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Abstract. Recently, substantial research efforts in Deep Metric Learn-
ing (DML) focused on designing complex pairwise-distance losses, which
require convoluted schemes to ease optimization, such as sample mining
or pair weighting. The standard cross-entropy loss for classification has
been largely overlooked in DML. On the surface, the cross-entropy may
seem unrelated and irrelevant to metric learning as it does not explicitly
involve pairwise distances. However, we provide a theoretical analysis
that links the cross-entropy to several well-known and recent pairwise
losses. Our connections are drawn from two different perspectives: one
based on an explicit optimization insight; the other on discriminative and
generative views of the mutual information between the labels and the
learned features. First, we explicitly demonstrate that the cross-entropy
is an upper bound on a new pairwise loss, which has a structure similar to
various pairwise losses: it minimizes intra-class distances while maximizing
inter-class distances. As a result, minimizing the cross-entropy can be seen
as an approximate bound-optimization (or Majorize-Minimize) algorithm
for minimizing this pairwise loss. Second, we show that, more generally,
minimizing the cross-entropy is actually equivalent to maximizing the
mutual information, to which we connect several well-known pairwise
losses. Furthermore, we show that various standard pairwise losses can
be explicitly related to one another via bound relationships. Our findings
indicate that the cross-entropy represents a proxy for maximizing the mu-
tual information – as pairwise losses do – without the need for convoluted
sample-mining heuristics. Our experiments† over four standard DML
benchmarks strongly support our findings. We obtain state-of-the-art
results, outperforming recent and complex DML methods.
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1 Introduction

The core task of metric learning consists in learning a metric from high-dimensional
data, such that the distance between two points, as measured by this metric,
reflects their semantic similarity. Applications of metric learning include image
retrieval, zero-shot learning or person re-identification, among others. Initial at-
tempts to tackle this problem tried to learn metrics directly on the input space [16].
Later, the idea of learning suitable embedding was introduced, with the goal of
learning Mahalanobis distances [3,6,27,41,44], which corresponds to learning the
best linear projection of the input space onto a lower-dimensional manifold, and
using the Euclidean distance as a metric. Building on the embedding-learning
ideas, several papers proposed to learn more complex mappings, either by ker-
nelization of already existing linear algorithms [3], or by using a more complex
hypothesis such as linear combinations of gradient boosted regressions trees [11].

The recent success of deep neural networks at learning complex, nonlinear
mappings of high-dimensional data aligns with the problem of learning a suitable
embedding. Following works on Mahalanobis distance learning, most Deep Metric
Learning (DML) approaches are based on pairwise distances. Specifically, the
current paradigm is to learn a deep encoder that maps points with high semantic
similarity close to each other in the embedded space (w.r.t. pairwise Euclidean or
cosine distances). This paradigm concretely translates into pairwise losses that
encourage small distances for pairs of samples from the same class and large
distances for pairs of samples from different classes. While such formulations seem
intuitive, the practical implementations and optimization schemes for pairwise
losses may become cumbersome, and randomly assembling pairs of samples
typically results in slow convergence or degenerate solutions [9]. Hence, research
in DML focused on finding efficient ways to reformulate, generalize and/or
improve sample mining and/or sample weighting strategies over the existing
pairwise losses. Popular pairwise losses include triplet loss and its derivatives
[5,9,28,29,50], contrastive loss and its derivatives [7,40], Neighborhood Component
Analysis and its derivatives [6,17,43], among others. However, such modifications
are often heuristic-based, and come at the price of increased complexity and
additional hyper-parameters, reducing the potential of these methods in real-
world applications. Furthermore, the recent experimental study in [18] showed
that the improvement brought by an abundant metric learning literature in the
last 15 years is at best marginal when the methods are compared fairly.

Admittedly, the objective of learning a useful embedding of data points
intuitively aligns with the idea of directly acting on the distances between pairs of
points in the embedded space. Therefore, the standard cross-entropy loss, widely
used in classification tasks, has been largely overlooked by the DML community,
most likely due to its apparent irrelevance for Metric Learning [42]. As a matter
of fact, why would anyone use a point-wise prediction loss to enforce pairwise-
distance properties on the embedding space? Even though the cross-entropy was
shown to be competitive for face recognition applications [14, 35, 36], to the best
of our knowledge, only one paper empirically observed competitive results of a
normalized, temperature-weighted version of the cross-entropy in the context of
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deep metric learning [49]. However, the authors did not provide any theoretical
insights for these results.

On the surface, the standard cross-entropy loss may seem unrelated to the
pairwise losses used in DML. Here, we provide theoretical justifications that
connect directly the cross-entropy to several well-known and recent pairwise losses.
Our connections are drawn from two different perspectives; one based on an
explicit optimization insight and the other on mutual-information arguments. We
show that four of the most prominent pairwise metric-learning losses, as well as
the standard cross-entropy, are maximizing a common underlying objective: the
Mutual Information (MI) between the learned embeddings and the corresponding
samples’ labels. As sketched in Section 2, this connection can be intuitively
understood by writing this MI in two different, but equivalent ways. Specifically,
we establish tight links between pairwise losses and the generative view of this MI.
We study the particular case of contrastive loss [7], explicitly showing its relation
to this MI. We further generalize this reasoning to other DML losses by uncovering
tight relations with contrastive loss. As for the cross-entropy, we demonstrate
that the cross-entropy is an upper bound on an underlying pairwise loss – on
which the previous reasoning can be applied – which has a structure similar to
various existing pairwise losses. As a result, minimizing the cross-entropy can be
seen as an approximate bound-optimization (or Majorize-Minimize) algorithm
for minimizing this pairwise loss, implicitly minimizing intra-class distances and
maximizing inter-class distances. We also show that, more generally, minimizing
the cross-entropy is equivalent to maximizing the discriminative view of the
mutual information. Our findings indicate that the cross-entropy represents a
proxy for maximizing the mutual information, as pairwise losses do, without the
need for complex sample-mining and optimization schemes. Our comprehensive
experiments over four standard DML benchmarks (CUB200, Cars-196, Stanford
Online Product and In-Shop) strongly support our findings. We consistently
obtained state-of-the-art results, outperforming many recent and complex DML
methods.

Summary of contributions

1. Establishing relations between several pairwise DML losses and a generative
view of the mutual information between the learned features and labels;

2. Proving explicitly that optimizing the standard cross-entropy corresponds to
an approximate bound-optimizer of an underlying pairwise loss;

3. More generally, showing that minimizing the standard cross-entropy loss is
equivalent to maximizing a discriminative view of the mutual information
between the features and labels.

4. Demonstrating state-of-the-art results with cross-entropy on several DML
benchmark datasets.
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Table 1. Definition of the random variables and information measures used in this
paper.

General

Labeled dataset D = {(xi, yi)}ni=1

Input feature space X

Embedded feature space Z ⊂ Rd

Label/Prediction space Y ⊂ RK

Euclidean distance Dij = ‖zi − zj‖2

Cosine distance Dcos
ij =

zTi zj

‖zi‖‖zj‖

Model

Encoder φW : X → Z

Soft-classifier fθ : Z → [0, 1]K

Random variables (RVs)

Data X, Y

Embedding Ẑ|X ∼ φW(X)

Prediction Ŷ |Ẑ ∼ fθ(Ẑ)

Information measures

Entropy of Y H(Y ) := EpY [− log pY (Y )]

Conditional entropy of Y given Z H(Y |Ẑ) := Ep
Y Ẑ

[
− log pY |Ẑ(Y |Ẑ)

]
Cross entropy (CE) between Y and Ŷ H(Y ; Ŷ ) := EpY

[
− log pŶ (Y )

]
Conditional CE given Ẑ H(Y ; Ŷ |Ẑ) := Ep

ẐY

[
− log pŶ |Ẑ(Y |Ẑ)

]
Mutual information between Ẑ and Y I(Ẑ;Y ) := H(Y )−H(Y |Ẑ)

2 On the two views of the mutual information

The Mutual Information (MI) is a well known-measure designed to quantify the
amount of information shared by two random variables. Its formal definition is
presented in Table 1. Throughout this work, we will be particularly interested in
I(Ẑ;Y ) which represents the MI between learned features Ẑ and labels Y . Due
to its symmetry property, the MI can be written in two ways, which we will refer
to as the discriminative view and generative view of MI:

I(Ẑ;Y ) = H(Y )−H(Y |Ẑ)︸ ︷︷ ︸
discriminative view

= H(Ẑ)−H(Ẑ|Y )︸ ︷︷ ︸
generative view

(1)

While being analytically equivalent, these two views present two different, com-
plementary interpretations. In order to maximize I(Ẑ;Y ), the discriminative
view conveys that the labels should be balanced (out of our control) and easily
identified from the features. On the other hand, the generative view conveys
that the features learned should spread as much as possible in the feature space,
while keeping samples sharing the same class close to each other. Hence, the
discriminative view is more focused on label identification, while the generative
view focuses on more explicitly shaping the distribution of the features learned
by the model. Therefore, the MI enables us to draw links between classification
losses (e.g . cross-entropy) and feature-shaping losses (including all the well-known
pairwise metric learning losses).
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3 Pairwise losses and the generative view of the MI

In this section, we study four pairwise losses used in the DML community:
center loss [42], contrastive loss [7], Scalable Neighbor Component Analysis
(SNCA) loss [43] and Multi-Similarity (MS) loss [40]. We show that these losses
can be interpreted as proxies for maximizing the generative view of mutual
information I(Ẑ;Y ). We begin by analyzing the specific example of contrastive
loss, establishing its tight link to the MI, and further generalize our analysis
to the other pairwise losses (see Table 2). Furthermore, we show that these
pairwise metric-learning losses can be explicitly linked to one another via bound
relationships.

3.1 The example of contrastive loss

We start by analyzing the representative example of contrastive loss [7]. For a
given margin m ∈ R+, this loss is formulated as:

Lcontrast =
1

n

n∑
i=1

∑
j:yj=yi

D2
ij︸ ︷︷ ︸

Tcontrast

+
1

n

n∑
i=1

∑
j:yj 6=yi

[m−Dij ]
2
+︸ ︷︷ ︸

Ccontrast

(2)

where [x]+ = max(0, x). This loss naturally breaks down into two terms: a tight-
ness part Tcontrast and a contrastive part Ccontrast. The tightness part encourages
samples from the same class to be close to each other and form tight clusters.
As for the contrastive part, it forces samples from different classes to stand far
apart from one another in the embedded feature space. Let us analyze these two
terms from a mutual-information perspective.

As shown in the next subsection, the tightness part of contrastive loss is
equivalent to the tightness part of the center loss [42]: Tcontrast

c
= Tcenter =

1
2

∑n
i=1 ‖zi − cyi‖

2, where ck = 1
|Zk|

∑
z∈Zk z denotes the mean of feature points

from class k in embedding space Z and symbol c
= denotes equality up to a

multiplicative and/or additive constant. Written in this way, we can interpret
Tcontrast as a conditional cross entropy between Ẑ and another random variable Z̄,
whose conditional distribution given Y is a standard Gaussian centered around
cY : Z̄|Y ∼ N (cY , I):

Tcontrast
c
= H(Ẑ; Z̄|Y ) = H(Ẑ|Y ) +DKL(Ẑ||Z̄|Y ) (3)

As such, Tcontrast is an upper bound on the conditional entropy that appears in
the mutual information:

Tcontrast ≥ H(Ẑ|Y ) (4)

This bound is tight when Ẑ|Y ∼ N (cY , I). Hence, minimizing Tcontrast can be
seen as minimizing H(Ẑ|Y ), which exactly encourages the encoder φW to produce
low-entropy (=compact) clusters in the feature space for each given class. Notice
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that using this term only will inevitably lead to a trivial encoder that maps all
data points in X to a single point in the embedded space Z, hence achieving a
global optimum.

To prevent such a trivial solution, a second term needs to be added. This
second term – that we refer to as the contrastive term – is designed to push each
point away from points that have a different label. In this term, only pairs such
that Dij ≤ m produce a cost. Given a pair (i, j), let us define x = Dij/m. Given
that x ∈ [0, 1], one can show the following: 1 − 2x ≤ (1 − x)2 ≤ 1 − x. Using
linear approximation (1− x)2 ≈ 1− 2x (with error at most x), we obtain:

Ccontrast
c
≈ −2m

n

n∑
i=1

∑
j:yj 6=yi

Dij = −2m

n

n∑
i=1

n∑
j=1

Dij +
2m

n

n∑
i=1

∑
j:yj=yi

Dij (5)

While the second term in Eq. 5 is redundant with the tightness objective, the
first term is close to the differential entropy estimator proposed in [38]:

Ĥ(Ẑ) =
d

n(n− 1)

n∑
i=1

n∑
j=1

logD2
ij

c
=

n∑
i=1

n∑
j=1

logDij (6)

Both terms measure the spread of Ẑ, even though they present different gradient
dynamics. All in all, minimizing the whole contrastive loss can be seen as a proxy
for maximizing the MI between the labels Y and the embedded features Ẑ:

Lcontrast =
1

n

n∑
i=1

∑
j:yj=yi

(D2
ij + 2mDij)︸ ︷︷ ︸

∝H(Ẑ|Y )

− 2m

n

n∑
i=1

n∑
j=1

Dij︸ ︷︷ ︸
∝H(Ẑ)

∝ −I(Ẑ;Y ) (7)

3.2 Generalizing to other pairwise losses

A similar analysis can be carried out on other, more recent metric learning losses.
More specifically, they can also be broken down into two parts: a tightness part
that minimizes intra-class distances to form compact clusters, which is related
to the conditional entropy H(Ẑ|Y ), and a second contrastive part that prevents
trivial solutions by maximizing inter-class distances, which is related to the
entropy of features H(Ẑ). Note that, in some pairwise losses, there might be
some redundancy between the two terms, i.e., the tightness term also contains
some contrastive subterm, and vice-versa. For instance, the cross-entropy loss is
used as the contrastive part of the center-loss but, as we show in Section 4.2, the
cross-entropy, used alone, already contains both tightness (conditional entropy)
and contrastive (entropy) parts. Table 2 presents the split for four DML losses.
The rest of the section is devoted to exhibiting the close relationships between
several pairwise losses and the tightness and contrastive terms (i.e., T and C).

Links between losses: In this section, we show that the tightness and
contrastive parts of the pairwise losses in Table 2, even though different at first
sight, can actually be related to one another.
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Table 2. Several well-known and/or recent DML losses broken into a tightness term
and a contrastive term. Minimizing the cross-entropy corresponds to an approximate
bound optimization of PCE.

Loss Tightness part ∝ H(Ẑ|Y ) Contrastive part ∝ H(Ẑ)

Center [42]
1

2

n∑
i=1

‖zi − cyi‖
2 − 1

n

n∑
i=1

log piyi

Contrast [7]
1

n

n∑
i=1

∑
j:yj=yi

D2
ij

1

n

n∑
i=1

∑
j:yj 6=yi

[m−Dij ]2+

SNCA [43] − 1

n

n∑
i=1

log

[ ∑
j:yj=yi

exp
Dcos
ij

σ

]
1

n

n∑
i=1

log

[∑
k 6=i

exp
Dcos
ik

σ

]

MS [40]
1

n

n∑
i=1

1

α
log

[
1 +

∑
j:yj=yi

e−α(D
cos
ij −m)

]
1

n

n∑
i=1

1

β
log

[
1 +

∑
j:yj 6=yi

eβ(D
cos
ij −m)

]

PCE
Prop. 1 − 1

2λn2

n∑
i=1

∑
j:yj=yi

zT
i zj

1

n

n∑
i=1

log

[
K∑
k=1

exp
[

1
λn

n∑
j=1

pjkz
T
i zj
]]

− 1

2K2λ2

K∑
k=1

‖csk‖2

Lemma 1. Let TA denote the tightness part of the loss from method A. Assuming
that features are `2-normalized, and that classes are balanced, the following
relations between Center [42], Contrastive [7], SNCA [43] and MS [40] losses
hold:

TSNCA
c
≤ TCenter

c
= TContrastive

c
≤ TMS (8)

Where
c
≤ stands for lower than, up to a multiplicative and an additive constant,

and c
= stands for equal to, up to a multiplicative and an additive constant.

The detailed proof of Lemma 1 is deferred to the supplemental material. As
for the contrastive parts, we show in the supplemental material that both CSNCA
and CMS are lower bounded by a common contrastive term that is directly
related to H(Ẑ). We do not mention the contrastive term of center-loss, as it
represents the cross-entropy loss, which is exhaustively studied in Section 4.

4 Cross-entropy does it all

We now completely change gear to focus on the widely used unary classification
loss: cross-entropy. On the surface, the cross-entropy may seem unrelated to
metric-learning losses as it does not involve pairwise distances. We show that a
close relationship exists between these pairwise losses widely used in deep metric
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learning and the cross-entropy classification loss. This link can be drawn from
two different perspectives, one is based on an explicit optimization insight and
the other is based on a discriminative view of the mutual information. First,
we explicitly demonstrate that the cross-entropy is an upper bound on a new
pairwise loss, which has a structure similar to all the metric-learning losses listed
in Table 2, i.e., it contains a tightness term and a contrastive term. Hence,
minimizing the cross-entropy can be seen as an approximate bound-optimization
(or Majorize-Minimize) algorithm for minimizing this pairwise loss. Second, we
show that, more generally, minimization of the cross-entropy is actually equivalent
to maximization of the mutual information, to which we connected various DML
losses. These findings indicate that the cross-entropy represents a proxy for
maximizing I(Ẑ, Y ), just like pairwise losses, without the need for dealing with
the complex sample mining and optimization schemes associated to the latter.

4.1 The pairwise loss behind unary cross-entropy

Bound optimization: Given a function f(W) that is either intractable or hard
to optimize, bound optimizers are iterative algorithms that instead optimize
auxiliary functions (upper bounds on f). These auxiliary functions are usually
more tractable than the original function f . Let t be the current iteration index,
then at is an auxiliary function if:

f(W) ≤ at(W) ,∀ W
f(Wt) = at(Wt)

(9)

A bound optimizer follows a two-step procedure: first an auxiliary function at is
computed, then at is minimized, such that:

Wt+1 = arg min
W

at(W) (10)

This iterative procedure is guaranteed to decrease the original function f :

f(Wt+1) ≤ at(Wt+1) ≤ at(Wt) = f(Wt) (11)

Note that bound optimizers are widely used in machine learning. Examples of
well-known bound optimizers include the concave-convex procedure (CCCP)
[48], expectation maximization (EM) algorithms or submodular-supermodular
procedures (SSP) [19]. Such optimizers are particularly used in clustering [32]
and, more generally, in problems involving latent-variable optimization.

Pairwise Cross-Entropy: We now prove that minimizing cross-entropy can
be viewed as an approximate bound optimization of a more complex pairwise
loss.

Proposition 1. Alternately minimizing the cross-entropy loss LCE with respect
to the encoder’s parameters W and the classifier’s weights θ can be viewed as an
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approximate bound-optimization of a Pairwise Cross-Entropy (PCE) loss, which
we define as follows:

LPCE = − 1

2λn2

n∑
i=1

∑
j:yj=yi

zTi zj︸ ︷︷ ︸
tightness part

+
1

n

n∑
i=1

log

K∑
k=1

e
1
λn

n∑
j=1

pjkz
T
i zj
− 1

2λ

K∑
k=1

‖csk‖
2

︸ ︷︷ ︸
contrastive part

(12)
Where csk = 1

n

∑n
i=1 pikzi represents the soft-mean of class k, pik represents the

softmax probability of point zi belonging to class k, and λ ∈ R, λ > 0 depends on
the encoder φW .

The full proof of Proposition 1 is provided in the supplemental material. We
hereby provide a quick sketch. Considering the usual softmax parametrization
for our model’s predictions Ŷ , the idea is to break the cross-entropy loss in two
terms, and artificially add and remove the regularization term λ

2

∑K
k=1 θ

T
kθk:

LCE = − 1

n

n∑
i=1

θTyizi +
λ

2

∑
k

θTkθk︸ ︷︷ ︸
f1(θ)

+
1

n

n∑
i=1

log

K∑
k=1

eθ
T
kzi − λ

2

K∑
k=1

θTkθk︸ ︷︷ ︸
f2(θ)

(13)

By properly choosing λ ∈ R in Eq. (13), both f1 and f2 become convex functions
of θ. For any class k, we then show that the optimal values of θk for f1 and f2
are proportional to, respectively, the hard mean ck = 1

|Zk|
∑
i:yi=k

zi and the soft
mean csk = 1

n

∑n
i=1 pikzi of class k. By plugging-in those optimal values, we can

lower bound f1 and f2 individually in Eq. 13 and get the result.
Proposition 1 casts a new light on the cross-entropy loss by explicitly relating

it to a new pairwise loss (PCE), following the intuition that the optimal weights
θ∗ of the final layer, i.e., the linear classifier, are related to the centroids of
each class in the embedded feature space Z. Specifically, finding the optimal
classifier’s weight θ∗ for cross-entropy can be interpreted as building an auxiliary
function at(W) = LCE(W,θ∗) on LPCE(W). Subsequently minimizing cross-
entropy w.r.t. the encoder’s weights W can be interpreted as the second step
of bound optimization on LPCE(W). Similarly to other metric learning losses,
PCE contains a tightness part that encourages samples from the same classes to
align with one another. In echo to Lemma 1, this tightness term, noted TPCE, is
equivalent, up to multiplicative and additive constants, to Tcenter and Tcontrast,
when the features are assumed to be normalized:

TPCE
c
= Tcenter

c
= Tcontrast (14)

PCE also contains a contrastive part, divided into two terms. The first pushes
all samples away from one another, while the second term forces soft means
csk far from the origin. Hence, minimizing the cross-entropy can be interpreted
as implicitly minimizing a pairwise loss whose structure appears similar to the
well-established metric-learning losses in Table 2.
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Simplified Pairwise Cross-Entropy: While PCE brings interesting theo-
retical insights, the computation of the parameter λ at every iteration requires
computating the eigenvalues of a d× d matrix at every iteration (cf. full proof
in supplemental material), which makes the implementation of PCE difficult in
practice. In order to remove the dependence upon λ, one can plug in the same θ
for both f1 and f2 in Eq. 13. We choose to use θ

∗

1 = arg min
θ

f1(θ) ∝ [c1, ..., cK ]T.

This yields a simplified version of PCE, that we call SPCE:

LSPCE = − 1

n2

n∑
i=1

∑
j:yj=yi

zTi zj︸ ︷︷ ︸
tightness

+
1

n

n∑
i=1

log

K∑
k=1

exp
( 1

n

∑
j:yj=k

zTi zj

)
︸ ︷︷ ︸

contrastive

(15)

SPCE and PCE are similar (the difference is that PCE was derived after plugging
in the soft means instead of hard means in f2). Contrary to PCE, however,
SPCE is easily computable, and the preliminary experiments we provide in the
supplementary material indicate that CE and SPCE exhibit similar behaviors
at training time. Interestingly, our derived SPCE loss has a form similar to
contrastive learning losses in unsupervised representation learning [2, 21,33].

4.2 A discriminative view of mutual information

Lemma 2. Minimizing the conditional cross-entropy loss, denoted by H(Y ; Ŷ |Ẑ),
is equivalent to maximizing the mutual information I(Ẑ;Y ).

The proof of Lemma 2 is provided in the supplementary material. Such
result is compelling. Using the discriminative view of mutual information allows
to show that minimizing cross-entropy loss is equivalent to maximizing the
mutual information I(Ẑ;Y ). This information theoretic argument reinforces our
conclusion from Proposition 1 that cross-entropy and the previously described
metric learning losses are essentially doing the same job.

4.3 Then why would cross-entropy work better?

We showed that cross-entropy essentially optimizes the same underlying mutual
information I(Ẑ;Y ) as other DML losses. This fact alone is not enough to explain
why the cross-entropy is able to consistently achieve better results than DML losses
as shown in Section 5. We argue that the difference is in the optimization process.
On the one hand, pairwise losses require careful sample mining and weighting
strategies to obtain the most informative pairs, especially when considering mini-
batches, in order to achieve convergence in a reasonable amount of time, using a
reasonable amount of memory. On the other hand, optimizing cross-entropy is
substantially easier as it only implies minimization of unary terms. Essentially,
cross-entropy does it all without dealing with the difficulties of pairwise terms.
Not only it makes optimization easier, but also it simplifies the implementation,
thus increasing its potential applicability in real-world problems.
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Table 3. Summary of the datasets used for evaluation in metric learning.

Name Objects Categories Images

Caltech-UCSD Birds-200-2011 (CUB) [34] Birds 200 11 788
Cars Dataset [13] Cars 196 16 185
Stanford Online Products (SOP) [29] House furniture 22 634 120 053
In-shop Clothes Retrieval [15] Clothes 7 982 52 712

5 Experiments

5.1 Metric

Most methods, especially recent ones, use the cosine distance to compute the
recall for the evaluation. They include `2 normalization of the features in the
model [5, 17, 20, 22, 25, 37, 40, 45–47, 49], which makes cosine and Euclidean
distances equivalent. Computing cosine similarity is also more memory efficient
and typically leads to better results [26]. For these reasons, the Euclidean distance
on non normalized features has rarely been used for both training and evaluation.
In our experiments, `2-normalization of the features during training actually
hindered the final performance, which might be explained by the fact that we add
a classification layer on top of the feature extractor. Thus, we did not `2-normalize
the features during training and reported the recall with both Euclidean and
cosine distances.

5.2 Datasets

Four datasets are commonly used in metric learning to evaluate the performances.
These datasets are summarized in Table 3. CUB [34], Cars [13] and SOP [29]
datasets are divided into train and evaluation splits. For the evaluation, the recall
is computed between each sample of the evaluation set and the rest of the set.
In-Shop [15] is divided into a query and a gallery set. The recall is computed
between each sample of the query set and the whole gallery set.

5.3 Training specifics

Model architecture and pre-training: In the metric learning literature, sev-
eral architectures have been used, which historically correspond to the state-of-
the-art image classification architectures on ImageNet [4], with an additional
constraint on model size (i.e., the ability to train on one or two GPUs in a reason-
able time). These include GoogLeNet [30] as in [12], BatchNorm-Inception [31] as
in [40] and ResNet-50 [8] as in [46]. They have large differences in classification
performances on ImageNet, but the impact on performances over DML bench-
marks has rarely been studied in controlled experiments. As this is not the focus
of our paper, we use ResNet-50 for our experiments. We concede that one may
obtain better performances by modifying the architecture (e.g ., reducing model
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stride and performing multi-level fusion of features). Here, we limit our compari-
son to standard architectures. Our implementation uses the PyTorch [23] library,
and initializes the ResNet-50 model with weights pre-trained on ImageNet.

Sampling: To the best of our knowledge, all DML papers – including [49] –
use a form of pairwise sampling to ensure that, during training, each mini-batch
contains a fixed number of classes and samples per class (e.g . mini-batch size
of 75 with 3 classes and 25 samples per class in [49]). Deviating from that, we
use the common random sampling among all samples (as in most classification
training schemes) and set the mini-batch size to 128 in all experiments (contrary
to [40] in which the authors use a mini-batch size of 80 for CUB, 1 000 for SOP
and did not report for Cars and In-Shop).

Data Augmentation: As is common in training deep learning models, data
augmentation improves the final performances of the methods. For CUB, the
images are first resized so that their smallest side has a length of 256 (i.e., keeping
the aspect ratio) while for Cars, SOP and In-Shop, the images are resized to
256×256. Then a patch is extracted at a random location and size, and resized to
224× 224. For CUB and Cars, we found that random jittering of the brightness,
contrast and saturation slightly improves the results. All of the implementation
details can be found in the publicly available code.

Cross-entropy: The focus of our experiments is to show that, with careful
tuning, it is possible to obtain similar or better performance than most recent
DML methods, while using only the cross-entropy loss. To train with the cross-
entropy loss, we add a linear classification layer (with bias) on top of the feature
extraction – similar to many classification models – which produces logits for
all the classes present in the training set. Both the weights and biases of this
classification layer are initialized to 0. We also add dropout with a probability
of 0.5 before this classification layer. To further reduce overfitting, we use label
smoothing for the target probabilities of the cross-entropy. We set the probability
of the true class to 1− ε and the probabilities of the other classes to ε

K−1 with
ε = 0.1 in all our experiments.

Optimizer: In most DML papers, the hyper-parameters of the optimizer are
the same for Cars, SOP and In-Shop whereas, for CUB, the methods typically use
a smaller learning rate. In our experiments, we found that the best results were
obtained by tuning the learning rate on a per dataset basis. In all experiments,
the models are trained with SGD with Nesterov acceleration and a weight decay
of 0.0005, which is applied to convolution and fully-connected layers’ weights (but
not to biases) as in [10]. For CUB and Cars, the learning rate is set to 0.02 and
0.05 respectively, with 0 momentum. For both SOP and In-Shop, the learning
rate is set to 0.003 with a momentum of 0.99.

Batch normalization: Following [40], we freeze all the batch normalization
layers in the feature extractor. For Cars, SOP and In-Shop, we found that adding
batch normalization – without scaling and bias – on top of the feature extractor
improves our final performance and reduces the gap between `2 and cosine
distances when computing the recall. On CUB, however, we obtained the best
recall without this batch normalization.
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Table 4. Performance on CUB200, Cars-196, SOP and In-Shop datasets. d refers to
the distance used to compute the recall when evaluating.

Method d Architecture Recall at
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SD

B
ir
ds
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00
-2
01
1 1 2 4 8 16 32

47.2 58.9 70.2 80.2 89.3 93.2
49.2 61.9 67.9 81.9 - -
57.1 68.8 78.7 86.5 92.5 95.5
60.6 71.5 79.8 87.4 – –
60.7 72.4 81.9 89.2 93.7 96.8
63.9 75.0 83.1 89.7 – –
64.9 75.3 83.5 – – –
65.3 76.7 85.4 91.8 – –
65.7 77.0 86.6 91.2 95.0 97.3
65.9 76.6 84.4 90.6 – –
67.6 78.1 85.6 91.1 94.7 97.2
69.2 79.2 86.9 91.6 95.0 97.3

Lifted Structure [29] `2 GoogLeNet
Proxy-NCA [17] cos BN-Inception
HTL [5] cos GoogLeNet
ABE [12] cos GoogLeNet
HDC [47] cos GoogLeNet
DREML [45] cos ResNet-18
EPSHN [46] cos ResNet-50
NormSoftmax [49] cos ResNet-50
Multi-Similarity [40] cos BN-Inception
D&C [25] cos ResNet-50

Cross-Entropy `2 ResNet-50cos
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84.6 90.7 94.1 96.5 – –
85.2 90.5 94.0 96.1 – –
86.0 91.7 95.0 97.2 – –
89.3 94.1 96.4 98.0 – –
89.1 93.7 96.5 98.1 99.0 99.4
89.3 93.9 96.6 98.4 99.3 99.7

Lifted Structure [29] `2 GoogLeNet
Proxy-NCA [17] cos BN-Inception
HTL [47] cos GoogLeNet
EPSHN [46] cos ResNet-50
HDC [47] cos GoogLeNet
Multi-Similarity [40] cos BN-Inception
D&C [25] cos ResNet-50
ABE [12] cos GoogLeNet
DREML [45] cos ResNet-18
NormSoftmax [49] cos ResNet-50

Cross-Entropy `2 ResNet-50cos
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76.3 88.4 94.8 98.2
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78.3 90.7 96.3 –
79.5 91.5 96.7 –
80.8 91.2 95.7 98.1
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D&C [25] cos ResNet-50
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NormSoftmax [49] cos ResNet-50
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NormSoftmax [49] cos ResNet-50
Multi-Similarity [40] cos BN-Inception

Cross-Entropy `2 ResNet-50cos
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5.4 Results

Results for the experiments are reported in Table 4. We also report the architecture
used in the experiments as well as the distance used in the evaluation to compute
the recall. `2 refers to the Euclidean distance on non normalized features while
cos refers to either the cosine distance or the Euclidean distance on `2-normalized
features, both of which are equivalent.

On all datasets, we report state-of-the-art results except on Cars, where the
only method achieving similar recall uses cross-entropy for training. We also
notice that, contrary to common beliefs, using Euclidean distance can actually
be competitive as it also achieves near state-of-the-art results on all four datasets.
These results clearly highlight the potential of cross-entropy for metric learning,
and confirm that this loss can achieve the same objective as pairwise losses.

6 Conclusion

Throughout this paper, we revealed non-obvious relations between the cross-
entropy loss, widely adopted in classification tasks, and pairwise losses commonly
used in DML. These relations were drawn under two different perspectives. First,
cross-entropy minimization was shown equivalent to an approximate bound-
optimization of a pairwise loss, introduced as Pairwise Cross-Entropy (PCE),
which appears similar in structure to already existing DML losses. Second,
adopting a more general information theoretic view of DML, we showed that
both pairwise losses and cross-entropy were, in essence, maximizing a common
mutual information I(Ẑ, Y ) between the embedded features and the labels. This
connection becomes particularly apparent when writing mutual information
in both its generative and discriminative views. Hence, we argue that most
of the differences in performance observed in previous works come from the
optimization process during training. Cross-entropy contains only unary terms,
while traditional DML losses are based on pairwise-term optimization, which
requires substantially more tuning (e.g . mini-batch size, sampling strategy, pair
weighting). While we acknowledge that some losses have better properties than
others regarding optimization, we empirically showed that the cross-entropy loss
was also able to achieve state-of-the-art results when fairly tuned, highlighting
the fact that most improvements have come from enhanced training schemes (e.g .
data augmentation, learning rate policies, batch normalization freeze) rather than
the intrinsic properties of pairwise losses. We strongly advocate that cross-entropy
should be carefully tuned to be compared against as a baseline in future works.



Metric learning: cross-entropy vs. pairwise losses 15

References

1. Cakir, F., He, K., Xia, X., Kulis, B., Sclaroff, S.: Deep metric learning to rank.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive
learning of visual representations. In: Proceedings of the International Conference
on Machine Learning (ICML) (2020)

3. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric
learning. In: Proceedings of the International Conference on Machine Learning
(ICML) (2007)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2009)

5. Ge, W.: Deep metric learning with hierarchical triplet loss. In: Proceedings of the
European Conference on Computer Vision (ECCV) (2018)

6. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood
components analysis. In: Advances in Neural Information Processing Systems
(NeurIPS) (2005)

7. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an
invariant mapping. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2006)

8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: Proceedings of the European Conference on Computer Vision (ECCV) (2016)

9. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017)

10. Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F., Xie, L., Guo, Z., Yang, Y.,
Yu, L., et al.: Highly scalable deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint arXiv:1807.11205 (2018)

11. Kedem, D., Tyree, S., Sha, F., Lanckriet, G.R., Weinberger, K.Q.: Non-linear metric
learning. In: Advances in Neural Information Processing Systems (NeurIPS) (2012)

12. Kim, W., Goyal, B., Chawla, K., Lee, J., Kwon, K.: Attention-based ensemble for
deep metric learning. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2018)

13. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-grained
categorization. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV) Workshops (2013)

14. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: Deep hypersphere
embedding for face recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2017)

15. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: Powering robust clothes
recognition and retrieval with rich annotations. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

16. Lowe, D.G.: Similarity metric learning for a variable-kernel classifier. Neural Com-
putation (1995)

17. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss distance
metric learning using proxies. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV) (2017)

18. Musgrave, K., Belongie, S., Lim, S.N.: A metric learning reality check. arXiv preprint
arXiv:2003.08505 (2020)



16 M. Boudiaf et al.

19. Narasimhan, M., Bilmes, J.: A submodular-supermodular procedure with appli-
cations to discriminative structure learning. In: Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence (UAI) (2005)

20. Oh Song, H., Jegelka, S., Rathod, V., Murphy, K.: Deep metric learning via facility
location. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)

21. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748 (2018)

22. Opitz, M., Waltner, G., Possegger, H., Bischof, H.: Bier-boosting independent
embeddings robustly. In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV) (2017)

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc. (2019)

24. Rolínek, M., Musil, V., Paulus, A., Vlastelica, M., Michaelis, C., Martius, G.:
Optimizing rank-based metrics with blackbox differentiation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020)

25. Sanakoyeu, A., Tschernezki, V., Buchler, U., Ommer, B.: Divide and conquer the
embedding space for metric learning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2019)

26. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2015)

27. Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons.
In: Advances in Neural Information Processing Systems (NeurIPS) (2004)

28. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective. In:
Advances in Neural Information Processing Systems (NeurIPS) (2016)

29. Song, H.O., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2016)

30. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2015)

31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2016)

32. Tang, M., Marin, D., Ben Ayed, I., Boykov, Y.: Kernel cuts: Kernel and spectral
clustering meet regularization. International Journal of Computer Vision (2019)

33. Tschannen, M., Djolonga, J., Rubenstein, P.K., Gelly, S., Lucic, M.: On mutual
information maximization for representation learning. In: International Conference
on Learning Representations (2020)

34. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of
Technology (2011)

35. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification.
IEEE Signal Processing Letters (2018)



Metric learning: cross-entropy vs. pairwise losses 17

36. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W.: Cosface:
Large margin cosine loss for deep face recognition. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

37. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular
loss. In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV) (2017)

38. Wang, M., Sha, F.: Information theoretical clustering via semidefinite programming.
In: Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics (AIStats) (2011)

39. Wang, X., Hua, Y., Kodirov, E., Hu, G., Garnier, R., Robertson, N.M.: Ranked
list loss for deep metric learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2019)

40. Wang, X., Han, X., Huang, W., Dong, D., Scott, M.R.: Multi-similarity loss with
general pair weighting for deep metric learning. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

41. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research (JMLR) (2009)

42. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for
deep face recognition. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2016)

43. Wu, Z., Efros, A.A., Yu, S.X.: Improving generalization via scalable neighborhood
component analysis. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2018)

44. Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with
application to clustering with side-information. In: Advances in Neural Information
Processing Systems (NeurIPS) (2003)

45. Xuan, H., Souvenir, R., Pless, R.: Deep randomized ensembles for metric learning.
In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

46. Xuan, H., Stylianou, A., Pless, R.: Improved embeddings with easy positive triplet
mining. In: The IEEE Winter Conference on Applications of Computer Vision
(WACV) (2020)

47. Yuan, Y., Yang, K., Zhang, C.: Hard-aware deeply cascaded embedding. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

48. Yuille, A.L., Rangarajan, A.: The concave-convex procedure (cccp). In: Advances
in neural information processing systems (NeurIPS) (2002)

49. Zhai, A., Wu, H.Y.: Classification is a strong baseline for deep metric learning. In:
British Machine Vision Conference (BMVC) (2019)

50. Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2019)



18 M. Boudiaf et al.

A Proofs

A.1 Lemma 1

Proof. Throughout the following proofs, we will use the fact that classes are
assumed to be balanced in order to consider Zk, for any class k, as a constant
|Zk| = n

K . We will also use the feature normalization assumption to connect
cosine and Euclidean distances. On the unit-hypersphere, we will use that:
Dcos
i,j = 1− ‖zi−zj‖

2

2 .

Tightness terms: Let us start by linking center loss to contrastive loss. For
any specific class k, let ck = 1

|Zk|
∑
z∈Zk

z denotes the hard mean. We can write:

∑
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2
[
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c
=
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Summing over all classes k, we get the desired equivalence. Note that, in the
context of K-means clustering, where the setting is different‡, a technically similar
‡In clustering, the optimization is performed over assignment variables, as opposed

to DML, where assignments are already known and optimization is carried out over the
embedding.
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result could be established [32], linking K-means to pairwise graph clusteirng
objectives.

Now we link contrastive loss to SNCA loss. For any class k, we can write:

−
∑
zi∈Zk

log
∑

zj∈Zk\{i}

e
Dcos
i,j
σ

c
= −
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log

 1
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c
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where we used the convexity of x→ − log(x) and Jenson’s inequality. The proof
can be finished by summing over all classes k.

Finally, we link MS loss [40] to contrastive loss:

∑
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α
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where we used the concavity of x→ log(x) and Jenson’s inequality.
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Contrastive terms: In this part, we first show that the contrastive terms
CSNCA and CMS represent upper bounds on C = − 1

n
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βn

n∑
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log
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∑

j:yj 6=yi

eβ(D
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log

 ∑
j:yj 6=yi

eβ(D
cos
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c
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c
= − 1

n
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∑
j:yj 6=yi

D2
ij

= C

where, again, we used Jenson’s inequality in the second line above. The link
between SNCA and contrastive loss can be established quite similarly:

CSNCA =
1

n
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log
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c
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Dcos
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c
= − 1
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∑
j:yj 6=yi

D2
ij (19)

= C (20)

Now, similarly to the reasoning carried out in Section 3.1, we can write:

C = − 1

n

n∑
i=1

∑
j:yj 6=yi

D2
ij = − 1

n

n∑
i=1

n∑
j=1

D2
ij︸ ︷︷ ︸

contrast ∝ H(Ẑ)

+
1

n

n∑
i=1

∑
j:yj=yi

D2
ij︸ ︷︷ ︸

tightness subterm ∝ H(Ẑ|Y )

Where the redundant tightness term is very similar to the tightness term in con-
trastive loss Tcontrast treated in details in Section 3.1. As for the truly contrastive
part of C, it can also be related to the differential entropy estimator used in [38]:

Ĥ(Ẑ) =
d

n(n− 1)

n∑
i=1

n∑
j=1

logD2
ij

c
=

1

n

n∑
i=1

n∑
j=1

logD2
ij (21)

In summary, we just proved that the contrastive parts of MS and SNCA losses
are upper bounds on the contrastive term C. The latter term is composed of a
proxy for the entropy of features H(Ẑ), as well as a tightness sub-term.
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A.2 Proposition 1

Proof. First, let us show that LCE ≥ LPCE . Consider the usual softmax parametriza-
tion of point i belonging to class k: pik = (fθ(zi))k =

exp θT
kzi∑

j exp θ
T
j zi

, where

z = φW(x). We can explicitly write the cross-entropy loss:

LCE = − 1

n

n∑
i=1

log fθ(zi)

= − 1

n

n∑
i=1

θTyizi +
λ

2

K∑
k=1

θTkθk︸ ︷︷ ︸
f1(θ)

+
1

n

n∑
i=1

log

K∑
j=1

eθ
T
j zi − λ

2

K∑
k=1

θTkθk︸ ︷︷ ︸
f2(θ)

. (22)

Where we introduced λ ∈ R. How to specifically set λ will soon become clear.
Let us now write the gradients of f1 and f2 in Eq. 22 with respect to θk:

∂f1
∂θk

= − 1

n

∑
i:yi=k

zi + λθk (23)

∂f2
∂θk

=
1

n

∑
i

exp(θTkzi)∑K
j=1 exp(θTj zi)︸ ︷︷ ︸

pik

zi − λθk (24)

Notice that f1 is a convex function of θ, regardless of λ. As for f2, we set λ such
that f2 becomes a convex function of θ. Specifically, by setting:

λ = min
k,l

σl(Ak) (25)

where Ak = 1
n

∑n
i=1(pik − p2ik)ziz

T
i and σl(A) represents the lth eigenvalue of A,

we make sure that the hessian of f2 is semi-definite positive. Therefore, we can
look for the minima of f1 and f2.

Setting gradients in Eq. 23 and Eq. 24 to 0, we obtain that for all k ∈ [1,K],
the optimal θk for f1 is, up to a multiplicative constant, the hard mean of features
from class k: θf1∗k = 1

λn

∑
i:yi=k

zi ∝ ck, while the optimal θk for f2 is, up to a

multiplicative constant, the soft mean of features: θf2∗k = 1
λn

∑n
i=1 pikzi = csk/λ.

Therefore, we can write:

f1(θ) ≥ f1(θf1∗) = − 1

λn2
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zTi zj +
λ

2λ2
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zTi zj (26)

= − 1

2λn2
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∑
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zTi zj (27)



22 M. Boudiaf et al.

And

f2(θ) ≥ f2(θf2∗) (28)

=
1

n

n∑
i=1

log

K∑
k=1

exp

 1

λn

n∑
j=1

pjkz
T
i zj

− 1

2λ

K∑
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‖csk‖
2 (29)

Putting it all together, we can obtain the desired result:

LCE ≥ −
1

2λn2

n∑
i=1

∑
j:yj=yi

zTi zj +
1

n

n∑
i=1

log
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e
1
λn

∑
j
pjkz

T
i zj
− 1

2λ

K∑
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‖csk‖
2 (30)

= LPCE (31)

where csk = 1
n

∑n
i=1 pikzi represents the soft mean of class k.

Let us now justify that minimizing cross-entropy can be seen as an approximate
bound optimization on LPCE . At every iteration t of the training, cross-entropy
represents an upper bound on Pairwise Cross-entropy.

LCE(W(t),θ(t)) ≥ LPCE(W(t),θ(t)) (32)

When optimizing w.r.t θ, the bound almost becomes tight. The approximation
comes from the fact that θf1∗k and θf2∗k are quite dissimilar in early training, but
become very similar as training progresses and the model’s softmax probabilities
align with the labels. Therefore, using the notation:

θ(t+ 1) = min
θ
LCE(W(t),θ) (33)

We can write:

LCE(W(t),θ(t+ 1)) ≈ LPCE(W(t),θ(t+ 1)) (34)

Then, minimizing LCE and LPCE w.r.tW becomes approximately equivalent.

A.3 Lemma 2

Proof. Using the discriminative view of MI, we can write:

I(Ẑ;Y ) = H(Y )−H(Y |Ẑ) (35)

The entropy of labels H(Y ) is a constant and, therefore, can be ignored. From this
view of MI, maximization of I(Ẑ;Y ) can only be achieved through a minimization
of H(Y |Ẑ), which depends on our embeddings Ẑ = φW(X). We can relate this
term to our cross-entropy loss using the following relation:

H(Y ; Ŷ |Ẑ) = H(Y |Ẑ) +DKL(Y ‖Ŷ |Ẑ) (36)



Metric learning: cross-entropy vs. pairwise losses 23

Therefore, while minimizing cross-entropy, we are implicitly both minimizing
H(Y |Ẑ) as well as DKL(Y ‖Ŷ |Ẑ). In fact, following Eq. 36, optimization could
naturally be decoupled in 2 steps, in a Maximize-Minimize fashion. One step
would consist in fixing the encoder’s weights W and only minimizing Eq. 36 w.r.t
to the classifier’s weights θ. At this step, H(Y |Ẑ) would be fixed while Ŷ would
be adjusted to minimize DKL(Y ||Ŷ |Ẑ). Ideally, the KL term would vanish at the
end of this step. In the following step, we would minimize Eq. 36 w.r.t to the
encoder’s weights W, while keeping the classifier fixed.

B Preliminary results with SPCE
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Fig. 1. Evolution of the cross-entropy loss (CE) and the simplified pairwise cross-entropy
(SPCE) during training on MNIST, as well as the validation accuracy for both losses.

In Fig. 1, we track the evolution of both loss functions and validation accuracy
when training with LCE and LSPCE on MNIST dataset. We use a small CNN
composed of four convolutional layers. The optimizer used is Adam. Batch size is
set to 128, learning rate to 1e−4 with cosine annealing, weight decay to 1e−4 and
feature dimension to d = 100. Fig. 1 supports the theoretical links that were drawn
between Cross-Entropy and its simplied pairwise version SPCE. Particularly, this
preliminary result demonstrates that SPCE is indeed employable as a loss, and
exhibits a very similar behavior to the original cross-entropy. Both losses remain
very close to each other throughout the training, and so remain the validation
accuracies.
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C Analysis of ranking losses for Deep Metric Learning

Some recent works [1, 24, 39] tackle the problem of deep metric learning using
a rank-based approach. In other words, given a point in feature space zi, the
pairwise losses studied throughout this work try to impose manual margins m, so
that the distance between zi and any negative point z−j is at least m. Rank-based
losses rather encourage that all points are well ranked, distance-wise, such that
d(zi, z

+
j ) ≤ d(zi, z

−
j ) for any positive and negative points z+j and z−j . We show

that our tightness/contrastive analysis also holds for such ranking losses. In
particular, we analyse the loss proposed in [1]. For any given query embedded
point zi, let us call D the random variable associated to the distance between zi
and all other points in the embedded space, defined over all possible (discretized)
distances D. Furthermore, let us call R the binary random variable that describes
the relation to the current query point (R+ and R− describe respectively a
positive and negative relationship to zi). The loss maximized in [1] reads:

FastAP =
∑
d∈D

P (D < d|R+)P (R+)

P (D < d)
P (D = d|R+) (37)

Taking the logarithm, and using Jensen’s inequality, we can lower bound this
loss:

log(FastAP) ≥
∑
d∈D

P (D = d,R+) log(
P (D < d|R+)

P (D < d)
)

= E
d∼P (.,R+)

logP (D < d|R+)︸ ︷︷ ︸
TAP=TIGHTNESS

− E
d∼P (.,R+)

logP (D < d)︸ ︷︷ ︸
CAP=CONTRASTIVE

(38)

To intuitively understand what those two terms are doing, let us imagine we
approximate each of the expectations with a single point Monte-Carlo approxima-
tion. In other words, we sample a positive point z+j , take its associated distance
to zi, which we call d+, then we approximate the tightness term as:

TAP ≈ logP (D < d+|R+) (39)

Maximizing TAP has a clear interpretation: it encourages all positive points to
lie inside the hypersphere of radius d+ around query point zi. Similarly:

CAP ≈ − logP (D < d+) (40)

Maximizing CAP also has a clear interpretation: it encourages all points (both
positive and negative ones) to lie outside the hypersphere of radius d+ around
query point zi. Now, Eq. 38 is nothing more than an expectation over all positive
distance d+ one could sample. Therefore, such loss can be analyzed through
the same lens as other DML losses, i.e., one tightness term that encourages all
points from the same class as zi to lie close to it in the embedded space, and one
contrastive term that oppositely refrains all points from approaching zi closer
than its current positive points.
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D On the limitations of cross-entropy

While we demonstrated that the cross-entropy loss could be competitive in com-
parison to pairwise losses, while being easier to optimize, there still exist scenarios
for which a straightforward use of the CE loss becomes prohibitive. Hereafter,
we describe two such scenarios.

Case of relative labels: The current setting assumes that absolute labels
are given for each sample, i.e., each sample xi belongs to a single absolute class
yi. However, DML can be applied to more general problems where the absolute
class labels are not available. Instead, one has access to relative labels that only
describe the relationships between points (e.g ., a pair is similar or dissimilar).
From these relative labels, one could still define absolute classes as sets of samples
inside which every pair has a positive relationship. Note that with this definition,
each sample may belong to multiple classes simultaneously, which makes the
use of standard cross-entropy difficult. However, with such re-formulation, our
Simplified Pairwise Cross-Entropy (SPCE), which we hereby remind:

LSPCE = − 1

n2

n∑
i=1

∑
j:yj=yi

zTi zj︸ ︷︷ ︸
tightness

+
1

n

n∑
i=1

log

K∑
k=1

exp
( 1

n

∑
j:yj=k

zTi zj

)
︸ ︷︷ ︸

contrastive

(15)

can handle such problems, just like any other pairwise loss.

Case of large number of classes: In some problems, the total number
of classes K can grow to several millions. In such cases, even simply storing
the weight matrix θ ∈ RK×d of the final classifier required by cross-entropy
becomes prohibitive. Note that there exist heuristics to handle such problems
with standard cross-entropy, such as sampling subsets of classes and solving those
sub-problems instead, as was done in [49]. However, we would be introducing
new training heuristics (e.g., class sampling), which defeats the initial objective
of using the cross-entropy loss. Again, the SPCE loss underlying the unary cross-
entropy could again handle such cases, similarly to other pairwise losses, given
that it doesn’t require storing such weight matrix.


