparable to those of the
other criteria. Considering that all the criteria tested in the study have a similar computational
complexity, this provides strong empirical support for the ML method---which is already the
de facto standard in most statistical software packages implementing GP interpolation.
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Another important lesson learned from our benchmark study is that the choice of the
family of models, in particular of the family of covariance functions, has very often a bigger
impact on performance than that of the selection criterion itself. This is especially striking
when the actual function is smooth and a very irregular covariance function, such as the
Mat\'ern covariance with regularity 1/2, is used to perform GP interpolation. In such a situa-
tion, NLL is actually outperformed by other criteria such as LOO-SPE or LOO-CRPS, which
thus appear to be more ``robust to model misspecification."" However, the small gain of per-
formance, which is achieved by using LOO-SPE or LOO-CRPS instead of NLL in this case, is
generally negligible with respect to the much larger loss induced by choosing an inappropriate
covariance function in the first place.

Our final recommendation, supported by the results of the benchmark and in line with
the recommendation of [46], is therefore to select the regularity of the covariance function
automatically, jointly with the other parameters, using the NLL criterion. A minimal list of
candidate values for the regularity parameter should typically include 1/2, 3/2, 5/2, 7/2, and
+\infty (the Gaussian covariance function). Should a situation arise where a default value of
\nu is nevertheless needed, our recommendation would be to choose a reasonably large value,
such as \nu = 5/2 or \nu = 7/2, since underestimating \nu has been seen in section 4.3.2 to have
much more severe consequences than overestimating it a little. Nevertheless, we stress that
overestimating \nu is not only suboptimal but also likely to produce confidence intervals with
undercoverage.

More generally, our numerical results support the fact that choosing carefully a suitable
family of GP models is extremely important: Poor decisions at this stage are indeed likely
to induce large losses in performance that no choice of selection criterion can counterbalance.
We have focused in this article on the case of a constant mean with an anisotropic Mat\'ern
covariance function, with fixed regularity or not. We believe---but it should be confirmed
by further numerical experiments---that this conclusion would not be altered significantly
if other families of GP models with a comparable number of parameters (e.g., affine mean
fuction, tensor-product covariance functions, or the compactly supported covariance functions
proposed by [52]) were considered instead or if other noise-free settings (multivariate outputs
or multifidelity) were addressed.

However, it should be kept in mind that the study focuses on cases where the number of
parameters is small with respect to the number of observations (in particular, we considered
GPs with an anisotropic stationary Mat\'ern covariance function, which have d+2 parameters,
and we took care of havingn \gg d). When n is small with respect to d or when the number
of parameters increases, it seems to us that a fully Bayesian approach could help or that
other selection criteria should be considered, with the introduction of regularization terms,
for instance.

For future work, it would be of course very interesting to consider the performance of using
selection criteria against a fully Bayesian approach. Another direction would be to extend
this study to the case of regression, which is also used in many applications, when dealing
with stochastic simulators, for instance.

Acknowledgments. The authors thank Mona Fuhrl\"ander and Sebastian Sch\"ops for kindly
providing the data for the ``design of a low-pass filter"" example.
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