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Model parameters in Gaussian process interpolation:
an empirical study of selection criteria

Sébastien J. Petit† ∗ , Julien Bect† , Paul Feliot∗ ‡ , and Emmanuel Vazquez†

Abstract. This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choos-
ing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a
family of Bayesian procedures to perform predictions about the unknown function, and must choose a member
of the family that will hopefully provide good predictive performances. We base our study on the general con-
cept of scoring rules, which provides an effective framework for building leave-one-out selection and validation
criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors
in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized
cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that
the choice of an appropriate family of models is often more important than the choice of a particular selection
criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show
that the regularity parameter of a Matérn covariance can be selected effectively by most selection criteria.

Key words. Gaussian processes interpolation, Model choice; Parameter selection; Scoring rules; Likelihood; Regularity

AMS subject classifications. 62G08, 65D05

1. Introduction. Regression and interpolation with Gaussian processes, or kriging, is a popular
statistical tool for non-parametric function estimation, originating from geostatistics and time series
analysis, and later adopted in many other areas such as machine learning and the design and analysis of
computer experiments (see, e.g., [39,40,42] and references therein). It is widely used for constructing
fast approximations of time-consuming computer models, with applications to calibration and valida-
tion [5, 30], engineering design [21, 29], Bayesian inference [9, 48], and the optimization of machine
learning algorithms [7]—to name but a few.

A Gaussian process (GP) prior is characterized by its mean and covariance functions. They are
usually chosen within parametric families (for instance, constant or linear mean functions, and Matérn
covariance functions), which transfers the problem of choosing the mean and covariance functions to
that of selecting parameters. The selection is most often carried out by optimization of a criterion
that measures the goodness of fit of the predictive distributions, and a variety of such criteria—the
likelihood function, the leave-one-out (LOO) squared-prediction-error criterion (hereafter denoted by
LOO-SPE), and others—is available from the literature. The search for arguments to guide practition-
ers in the choice of one particular criterion is the main motivation of this study.

As a necessary parenthesis, note that the fully Bayesian statistician does not select a particular
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value for the parameters, but chooses instead to average the predictions over a posterior distribution
on the parameters [27]. This approach may be preferred for more robust predictions (see, e.g., [6]),
but comes at a higher computational cost. For this reason, the present article will set aside the fully
Bayesian approach and concentrate on the plugin approach, where only one parameter value is chosen
to carry out predictions.

The two most popular methods for parameter selection are maximum likelihood (ML) and cross-
validation (CV) based on LOO criteria, which were introduced in the field of computer experiments
by the seminal work of [14]. Since then, despite a fairly large number of publications dealing with
ML and CV techniques for the selection of a GP model, the literature has remained in our view quite
sparse about the relative merits of these methods, from both theoretical and empirical perspectives.

For instance, in the framework of interpolation and infill asymptotics, where observations ac-
cumulate in some bounded domain, [50] and [51] show that some combinations of the parameters
of a Matérn covariance function can be estimated consistently by ML. Again in the case of infill
asymptotics, with the additional assumption of a one-dimensional GP with an exponential covariance
function, [4] show that estimation by LOO is also consistent. (Similar results exist in the expanding
asymptotic framework, where observations extend over an ever-increasing horizon.)

The practical consequences of the aforementioned results are somewhat limited in our view be-
cause practitioners are primarily interested in the quality of the predictions. Knowing that the pa-
rameters of a GP can be estimated consistently is intellectually reassuring, but may be considered of
secondary importance. These results are indeed about the statistical model itself but they say little
about the prediction properties of the model. Besides, there does not exist at present, to our knowl-
edge, some theoretically-based evaluation of the relative performances of ML and CV selection criteria
under infill asymptotics.

Turning now to empirical comparisons of selection criteria for GP interpolation, the first attempt
in the domain of computer experiments can be traced back to the work of [14, 15]. The authors
introduce CV and ML—which can be seen as a special kind of cross-validation—and present some
simple experiments using tensorized covariance functions, from which they conclude that, “Of the
various kinds of cross-validation [they] have tried, maximum likelihood seems the most reliable”.
Additional experiments have been conducted by several authors, but no consensus emerges from these
studies: [2, 31, 43] conclude in favor of CV whereas [32] advocate ML.

These studies are limited to a rather small number of test functions and covariance functions,
which may explain the discrepancy in the conclusions of those experiments. In particular, only [2]
considers the popular and versatile Matérn covariance functions. Moreover, most studies focus only
on the accuracy of the posterior mean—only [43] and [2] provide results accounting for the quality
of the posterior variance—whereas the full posterior predictive distribution is used in most GP-based
methods (see, e.g., [10, 29]).

This article presents two main contributions. First, we improve upon the results of the literature by
providing an empirical ranking of selection criteria for GP interpolation, according to several metrics
measuring the quality of posterior predictive distributions on a large set of test functions from the
domain of computer experiments. To this end, we base our study on the general concept of scoring
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rules [24, 52], which provides an effective framework for building selection and validation criteria.
We also introduce a notion of extended likelihood criteria, borrowing an idea from Fasshauer and
co-authors [19, 20] in the literature of radial basis functions.

Second, we provide empirical evidence that the choice of an appropriate family of models is
often more important—and sometimes much more important, especially when the size of the design
increases—than the choice of a particular selection criterion (e.g., likelihood versus LOO-SPE). More
specifically, in the case of the Matérn family, this leads us to assess, and ultimately recommend, the
automatic selection of a suitable value of the regularity parameter, against the common practice of
choosing beforehand an arbitrary value of this parameter.

The article is organized as follows. Section 2 briefly recalls the general framework of GP regres-
sion and interpolation. Section 3 reviews selection criteria for GP model parameters. After recalling
the general notion of scoring rules, we present a broad variety of selection criteria from the litera-
ture. Section 4 presents experimental results on the relative performances of these criteria. Section 5
presents our conclusions and perspectives.

2. General framework. Let us consider the general GP approach for a scalar-valued determinis-
tic computer code with input spaceX⊆Rd . The output of the computer code z :X→R is modeled by
a random function (Z(x))x∈X, which, from a Bayesian perspective, represents prior knowledge about z.
If we assume that Z(·) is observed on a design Xn = {x1, . . . ,xn} of size n, the data corresponds to a
sample of the random vector Zn = (Z(x1), . . . ,Z(xn))

T.
The GP assumption makes it possible to easily derive posterior distributions. More precisely,

it is assumed that Z(·) is a Gaussian process, with (prior) mean E(Z(x)) = ∑
L
l=1 βlφl(x), where the

β1, . . . ,βL are unknown regression parameters and φ1, . . . ,φl are known regression functions, and with
(prior) covariance cov(Z(x),Z(y)) = kθ (x,y), where θ ∈Θ⊆Rq is a vector of parameters. Through-
out the article, the covariance matrix of Zn will be denoted by Kθ . We assume for simplicity that the
prior mean of Z(·) is zero (hence, L = 0), which is a common practice when data are centered.

One of the most popular covariance functions for GP regression is the anisotropic stationary
Matérn covariance function [33] popularized by [42]:

(2.1) kθ (x,y) = σ
2 21−ν

Γ(ν)

(√
2νh

)ν

Kν

(√
2νh

)
, h =

( d

∑
j=1

(x j− y j)
2

ρ2
j

)1/2

,

where Γ is the Gamma function, Kν is the modified Bessel function of the second kind, and θ denotes
the vector of parameters θ = (σ2, ρ1, . . . , ρd , ν) ∈ Θ = ]0,∞[d+2. The parameter σ2 is the variance
of Z(·), the ρis are range parameters which characterize the typical correlation length on each dimen-
sion, and ν is a regularity parameter, whose value controls the mean-square differentiability of Z(·).
Recall (see Table 1) that the Matérn covariance function with ν = 1/2 corresponds to the so-called
exponential covariance function, and the limiting case ν→∞ can be seen as the “squared exponential”
(also called Gaussian) covariance function.

Because Kν has a closed-form expression when ν − 1
2 is an integer, and is more expensive to

evaluate numerically in other cases, most implementations choose to restrict ν to half-integer values.
Moreover, a widespread practice (in applications and research papers) consists in selecting a particular
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Table 1: Popular Matérn subfamilies

ν = 1
2 ν = 3

2 ν = 5
2 ν =+∞

a.k.a. exponential squared exponential

kθ (x,y) σ2e−h σ2(1+
√

3h)e−
√

3h σ2(1+
√

5h+ 5h2

3 )e−
√

5h σ2e−
h2
2

value for ν (e.g., ν = 1/2, ν = 3/2. . . or the limiting case ν → ∞), once and for all.
Since the family of Matérn covariance functions is widely used in practice, we focus exclusively

on this family in this work. We believe that the conclusions of the present study would not be al-
tered significantly if other families of covariance functions (e.g., the compactly supported covariance
functions proposed by [47]) were considered.

Once a GP model has been chosen, the framework of Gaussian process regression allows one to
build a predictive distribution N (µθ (x),σ2

θ
(x)) for an unobserved Z(x) at x ∈Rd , where

(2.2)

{
µθ (x) = k∗

θ
(x)TK−1

θ
Zn,

σ2
θ
(x) = kθ (x,x)−k∗

θ
(x)TK−1

θ
k∗

θ
(x)

with k∗
θ
(x) = (kθ (x,x1), . . . , kθ (x,xn))

T. More generally, predictive distributions can be built for a
larger range of quantities of interest such as joint observations, derivatives, integrals or excursions of
Z above a given threshold.

Using this framework, the user obtains a family of Bayesian procedures, indexed by θ , to perform
predictions about the unknown computer code at hand, and must choose a member of the family that
will hopefully provide good predictive performances.

3. Selection of a GP model from a parameterized family.

3.1. Scoring rules. Goodness-of-fit criteria for probabilistic predictions have been studied in the
literature under the name of scoring rules by [24]. A (negatively oriented) scoring rule is a function
S( · ; z) : P→R∪{−∞,+∞}, acting on a class P of probability distributions on R, such that S(P; z)
assigns a loss for choosing a predictive distribution P∈P , while observing z∈R. Scoring rules make
it possible to quantify the quality of probabilistic predictions.

Example 1 (squared prediction error). Denoting by µ the mean of a predictive distribution P,
the squared prediction error

(3.1) SSPE(P; z) = (z−µ)2

accounts for the deviation of z from µ . Note that SSPE ignores subsequent moments and therefore
predictive uncertainties.

Example 2 (negative log predictive density). Denoting by p the probability density of P,

(3.2) SNLPD(P; z) =− log(p(z))
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Table 2: Scoring rules behavior as |µ− z| � 1.

σ � |µ− z| σ ' |µ− z| σ � |µ− z|
SSPE(P; z) 0 0 0
SNLPD(P; z) +∞ −∞ log(2πσ)

SCRPS(P; z) 0 0 ∝ σ

SIS
1−α

(P; z) 0 0 ∝ σ

tells how likely z is according to P. [8] shows that any (proper) scoring rule that depends on p(z) (and
only on p(z)) can be reduced to SNLPD.

Example 3 (continuous ranked probability score). Let U and U ′ be two independent random
variables with distribution P. The CRPS quantifies the deviation of U from z:

(3.3) SCRPS(P; z) = E(|U− z|)− 1
2
E(|U−U ′|) .

Since it is possible to show that SCRPS(P; z) =
∫
(P(U ≤ u)−1z≤u)

2 du, the CRPS can also be seen
as a (squared) distance between the empirical cumulative distribution u 7→ 1z≤u and the cumulative
distribution of P.

Note that if absolute values in (3.3) are replaced by squared values, then SSPE is recovered. The
CRPS can also be extended to the so-called energy and kernel scores [24] by observing that (x,y) 7→
|x− y| is a conditionally negative kernel.

Example 4 (interval score). The interval scoring rule at level 1−α is defined, for α ∈ ]0,1[, by

(3.4) SIS
1−α(P; z) = (u− l)+

2
α
(l− z)1z≤l +

2
α
(z−u)1z>u

where l and u are the α/2 and 1−α/2 quantiles of P. The first term penalizes large intervals, while
the second and third terms penalize intervals not containing z.

When the predictive distribution P is Gaussian, which is the case when P is the posterior dis-
tribution of a GP Z at a given point, the aforementioned scoring rules all have closed-form expres-
sions. More precisely, for P = N (µ,σ2), we simply have SSPE(P; z) = (z− µ)2 and SNLPD(P; z) =
1
2 log2πσ2 + 1

2(z−µ)2/σ2. SIS
1−α

can be obtained by taking the standard expressions of the α/2 and
1−α/2 quantiles of P, and it can be shown that

SCRPS(P; z) = σ

(z−µ

σ

(
2Φ
(z−µ

σ

)
−1
)
+2φ

(z−µ

σ

)
− 1√

π

)
,

where φ and Φ stand respectively for the probability density function and the cumulative distribution
function of the standard Gaussian distribution.

Note that all aforementioned scoring rules penalize large values of |z− µ|. When |z− µ| � 1
different scoring rules yield different penalties, as reported in Table 2.

3.2. Selection criteria.
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3.2.1. Leave-one-out selection criteria. Scoring rules make it possible to build criteria for
choosing the parameters of a GP. More precisely, to select θ based on a sample Z1, . . . , Zn, one can
minimize the mean score

(3.5) JS
n (θ) =

1
n

n

∑
i=1

S(Pθ ,−i; Zi),

where S is a scoring rule and Pθ ,−i denotes the distribution of Zi conditional on the Z js, for 1 ≤ j ≤
n, j 6= i, indexed by θ .

Selection criteria written as (3.5) correspond to the well-established leave-one-out (LOO) method,
which has been proposed in the domain of computer experiments by [14], and is now used in many
publications (see, e.g., [39], and also [52], who formally adopt the point of view of the scoring rules,
but for model validation instead of parameter selection).

Efficient computation of predictive distributions. Leave-one-out predictive densities can be com-
puted using fast algebraic formulas [11, 18]. More precisely, the predictive distribution Pθ ,−i is a
normal distribution N (µθ ,−i,σ

2
θ ,−i) with

(3.6) µθ ,−i = Z(xi)−
(K−1

θ
Zn)i

K−1
θ ,i,i

and σ
2
θ ,−i =

1
K−1

θ ,i,i

.

Furthermore, [36] show that, using reverse-mode differentiation, it is possible to compute mean
scores Jn and their gradients with a O(n3 +dn2) computational cost, which is the same computational
complexity as for computing the likelihood function and its gradient (see, e.g., [39]).

The particular case of LOO-SPE. The LOO selection criterion

(3.7) JSPE
n (θ) =

1
n

n

∑
i=1

(µθ ,−i−Z(xi))
2 ,

based on the scoring rule (3.1) will be referred to as LOO-SPE. This criterion, also called prediction
sum of squares (PRESS) [1, 45] or LOO squared bias [14], is well known in statistics and machine
learning, and has been advocated by some authors [2,3,31,40,43] to address the case of “misspecified”
covariance functions.

However, note that σ2 cannot be selected using JSPE
n . When JSPE

n is used, σ2 is generally cho-
sen (see, e.g., [2, 14] and Remark 3.1) to satisfy

(3.8)
1
n

n

∑
i=1

(Z(xi)−µθ ,−i)
2

σ2
θ ,−i

= 1 ,

which will be referred to as Cressie’s rule for σ2, in reference to the claim by [12] that (3.8) should
hold approximately for a good GP model.

Other scoring rules for LOO. The selection criteria using the NLPD scoring rule (3.2) and the
CRPS scoring rule (3.3) will be referred to as the LOO-NLPD and LOO-CRPS criteria, respectively.
The LOO-NLPD criterion has been called preditive deficiency in [14], and Geisser’s surrogate Predic-
tive Probability (GPP) in [43]. The LOO-CRPS criterion has been considered in [52] as a criterion for
model validation (see also [16] for an application to model selection), and more recently [36, 37] as a
possible criterion for parameter selection as well.
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Remark 3.1. Note that Cressie’s rule (3.8) can be derived by minimizing the LOO-NLPD criterion
with respect to σ2.

Remark 3.2. In order to limit the number of selection criteria under study, the interval scoring rule
is only used for validation in this work.

3.2.2. Maximum likelihood and generalizations. We can safely say that the most popular
method for selecting θ from data is maximum likelihood estimation—and related techniques, such as
restricted maximum likelihood estimation. The ML estimator is obtained by maximizing the likeli-
hood function or, equivalently, by minimizing the negative log-likelihood (NLL) selection criterion.
Denoting by pθ (Zn) the joint density of Zn, the NLL selection criterion may be written as

(3.9) JNLL
n (θ) =− log(pθ (Zn)) =

1
2

(
n log(2π)+ logdetKθ +ZT

n K−1
θ

Zn

)
.

As pointed out by [14], the NLL criterion is closely related to the LOO-NLPD criterion, through
the identity

JNLL
n (θ) =− log(pθ (Z(x1))−

n

∑
i=2

log(pθ (Z(xi) | Z(x1), . . . ,Z(xi−1))),

where the predictive distributions of the Z(xi)s given the Z(x1), . . . ,Z(xi−1) explicitly appear.
One can minimize (3.9) in closed-form with respect to σ2, given other parameters. Writing Kθ =

σ2 Rθ and canceling ∂JNLL
n (θ)/∂σ2 =

(
nσ2−ZT

n R−1
θ

Zn
)
/(2σ2) yields

(3.10) σ
2
NLL =

1
n

ZT
n R−1

θ
Zn ,

which will be referred to as the profiling rule for σ2.
Injecting (3.10) into (3.9) yields a profiled likelihood selection criterion, that can be written as

(3.11) JPL
n (θ) = logσ

2
NLL +

1
n

logdetRθ = log
(1

n
ZT

n R−1
θ

Zn

)
+

1
n

logdetRθ .

Following Fasshauer and co-authors [19, 20], we consider now a family of selection criteria that
extends (3.9). Using the factorization Rθ = QΛQT, where Q = (q1, . . . , qn) is an orthogonal matrix
of (orthonormal) eigenvectors and Λ = diag(λ1, · · · ,λn), notice that

(3.12) exp
(
JPL

n (θ)
)
=

1
n

ZT
n R−1

θ
Zn · (detRθ )

1/n
∝

( n

∑
i=1

(
qTi Zn

)2
/λi

)( n

∏
i=1

λ j

)1/n
.

This suggests a generalization of the likelihood criterion that we shall call Fasshauer’s Hölderized
likelihood (HL), defined as

(3.13) JHL, p,q
n (θ) =

( n

∑
i=1

(qTi Zn)
2/λ

p
i

)1/p(1
n

n

∑
j=1

λ
q
j

)1/q
,

with q ∈ [−∞,+∞], and p ∈ R \ {0}, and where σ2 can be chosen using the rules (3.8) or (3.10),
since JHL, p,q

n (θ) does not depend on σ2. Owing to the standard property of generalized means(1
n ∑

n
i=1 xq

i

) 1
q q→0−→ n

√
x1 · · ·xn), (3.12) is recovered by taking p = 1 and letting q→ 0. Moreover, two

other known selection criteria can be obtained for particular values of p and q, as detailed below.
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Generalized cross-validation. Taking p = 2 and q = −1 in (3.13) yields the generalized cross-
validation (GCV) criterion

JGCV
n (θ) = n−1 (JHL,2,−1

n (θ)
)2
,

which was originally proposed as a rotation-invariant version of PRESS [25] for linear models. It
has also been shown to be efficient for the selection of the smoothing parameter of polyharmonic
splines [45] and for the selection of the degree of a spline [46].

The GCV selection criterion is a weighted SPE criterion, which can also be written as

(3.14) JGCV
n (θ) =

1
n

n

∑
i=1

w2
i (θ)(Z(xi)−µθ ,−i)

2 , wi(θ) =
σ̃2

σ2
θ ,−i

,

with σ̃2 =
(1

n ∑
n
i=1

1
σ2

θ ,−i

)−1. Notice that wi(θ) is lower when σθ ,−i is larger, which happens when

points are either isolated or lying on the border / envelope ofXn. Equation (3.14) shows that, similarly
to the LOO criteria of Section 3.2.1, the GCV criterion can be computed, along with its gradient,
in O(n3 + dn2) time. However, since σ̃ depends on the data, the JGCV

n criterion cannot be formally
derived from a scoring rule.

Kernel alignment. The kernel alignment selection criterion is defined as

(3.15) JKA
n (θ) =− ZT

n Kθ Zn

‖Kθ‖F‖Zn‖2 ,

where ‖·‖F stands for the Frobenius matrix norm. This criterion can be derived from (3.13) by taking
p =−1 and q = 2:

JKA
n (θ) =− 1

√
n‖Zn‖2JHL,−1,2

n (θ)
.

It was originally proposed in the machine learning literature [13] to maximize the alignment of Zn with
the eigenvector of Kθ corresponding to the largest eigenvalue. This criteria is noticeably cheaper than
the others, as it does not require to invert Kθ and can therefore be computed along with its gradient in
O(dn2) time.

Remark 3.3. We choose to focus in this article on three well-known selection criteria (NLL, GCV
and KA) that can be seen as special cases of (3.13), corresponding repectively to (p,q) equal to (1,0),
(2,−1) and (−1,2). The study of new selection criteria, obtained for other values of (p,q), is left for
future work.

3.3. Hybrid selection criteria. When considering several parameterized models—or, equiva-
lently, when dealing with discrete parameters, such as half-integer values for the regularity parameter
of the Matérn covariance—some authors suggest to use one selection criterion to select the parameters
in each particular model, and a different one to select the model itself.

For instance, in [29], the authors select the parameters of a power-exponential covariance function
using the NLL selection criterion (i.e., the ML method), and then select a suitable transformation of
the output of the simulator, in a finite list of possible choices, using the LOO-SPE criterion. Similarly,
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the NLL selection criterion is combined in [16] with a variety of model-validation criteria, including
LOO-CRPS and LOO-NLPD.

In Section 4 we will denote by NLL/SPE the hybrid method that selects the variance and range
parameters of a Matérn covariance function using the NLL criterion, and then minimizes the LOO-SPE
criterion to select the regularity parameter ν in finite list of values.

4. Numerical experiments.

4.1. Methodology. We investigate the problem of parameter selection with an experimental ap-
proach consisting of four ingredients: 1) a set of unknown functions f to be predicted using evaluation
results on a finite design Xn = {x1, . . . ,xn} ⊂X; 2) the GP regression method that constructs predic-
tive distributions Pθ ,x of f at given xs in X, indexed by parameter θ ; 3) several selection criteria Jn to
choose θ ; 4) several criteria to assess the quality of the Pθ ,xs. Details about each of these ingredients
are given below (starting from the last one).

Criteria to assess the quality of the Pθ ,xs. A natural way to construct a criterion to assess the
quality of the Pθ ,xs is to choose a scoring rule S and to consider the mean score on a test set Xtest

N =

{xtest
1 , . . . , xtest

N } ⊂X of size N:

(4.1) R(θ ; S) =
1
N

N

∑
i=1

S
(
Pθ ,xtest

i
; f (xtest

i )
)
.

Selection criteria. We shall consider the selection criteria Jn presented in Section 3, namely, the
LOO-SPE, LOO-NLPD, LOO-CRPS, NLL, GCV, KA and NLL/SPE selection criteria. Given a func-
tion f and a designXn, each selection criterion Jn yields a parameter θJn .

Parameterized GP models. In this work, models are implemented using a custom version of
the [26] Python package (see Supplementary Material, hereafter abbreviated as SM). We assume no
observation noise, which corresponds to the interpolation setting. All functions will be centered be-
forehand to have zero-mean on Xtest

N , and we will consider zero-mean GPs only. The anisotropic
Matérn covariance function (2.1) is used, with parameter θ = (σ2, ρ1, . . . , ρd , ν), and the regularity
parameter ν is either set a priori to ν = χ +1/2, with χ ∈ {0,1,2,3,4,d,2d,∞}, or selected automat-
ically. The latter case will be denoted by ν̂ .

Remark 4.1. Since the covariance matrix of Zn can be nearly singular when the range parameters
take large values, we define upper bounds on these values in order to avoid the use of nugget or jitter
(see, e.g., [35, 38]). Details are provided in the SM.

Test functions. The test functions used in the study are described in the next section. They are
grouped into collections, and we provide averaged values of mean-score metrics of the form (4.1) for
each collection.

4.2. Test functions.

4.2.1. Design of a low-pass filter. Fuhrländer and Schöps [22] consider the problem of com-
puting, using a frequency-domain PDE solver, the scattering parameters Sω of an electronic compo-
nent called stripline low-pass filter, at several values of the excitation pulsation ω . The geometry of the
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Figure 1: A low-pass filter design problem in CST Studio Suite®.

stripline filter is illustrated on Figure 1. It is parameterized using six real valued factors concatenated
in a vector x ∈ Rd , d = 6. The objective is to satisfy the low-pass specifications |S2kπ(x)| ≥ −1dB
for 0 ≤ k ≤ 4 and |S2kπ(x)| ≤ −20dB for 5 ≤ k ≤ 7. Meeting such requirements is a difficult and
time-consuming task.

In this article we consider the quantities Re(S2π), Re(S6π), Re(S10π) and Re(S14π). We randomly
sample M = 100 designsXn of size n = 300 from a database of 10000 simulation results, and use the
remaining N = 10000− n = 9700 points as test sets. The metric (4.1) is computed and averaged on
these M test sets.

4.2.2. Other test functions. We supplement the above engineering problem with a collection
of test functions from the literature. More precisely, we consider the Goldstein-Price function [17],
a one-dimensional version of the Goldstein-Price function (see SM for details), the Mystery function
[31], the Borehole function [49], several collections obtained from the GKLS simulator [23], and the
rotated Rosenbrock collection from the BBOB benchmark suite [28].

The GKLS simulator has a “smoothness” parameter k ∈ {0,1,2} controlling the presence of non-
differentiabilities on some nonlinear subspaces—the trajectories being otherwise infinitely differen-
tiable. For both GKLS and Rosenbrock, two different values of the input dimension were considered
(d = 2 and d = 5). The resulting set of twelve problems—considering that changing the value of k
or d defines a new problem—is summarized in Table 3.

For each problem, we consider three design sizes n ∈ {10d,20d,50d}. For the GKLS and Rosen-
brock collections, we directly used the collections of test functions provided by the authors (M = 100
and 15 functions, respectively). For a given dimension, they are all evaluated on the same space-filling
designsXn. For each of the remaining problems, we used a single test function, evaluated on M = 100
random space-filling designsXn, thereby creating collections of 100 data sets.

A Sobol’ sequence Xtest
N of size N = 10000 is used as test set and the functions are centered and

normalized to unit variance on these test sets.

4.3. Results and findings.
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Table 3: Twelve benchmark problems

Problem Goldstein-Price Mystery GKLSk=0 GKLSk=1 GKLSk=2 Rosenbrock Borehole
d {1,2} 2 {2,5} {2,5} {2,5} {2,5} 8

Table 4: Averages (over the M = 100 designs) of the R(θ ;SSPE) values for Re(S6π) with n = 10d =

60. Optimal R? values are given in the rightmost column for comparison. For comparison also,
R(θ ;SSPE) = 3.26 · 10−4 for the JNLL/SPE

n selection criterion, which also selects ν (see Section 3.3).
The gray scale highlights the order of magnitude of the discrepancies.

Scoring rule: SSPE NLL LOO-SPE LOO-NLPD LOO-CRPS KA GCV R?

ν = 1/2 4.94 ·10−2 5.11 ·10−2 4.84 ·10−2 4.84 ·10−2 4.29 ·10−1 4.73 ·10−2 4.44 ·10−2

ν = 3/2 3.85 ·10−3 4.24 ·10−3 3.52 ·10−3 3.59 ·10−3 3.82 ·10−1 3.45 ·10−3 2.97 ·10−3

ν = 5/2 4.02 ·10−4 5.11 ·10−4 4.18 ·10−4 4.31 ·10−4 3.71 ·10−1 4.93 ·10−4 3.21 ·10−4

ν = 7/2 2.88 ·10−4 4.33 ·10−4 3.73 ·10−4 3.86 ·10−4 3.54 ·10−1 4.75 ·10−4 2.26 ·10−4

ν = 9/2 2.96 ·10−4 4.39 ·10−4 4.22 ·10−4 3.95 ·10−4 3.42 ·10−1 5.44 ·10−4 2.26 ·10−4

ν = 13/2 3.15 ·10−4 4.80 ·10−4 4.48 ·10−4 4.25 ·10−4 3.29 ·10−1 6.43 ·10−4 2.32 ·10−4

ν = 25/2 3.46 ·10−4 5.29 ·10−4 4.92 ·10−4 4.61 ·10−4 3.14 ·10−1 7.43 ·10−4 2.45 ·10−4

ν = ∞ 3.80 ·10−4 6.34 ·10−4 5.38 ·10−4 5.38 ·10−4 2.94 ·10−1 8.75 ·10−4 2.60 ·10−4

ν ∈ {1/2, · · · ,∞} 3.07 ·10−4 4.90 ·10−4 4.64 ·10−4 4.31 ·10−4 2.98 ·10−1 6.89 ·10−4 2.13 ·10−4

4.3.1. A close look at one of the problems. Tables 4 and 5 provide a detailed view of the
results obtained on one of the test problems—namely, the output f = Re(S6π) with n = 10d = 60 of
the low-pass filter case (see Section 4.2.1).

The results presented in these tables are the scores R(θ ;S), averaged over the M = 100 random
instances of the problem, where θ is selected using different selection criteria (along columns), and
the regularity of the Matérn covariance varies or is selected automatically (along rows). The scoring
rule for assessing the quality of the predictions is the SPE in Table 4 and the IS at level 95% in Table 5.
(A similar table, not shown here, is presented in the SM for the CRPS.)

For comparison, Table 4 also provides the optimal values R? obtained by direct minimization of
the score (4.1). They can be used to assess the loss of predictive accuracy of the selected models,
which are constructed using a limited number of observations, with respect to the best model that
could have been obtained if the test data had also been used to select the parameters.

Table 4 and Table 5 support the fact that, for this particular problem, the NLL and NLL/SPE
criteria are the best choices for selecting θ in terms of the SPE and the IS scores, both for a prescribed
regularity ν and when ν is selected automatically (the NLL/SPE being only available for the latter
case). Except for the KA criterion, however, the other selection criteria are never very far behind.
Elements provided as SM show similar findings using the CRPS validation score.

Strikingly enough, for both scoring rules, the variations of the average score are much larger when
the model changes than when the selection criterion changes. If a Matérn covariance function with
fixed regularity is used, as is often done in practice, then the best results are obtained for all criteria
(except KA) when ν takes the values 7/2, 9/2 and 13/2. The values of R∗ (Table 4) confirm that these
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Table 5: Same as Table 4 but for averages of R(θ ;SIS
0.95). Using JNLL/SPE

n gives R(θ ;SIS
0.95) = 7.06 ·

10−2.

Scoring rule: SIS
0.95 NLL LOO-SPE LOO-NLPD LOO-CRPS KA GCV

ν = 1/2 1.44 ·100 1.38 ·100 1.34 ·100 1.48 ·100 3.69 ·100 1.32 ·100

ν = 3/2 2.80 ·10−1 3.05 ·10−1 2.75 ·10−1 2.88 ·10−1 3.43 ·100 2.69 ·10−1

ν = 5/2 9.30 ·10−2 9.42 ·10−2 8.55 ·10−2 9.11 ·10−2 3.36 ·100 9.18 ·10−2

ν = 7/2 6.82 ·10−2 8.82 ·10−2 8.42 ·10−2 9.10 ·10−2 3.23 ·100 9.17 ·10−2

ν = 9/2 6.50 ·10−2 9.08 ·10−2 9.30 ·10−2 9.53 ·10−2 3.14 ·100 1.00 ·10−1

ν = 13/2 6.48 ·10−2 9.95 ·10−2 9.99 ·10−2 1.03 ·10−1 3.02 ·100 1.16 ·10−1

ν = 25/2 6.77 ·10−2 1.10 ·10−1 1.08 ·10−1 1.12 ·10−1 2.90 ·100 1.29 ·10−1

ν = ∞ 7.23 ·10−2 1.23 ·10−1 1.16 ·10−1 1.23 ·10−1 2.74 ·100 1.44 ·10−1

ν ∈ {1/2, · · · ,∞} 6.70 ·10−2 1.04 ·10−1 1.06 ·10−1 1.08 ·10−1 2.78 ·100 1.23 ·10−1

are indeed the best fixed-ν models on this problem for the SPE score. Since these optimal values were
not known beforehand, it is a relief to see (cf. last row of each table) that comparable performances
can be achieved on this problem by selecting ν automatically.

4.3.2. Statistical analysis of the benchmark results. Tables similar to Tables 4 and 5 have
been produced for all the (4+12)×3= 48 test problems presented in Section 4.2, for the three scoring
rules (SPE, CRPS and IS). We present in this section some graphical summaries and statistical analyses
of these results. The individual tables for each problem are provided in the SM.

Remark 4.2. The poor performance of the KA criterion, already observed in Tables 4 and 5, is
confirmed by the results (not shown) on all the other problems. We conclude that this selection crite-
rion should not be used in practice, and exclude it from the analyses of this section in order to refine
the comparison between the remaining ones.

Sensitivity analysis. We observed in Section 4.3.1 that the choice of the model—more specifically,
of the regularity parameter of the Matérn covariance function—was more important than that of a
particular selection criterion (excluding KA of course). To confirm this finding, a global sensitivity
analysis of the logarithm of the average score, where the average is taken over the M = 100 instances
of each problem, has been performed on each problem. The average score, for a given scoring rule,
depends on two discrete factors: the selection criterion and the regularity ν of the Matérn covariance
function. We present on Figure 2, for the SPE scoring rule, the Sobol’ sensitivity index for the latter
factor as a function of the total variance. Observe that, for the problems where the total variance
is large, the Sobol index is typically very close to one, which indicates that the variability is indeed
mainly explained by the choice of model. Similar conclusions hold for the other scoring rules (results
not shown, see SM).

Comparison of the covariance models. Figure 3 compares the average values of R(θ ;SSPE) when
ML is used on the set of GKLS problems, which have low regularities, and on the set of low-pass filter
problems, which contains very smooth instances.

Observe first that the fixed-ν models rank differently on these two sets of problems, as expected
considering the actual regularity of the underlying functions: low values of ν perform better on the
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Figure 2: Parts of total variances of log10(R)s explained by ν for SSPE using a one-factor ANOVA.
Each point represents the variations of log10(R) for one of the 16 problems from Section 4.2.2, split by
design size, with KA and GCV excluded. The model explains almost all the variations for problems
that exhibit significant fluctuations of log10(R) (at the right of the figure).
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Figure 3: Box plots of R/R0 using JNLL
n as selection criterion and SSPE as quality assessment criterion,

for different choices of regularity. Here, R0 stands for the best value of R on each problem (among all
models). Left: All 5d GKLS problems. Right: All low-pass filter problems. The box plots are sorted
according to their upper whisker. Grey dashed lines: R/R0 = 2,4,6,8,10.

GKLS problems and worse on the low-pass filter case. Furthermore, it appears that underestimating the
regularity (on the low-pass filter case) has much more severe consequences than overestimating it (on
the GKLS problems) according to the SPE score, as suggested by the theoretical results of [42], [34]—
see [41, Section 6] for a discussion—and [44].

Another important conclusion from Figure 3 is that very good results can be obtained by selecting
the regularity parameter ν automatically, jointly with the other parameters (using the NLL criterion
in this case). On the GKLS problems, the results with selected ν are not far from those of the best
fixed-ν model under consideration (ν = 3/2); in the low-pass filter case, they are even better than
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Figure 4: Box plots of R/R0 for different selection criteria. Each box plot is constructed using all
problems, with automatically selected ν , and R0 stands for the best value of R on each problem (among
all selection criteria). The left (resp. right) panel uses the SSPE (resp. SIS

0.95) as quality assessment
criterion. Sorting of box plots and horizontal lines: as in Figure 3.

those obtained with the best fixed-ν models (ν = 5/2 or 7/2). In other words, the regularity needs
not be known in advance to achieve good performances, which is a very welcome practical result.
This conclusion is also supported, for NLL, by the additional results provided in the SM for the other
problems and for the three scoring rules.

Concerning the other selection criteria the situation is more contrasted (see SM): the automatic
selection of ν using these criteria still performs very well for smooth problems, but not always, in
particular with GCV, for the less regular problems of the GKLS class. This is especially true when the
sample size is small (n = 10d).

Comparison of the selection criteria. Figure 4 compares the distributions of the average values
of the SPE and IS scores for all selection criteria (except KA) on all test instances, in the case of a
Matérn covariance function with automatically selected regularity. As a preliminary observation, note
that for most cases the ratio R/R0 remains under two (first horizontal dashed line), which confirms
that the differences between selection criteria are much milder than those between covariance models
(recall Figure 3).

A closer look at Figure 4 reveals that the rankings of criteria obtained for both scoring rules
are almost identical. The ranking for the CRPS scoring rule (not shown) is the same as the one for
SPE. GCV provides the worst performance for all scoring rules, followed by LOO-NLPD, while NLL
dominates the ranking (for all scoring rules as well).

Remark 4.3. Observe on Figure 4 that LOO-SPE is surprisingly significantly less accurate than
NLL according to SSPE. More generally, choosing a scoring rule S for the LOO criterion does not
guarantee the highest precision according to this particular score.

Robustness. LOO-SPE is commonly claimed in the literature (see, notably, [2]) to provide a cer-
tain degree of robustness with respect to model misspecification. According to this claim, LOO-SPE
would be expected to somehow mitigate the loss of predictive accuracy with respect to likelihood-
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based approaches incurred by an ill-advised choice of covariance function. Our detailed results
(see SM) suggest that this effect indeed exists when the regularity is severely under-estimated (e.g.,
ν = 1/2 for the low-pass filter problems), but is actually quite small, and should not be used to moti-
vate the practice of setting ν to an arbitrary value. A similar effect exists for LOO-CRPS, LOO-NLPD
and GCV as well. Quite surprisingly, NLL turns out to be more robust than LOO-SPE (and the other
criteria) in the case of over-smoothing.

5. Conclusions. A large variety of selection criteria for Gaussian process models is available
from the literature, with little theoretical or empirical guidance on how to choose the right one for
applications. Our benchmark study with the Matérn family of covariance functions in the noiseless
(interpolation) case indicates that the NLL selection criterion—in other words, the ML method—
provides performances that are, in most situations and for all the scoring rules that were considered
(SPE, CRPS and IS at 95%), better than or comparable to those of the other criteria. Considering that
all the criteria tested in the study (except KA) have a similar computational complexity, this provides a
strong empirical support to the ML method—which is already the de facto standard in most statistical
software packages implementing Gaussian process interpolation.

Another important lesson learned from our benchmark study is that the choice of the family of
models, and in particular of the family of covariance functions, has very often a bigger impact on per-
formance than that of the selection criterion itself. This is especially striking when the actual function
is smooth, and very irregular covariance function such as the Matérn covariance with regularity 1/2
is used to perform Gaussian process interpolation. In such a situation, NLL is actually outperformed
by other criteria such as LOO-SPE or LOO-CRPS, which thus appear to be more “robust to model
misspecification”. However, the small gain of performance, which is achieved by using LOO-SPE or
LOO-CRPS instead of NLL in this case, is generally negligible with respect to the much larger loss
induced by choosing an inappropriate covariance function in the first place.

Our final recommendation, supported by the results of the benchmark, is therefore to select, if
possible, the regularity of the covariance function automatically, jointly with the other parameters, us-
ing the NLL criterion. A minimal list of candidate values for the regularity parameter should typically
include 1/2, 3/2, 5/2, 7/2 and +∞ (the Gaussian covariance function). Should a situation arise where
a default value of ν is nevertheless needed, our recommendation would be to choose a reasonably large
value such as ν = 7/2, since under-smoothing has been seen to have much more severe consequences
than over-smoothing. More generally, our numerical results support the fact that choosing a model
carefully is important, and probably so not only in the class of Matérn covariance functions.

However, it should be kept in mind that the study focuses on cases where the number of parameters
is small with respect to the number of observations (in particular, we considered zero-mean GPs with
an anisotropic stationary Matérn covariance function, which have d +2 parameters, and we took care
of having n� d). When d is large, or when the number of parameters increases, it seems to us that
other selection criteria should be considered, and that the introduction of regularization terms would
be required.

For future work, it would be very interesting to consider the performance of using selection criteria
against a fully Bayesian approach. Another direction would be to extend this study to the case of
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regression, which is also used in many applications, when dealing with stochastic simulators, for
instance.
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