
HAL Id: hal-03351090
https://centralesupelec.hal.science/hal-03351090v3

Submitted on 22 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Learning Semi-Supervised Anonymized Representations
by Mutual Information

Clément Feutry, Pablo Piantanida, Pierre Duhamel

To cite this version:
Clément Feutry, Pablo Piantanida, Pierre Duhamel. Learning Semi-Supervised Anonymized Repre-
sentations by Mutual Information. ICASSP 2020 - 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), May 2020, Barcelona, Spain, France. pp.3467-3471,
�10.1109/ICASSP40776.2020.9053379�. �hal-03351090v3�

https://centralesupelec.hal.science/hal-03351090v3
https://hal.archives-ouvertes.fr


LEARNING SEMI-SUPERVISED ANONYMIZED REPRESENTATIONS
BY MUTUAL INFORMATION

C. Feutry P. Piantanida P. Duhamel

Laboratoire des Signaux et Systèmes
CentraleSupélec CNRS Université Paris-Saclay, Gif-sur-Yvette, France

ABSTRACT
This paper addresses the problem of removing from a set of
data (here images) a given private information, while still
allowing other utilities on the processed data. This is ob-
tained by training concurrently a GAN-like discriminator and
an autoencoder. The optimization of the resulting structure
involves a novel surrogate of the misclassification probabil-
ity of the information to remove. Several examples are given,
demonstrating that a good level of privacy can be obtained on
images at the cost of the introduction of very small artifacts.

1. INTRODUCTION

The problem we address, i.e. removing private information
from a set of images, while still allowing any other search
in the set is a problem that is supervised with respect to the
private label, but unsupervised with respect to the original im-
age. Hence the name of semi-supervised anonymization.

Related work. Some previous works addressed similar
problems, very often in a more constrain setup. Reference [1]
proposes a tool that allows to perform some emotion preserva-
tion while transferring identities using a variational generative
adversarial network. This work is fully supervised contrary to
our work, that only use private labels during training. Several
other works, such as [2] or [3] address the problem of hid-
ing tags (text label, QR code,...) in images. This problem is
somewhat different from ours, because their target is to hide
some regions of the image while we focus on hiding inherent
private data. Another very related approach is image to image
translation, such as [4, 5]. Instead of transferring the images
to another domain, we provide a single “identity domain” rep-
resentation where it is as hard as possible to track the initial
identity (assuming that the private information is the identity).

De-identification is similar to anonymization but consists
in the process of preventing someone personal ID from being
revealed. The main difference between this concept and data
anonymization is that some identifying information can be
preserved in order to be relinked only by a trusted party or by
the original data operator, whereas in the case of anonymiza-
tion, no re-identification should be possible (e.g., [6, 7]).

Contributions. This paper presents a semi-supervised
framework for removing a private information from image
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Fig. 1: Architecture (S is the selector block).

datasets, while keeping the distortion on the resulting im-
ages as small as possible. This model was used on two image
datasets: a dataset of handwritten digits and a dataset of fa-
cial expression. It provided interesting results in the context
of anonymization without a target task. Two cases should be
distinguished: the case where the targeted private features are
strongly connected to the other constitutive features of the im-
age (denoted as intertwined) or not. Obviously, the later case
is less difficult. Both cases are addressed below.

2. PRESENTATION OF THE PROBLEM

Since we wish to be able to perform the same classifications
(except the private one) on the processed images and on the
original images, the metric used to evaluate the output must be
a mix between a fidelity metric (to ensure as much informa-
tion as possible remains) and a private metric. However, the
similarity metric cannot be a fixed metric (e.g., a traditional
distortion). Indeed, a metric that performs well on a kind of
data may not be as efficient on another data. Preliminary tests
using fixed metrics yielded poor results.

This directed us to use a GAN-like discriminator as the
flexible metric that is trained concurrently with an autoen-
coder. This has the advantage of keeping a wide range of
applications and yet to obtain accurate and neat results. This
flexibility is also useful to train an anonymizing autoencoder
where images will need to change significantly to remove pri-
vate features. The resulting architecture is displayed on Fig.
1. Random variables are in capital letters;b· means computed
over empirical distribution or estimate when over respectively
a function or a random variable. Let Tn be a training set of



size n, where each element (xi, zi) is composed of xi 2 X ,
a real vector and of zi 2 Z , the private label of this sample.

Our goal is to learn the parameters of the three networks:
(i) qX̂|X the deep autoencoder; (ii) qŶ |V the discriminator;
and (iii) qẐ|X̂ the private classifiers. The selector S is before
the discriminator and it allows a selection between x and x̂.
The input v of the discriminator is the output of S which is
driven by a variable Y . If y = 1 then v = x otherwise v = x̂.

Learning with anonymization constraints. Consider
the following constrained classification problem:

min
(qX̂|X ,qŶ |V )2F

n
Pe

�
qX̂|X , qŶ |V

�
:

min
qẐ|X̂ : X̂!P(Z)

Pe

�
qX̂|X , qẐ|X̂

�
� 1� "

o
,

(1)

for a prescribed probability 1/|Z|  " < 1, where the mini-
mization is over the set of restricted encoders and classifiers
(qX̂|X , qŶ |V ) 2 F according to a model class F .

The above expression requires representations with (1 �

")-approximate guarantees (over all possible classifiers) w.r.t.
the misclassification probability of the private labels. Ob-
viously, " can be replaced by a suitable positive multiplier
� ⌘ �(") yielding a relaxed version of the objective.

min
n
Pe

�
qX̂|X , qŶ |V

�
� � · Pe

�
qX̂|X , q?

Ẑ|X̂

�o
, (2)

where q?
Ẑ|X̂ is the minimizer of Pe

�
qX̂|X , qẐ|X̂

�
. Expres-

sion (2) does not lead to a tractable objective for training
(qX̂|X , qŶ |V ). Yet, it suggests a competitive game between
two players: an adversary trying to infer the private labels Z
from our representations x̂, by minimizing Pe

�
qX̂|X , qẐ|X̂

�

over all possible qẐ|X̂ , and a fidelity learner predicting the
labels Y (i.e. the representations’ fidelity), by optimizing
a classifier qŶ |V over a prescribed model class F . We can
trade-off these two quantities via the autoencoder model
qX̂|X . This idea will be further developed in the next section.

Cross-entropy loss: Given two distributions qX̂|X :

X ! P(X ) and qŶ |V : V ! P(Y), define the average (over
representations) cross-entropy loss as:

`
�
qX̂|X(·|x), qŶ |V (y|·)

�
:=

⌦
qX̂|X(·|x),� log qŶ |V (y|·)

↵

(3)
As usual, we shall measure the expected performance of
(qX̂|X , qŶ |V ) via the risk:

L(qŶ |V , qX̂|X) := EpXY

⇥
`
�
qX̂|X(·|X), qŶ |V (Y |·)

�⇤
. (4)

It is not difficult to show from Fano’s inequality that the lower
bound on the misclassification task of the private labels is a
monotonically decreasing function of the mutual information
I(Z; X̂). This implies that any limitation of the mutual infor-
mation between private labels Z and representations X̂ will
bound from below the probability of misclassification of pri-
vate labels, whichever the chosen classifier qẐ|X̂ . Besides, it

is well-known that the cross-entropy provides a surrogate to
optimize the misclassification probability of Ŷ , which mo-
tivates the cross-entropy loss. These information-theoretic
bounds provide a mathematical objective in order to browse
the trade-off (1) between all feasible misclassification proba-
bilities Pe

�
qX̂|X , qŶ |V

�
as a function of the prescribed (1�")

probability. Therefore, the learner’s goal is to select an au-
toencoder qX̂|X and a classifier qŶ |V by minimizing jointly
the risk and the mutual information. Yet, since pXY Z is un-
known one cannot directly measure neither the risk nor the
mutual information. It is usual to measure the agreement of
a pair of candidates using a training dataset whose empiri-
cal distribution p̂XY Z is known. This yields an information-
theoretic objective, being a surrogate of expression of eq. (2):

min
�
Lemp(qŶ |V , qX̂|X) + � · bI(Z; X̂)

 
, (5)

for a suitable multiplier � � 0, where Lemp(qŶ |V , qX̂|X)
denotes the empirical risk of eq (3) (i.e. averaged w.r.t.
p̂XY ). The mutual information must be empirically evaluated
using q̂Z|X̂ as being the posterior according to qX̂|X p̂XZ .
Eq. (5) may be independently motivated by a different prob-
lem studying distortion-equivocation trade-offs [8].

Reconstruction learning with anonymization. The ini-
tial experiments performed with a similar training objective
as the one introduced by [9] led to an unstable training and a
poor trade-off between the degree of anonymity and the qual-
ity of the representation. This guides us to use instead a new
adversarial training objective given below.

An examination of expression (5) shows that it cannot be
optimized since the posterior distribution q̂Z|X̂ is not com-
putable in high dimensions. We will looser this surrogate by
upper bounding the empirical mutual information bI(Z; X̂) =
bH(Z) � bH(Z|X̂). The empirical entropy of Z can be upper

bounded as follows:

bH(Z)  Ep̂Z

⇥
� log q̂Ẑ(Z)

⇤
(6)

 Ep̂ZEq̂X̂

⇥
� log qẐ|X̂(Z|X̂)

⇤
(7)

⌘ Ep̂ZEp̂X

⇥
`
�
qX̂|X(·|X), qẐ|X̂(Z|·)

�⇤
(8)

:= L
obj
emp(qẐ|X̂ , qX̂|X), (9)

where (6) follows since the relative entropy is non-negative;
(7) follows by the convexity of t 7! � log(t) and (8) follows
from the definition of the cross-entropy loss. We will also re-
sort to an approximation of the conditional entropy bH(Z|X̂)
by learning an adequate empirical cross-entropy risk:

bH(Z|X̂) ⇡ Ep̂XZ

⇥
`
�
qX̂|X(·|X), qẐ|X̂(Z|·)

�⇤

⌘ Lemp(qẐ|X̂ , qX̂|X),
(10)

which assumes a well-selected classifier qẐ|X̂ , i.e., the result-
ing approximation error given by D

�
q̂Z|X̂kqẐ|X̂ |q̂X̂

�
w.r.t.

the exact qẐ|X̂ is small enough. By combining expressions (9)



and (10), and taking the absolute value, we obtain :

bI(Z; X̂) -
��Lobj

emp(qẐ|X̂ , qX̂|X)� Lemp(qẐ|X̂ , qX̂|X)
��, (11)

that leads to our tractable learning objective, which is an ap-
proximation of expression (5), being the surrogate of (2):

L�(qŶ |V , qẐ|X̂ , qX̂|X) := Lemp(qŶ |V , qX̂|X)

+ � ·

���Lobj
emp(qẐ|X̂ , qX̂|X)� Lemp(qẐ|X̂ , qX̂|X)

��� , (12)

for a suitable classifier qẐ|X̂ and multiplier � � 0 which tunes
the trade-off between the discriminator and the private task.

The data representations provided by the autoencoder
qX̂|X must blur the private labels Z features from the raw
data X while preserving original data’s relevant features.
Note that (9) corresponds to the loss of a ‘random guessing’
classifier in which the representations X̂ are independent
of private labels Z. Thus, training encoders qX̂|X to mini-
mize (12) enforces the best classifier qẐ|X̂ to get closer – in
terms of loss – to the random guessing classifier.

Training objectives. The terms of loss function (12) are
successively the binary cross-entropy of discriminator, the
cross-entropy of the private branch and the objective cross-
entropy which expressions follow:

Lemp(qŶ |V , qX̂|X) =�
1

n

nX

i=1

h
yi log qŶ |V (·|vi)

+(1� yi) log(1� qŶ |V (·|vi))
i
,

(13)
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nX
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⌦
e(zi),� log qẐ|X̂(·|xi)

↵
, (14)

L
obj
emp(qẐ|X̂ , qX̂|X) =

1

n

nX

i=1

⌦
p̂Z ,� log qẐ|X̂(·|xi)

↵
. (15)

e(zi) are “one-hot” vectors (zi component is 1 and the others
0) of the true labels of sample i = [1 : n]. p̂Z is the empirical
distribution of the private labels.

Each branch, i.e., qŶ |V and qẐ|X̂ , is trained to minimize
the associated cross-entropy loss (respectively (13) and (14)),
whereas the autoencoder qX̂|X is trained to minimize eq. (12)
(minimizing the cross-entropy loss with respect to Ŷ predic-
tor while maximizing the new adversarial loss defined with
respect to the bZ predictor).

Training procedure. First the autoencoder is pre-trained
using a pixel to pixel metric loss for a few epochs. Then
the discriminator is pre-trained by alternating between: (i)
updates on the discriminator parameters while autoencoder’s
parameters are frozen, with inputs going through the selector
being a combination of autoencoded and original samples; (ii)
updates on the autoencoder while discriminator’s parameters
are frozen. This allow the discriminator to learn the differ-
ence between both distributions. Finally, updates between the
autoencoder on one side and the discriminator and the private

Fig. 2: Accuracy as a function of � 2 [0, 4.0] on Pen-digits
dataset. Horizontal black dashed line is the random guessing
classifier over the user-ID (3.33%).

branch on the other side are done alternatively. It is during
this step that the privacy/fidelity trade-off occurs in the au-
toencoder.

3. SIMULATION RESULTS

The datasets used are doubly labelled: one is the private task
classification and the other is used for the regular task classi-
fication in the performances assessment.

The Pen-digits dataset, from [10] provides the coordi-
nates of digitally acquired pen movements of 44 persons (30
are in the training set and 14 in the test-set) writing digits
from 0 to 9. We only used the training set (only 30 identi-
ties) which was randomly split into training, validation and
test sets (size 5494, 1000 and 1000, respectively), sharing im-
ages of the same 30 persons. After being drawn, each image
was down-sampled into a 20x20 grey-scale image.

The FERG (Facial Expression Research Group) dataset
[11] contains 55767 annotated face synthetic images of six
stylized characters modeled with the MAYA software. These
images depict the seven following facial expressions: ‘neu-
tral’, ‘anger’, ‘fear’, ‘surprise’, ‘sadness’, ‘joy’ and ‘disgust’.
Original 256x256 colour images have been pre-processed into
re-sized 8-bit grey-scale 50x50 images.

Pen-digits results The private task labels in this dataset
correspond to the writer identity. Hence, we want to trans-
form handwritten digit images into other handwritten digit
images while removing identity features and keeping relevant
features about the original image digit.

Once the model is trained, original images are autoen-
coded into transformed images. Assessing the performance
in a fair and automated manner is hard for it implies compar-
ing and judging pictures. We processed images of the whole
dataset and associated them with their original labels. Two as-



targeted identity 0 2 3 4 5
identity accuracy (%) 42.47 38.25 36.21 32.77 31.62
emotions accuracy (%) 72.45 77.46 72.32 66.79 72.95

Table 1: Accuracies for anonymization (supervised during
training) with different targeted IDs and with the accuracies of
emotions recognition (unsupervised during training) to mea-
sure conservation of unlabeled intertwined features. These
are obtained by training a classifier on the processed dataset.

sessments networks are then trained on the processed images,
trying to recover both labels (ID and digit). The evaluation,
plotted on Fig. 2, gives the accuracy on both tasks.

This assessment method judges a semi-supervised trans-
formation in a fully supervised manner, yet it is a good com-
promise to quantify the effect on the ID features and on some
other features that we wanted to keep. This testing is realistic
since we used all the available ID information to train a ID
features extractor from the transformed images. It is the best
case scenario for an attacker wanting to recover the ID from
the processed dataset. Note that even if testing on only one
non-private feature is not ideal, the fidelity assessment is per-
formed on a feature not used during the training of the model.

FERG dataset. The private features to remove from the
representations are the users identity labels.

Intertwined task method. The standard procedure ex-
plained before failed on the FERG dataset. Despite produc-
ing images that fool human eyes, they fail to fool a neural
network. This is caused by the intertwined nature of the
data. Identity traits and emotions are quite mixed. Our pre-
vious method led to a network that can produce visually
anonymized results, but not a computer validated anonymiza-
tion. To improve the anonymization on this kind of datasets,
we derived a second method which specificity is restricting
to one chosen identity the discriminator’s train samples. This
method although providing a small gain in anonymization
was not sufficient. To perform a good anonymization we
provided a protocol of substitution. Once all images are
transformed into the chosen identity, each is compared to the
chosen identity’s real samples. Using pixel to pixel euclidean
distance images are substitute by the closest chosen iden-
tity’s training set image. The substitution is made really easy
because the encoder shifts the representation of the original
images very close to the selected identity while maintaining
the underlying structure of the emotion features.

FERG Results. As stated above, two methods are associ-
ated with this particular framework. The first method restricts
the discriminator to only one chosen ID and produces quali-
tative results shown on the Figs. 3 and 4. Whereas the substi-
tution method produces measurable results shown in Table 1.

Remark. One could argue that even if the dataset is
anonymized, the chosen identity is still disclose because ev-
ery sample wears the face of one preexisting identity. This
is not a problem at all considering one can add an artificially
identity in the databse to be the template of the anonymized

Fig. 3: Evolution of the reconstructed images for a training
and a validation samples (respectively top and bottom line).
The resulting identity is fixed by the operator. The first im-
age is the end of the pre-training phase: the autoencoder is
trained to reproduce its entry (due to the pre-training’s per-
formance, this image is identical to the input sample). Going
right follows the increase of the training epochs one by one.
The most impressive changes occur over these first epochs.
The following epochs (not show here) only refine the details
of the encoded image to make it look genuine, resulting in the
far right images that are the end training results.

Fig. 4: 24 couples of images composed of the sample and
corresponding model output. All are randomly taken from
the test set. Some representations are showing artifacts (miss-
ing an eye), e.g., representation at positions (line,column):
(3,4),(3,2). Other shift emotions (1,4).

faces, while still using our framework. Indeed the fact that
the intertwined method allows to choose the final identity
from the training set make it possible.

4. CONCLUSION

We succeed in providing an anonymization framework where
only the private labels are used to train the model. This is pos-
sible via the introduction of a new loss (expression (12)), an
adapted architecture and training protocol. To train this loss,
we took advantage of and reused widely known and efficient
methods such as GAN discriminator and autoencoder, and we
managed to perform a smart combination of both to design a
working architecture that was suited to our loss.

The results of this paper are made even more impressive
because of the visual representation. The network we de-
signed manages to affect the hidden representation of the data
in the autoencoder to shift private bit of information toward
a dataset universal template with minimum cost to the other
parts of the information. The generalized information that we
can deduce is that this method allows a structure adapted spa-
tial shift in the learnt features space: shifting from identity to
another without major loss of sub-cluster structure (here emo-
tions or digits). The usage of the learnt discriminator allows
a neat output image, pixel perfect in most cases.
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