Development of an AFM-based technique for extended write/erase endurance measurements of memristive cells

Van Huy Mai,¹ Van Son Nguyen,² Pascale Auban Senzier,³ Claude Pasquier,³ Kang Wang,³ Marcelo J. Rozenberg,³ John Giapintzakis,⁴ Evripides Kyriakides,⁴ Thomas Maroutian,⁵ Guillaume Agnus,⁵ Philippe Lecoeur,⁵ Ngoc Anh Nguyen,⁶ Sami Oukassi,⁶ Raphaël Salot,⁶ David Alamarguy,⁷ Pascal Chrétien,⁷ Jean-Christophe Lacroix, ⁸ and Olivier Schneegans^{7*}

¹ Departement of Optical Electronic Devices, Le Quy Don Technical University, Hanoi, Vietnam

²CEA-INES, Le-Bourget-du-Lac, France

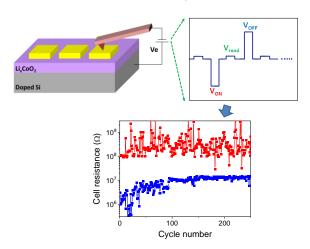
³ Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay, France

⁴ Department of Mechanical & Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus

⁵ Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, Orsay, France

⁶CEA-LETI, Grenoble, France

⁷ Lab. de Génie Élect. et Électronique Paris, CNRS, Sorbonne/PSaclay Univ., CentraleSupélec,Gif/Yvette France ⁸ Lab. ITODYS, Université Paris-Diderot, Paris, France


Abstract:

Memristors are devices composed of materials whose electrical resistivity can be modified by application of adequate bias voltages. The resistance state of {electrode/film/electrode} memristive cells may thus be reversibly switched between at least two regimes: a highresistance state R_{High} and a low resistance state R_{Low} . Switching repeatedly between R_{High} and R_{Low} allows to obtain the maximum number of "write/erase" cycles before failure. Such parameter (denoted endurance) is interesting to examine [1,2] towards potential applicabilities to non volatile memories or bio-inspired neuromorphic circuits.

Usually, wires and/or macroscopic probes are used to apply a bias between the electrodes of the studied cell, provided the electrodes are large enough ($\geq 100 \times 100 \ \mu m^2$). If these electrodes are too small or fragile, they need to be electrically connected to intermediate remote larger areas which are wired to the measurement unit.

Here, we report a simple endurance measurement technique based on Atomic Force Microscopy (AFM): a small AFM conducting probe (tip radius < 30nm) touches directly the top electrode of the cell. In this configuration, application of pulses and measurements of resistance states can now be carried out in a completely automated way, either in ambient air, or under lower relative humidity (RH $\leq 2\%$). Such a technique has been applied to {Au/Li_xCoO₂/doped Si} memristive cells (Figure 1).

Keywords: resistive switching, Atomic Force Microscopy (AFM), non volatile resistive memories (ReRAM), write/erase cycles, endurance.

Figure 1: Top-Left: schematic view of the setup. Top-Right: shape of the voltage pulses applied. Bottom: evolution of R_{High} (red) and R_{Low} (blue) of a 100x100 μm^2 {Au/Li_xCoO₂/doped Si} cell, under dry air (RH $\leq 2\%$, read voltage: 0.1V).

References:

- R. Waser et al (2009), Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges Adv. Mater., 21, 2632
- V.S. Nguyen et all (2018), Direct Evidence of Lithium Ion Migration in Resistive Switching of Lithium Cobalt Oxide Nanobatteries, Small, 14, 1801038