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Ferroics include diverse degrees of freedom (such as structural distortions and magnetic moments) among which cross couplings
occur, rendering a large variety of interesting phenomena. Determining such couplings, based on symmetry analysis, is not only
important to interpret observed phenomena but can also result in novel predictions to be then experimentally checked. Often, such
energetic couplings are difficult to construct without a deep knowledge of group theoretical symmetry principles. In the present
review, a crash course towards the derivation of energetic couplings, without using much the group theoretical language, is provided.
Rather, the present approach relies on a graphical technique and suitable symbolic language, which naturally yields some known
couplings (resulting in, e.g., spin/dipole canting, magnetically driven polarization and antipolar/antiferroelectric states). This review
also reports and discusses other symmetry-allowed energetic terms, including some leading to the occurrence of an electric polarization
in a variety of materials, and “exotic” ones that generate complex phases and phenomena in, e.g., nanostructures and heterostructures.

1 Introduction

Ferroelectric, ferroelastic, magnetic and multiferroic materials – namely, ferroic materials – play a crucial
role in many fields such as information storage and sensing [1–3]. Besides, there are various degrees of free-
dom, such as structural distortions and magnetic moments, that are often crossly coupled and that are
at the heart of intriguing phenomena. Examples includes improper ferroelectricity [4–8], spin canting [9–11],
magnetic compensation temperatures [11,12], and a variety of magnetoelectric effects [13–15]. Some excellent
reviews have already been written regarding the advancement of ferroic materials (in particular, multi-
ferroics) in the fields of theory, experiment and application, see, e.g., Refs. [16–21]. On the other hand, it
appears that a review article solely devoted to the fundamental energetic couplings responsible for these
ferroic and multi-ferroic effects is currently missing, to the best of our knowledge.

For instance, we have previously proposed a variety of symmetry-allowed energetic couplings (mostly,
focusing on ABO3 perovskites), including those involving anti-polar motions of A cations induced by
oxygen octahedral tiltings [22–24], hybrid improper ferroelectricity in ABO3/A

′BO3 superlattices [8], electrical
polarization resulting from the simultaneous occurrence of two magnetic sublattices [25,26], spin canting
arising from magnetic Dzyaloshinskii–Moriya interactions (DMI) induced by oxygen octahedral tiltings [9,12]

and its corresponding effects for canted electric dipoles in ferroelectric and antiferroelectrics [26], as well as
high-order magnetoelectric couplings [13,14]. Here, we shall revisit these energetic couplings not by simply
re-introducing them one by one, but rather by re-deriving some of them in an original and straightforward
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fashion. Note that such energetic couplings not only can explain some experimentally-observed phenomena,
but also can be put in use to predict novel effects. We also provide two additional sections: one describing
various ways to induce electrical polarization in different types of materials, and one discussing even
more “exotic” energetic terms that have been proposed to give rise to, or simply explain, some striking
phenomena in ferroics.

2 Deriving symmetry-allowed energetic couplings

Let us first take ABX3 perovskites (with X typically being O, F, Cl or I ions) as our platform, since
these materials are known to host diverse degrees of freedom – say, order parameters related to structural
distortions and/or magnetic orders. Note, however, that our approaches, to be explained below, can be
easily generalized to non-perovskite systems. In the present review, the basic spirit is to form energetic cou-
plings involving various order parameters, with these energetic terms being invariant under all symmetry
operations of the high-symmetric reference phase of the considered system.

2.1 Definition of the order parameters

2.1.1 Displacements, rotations and magnetic moments

The ideal ABX3 perovskite is cubic with a Pm3̄m space group [27]. When structural distortions occur, the
symmetry deviates from Pm3̄m. By structural distortions, here we mean collective atomic displacements
involving the A, B, and/or X ions. Let us first define the physical quantities that can be associated to
each ion. In Figure 1(b), one chosen ion is originally located at the “a” position (dashed circle) and then
located at the “a′” position (solid circle) after being displaced by u (red arrow). We can thus identify a
quantity (i.e., the atomic displacement u) which is invariant under time-reversal operation (1′). Indeed,
time-reversal transforms the time t to −t but has no effects on spatial coordinates (see Figure 1(a)). On
the other hand, as shown in Figure 1(c), the displacement u is transformed to −u by spatial inversion (1̄).

Now, we turn to the rotation of the BX6 octahedron shown in Figure 1(e), where the green and yellow
spheres denote the B and X ions, respectively. The yellow sphere with the number i corresponds to the
Xi ion, and the red arrows originating from X3, X4, X5 and X6 ions denote the displacements associated
to them. In Figure 1(e), the rotation allows us to define a ω pseudo-vector located on the B ion and
pointing towards X1, based on the right-hand rule. For instance, ω = 0.1ẑ, where ẑ is the unit vector
along the z-axis, corresponds to a tilting of about 0.1 radians of the BX6 octahedron about such z-axis.
We graphically denote such ω pseudo-vector by the bold green arrow (lower left corner of Figure 1(e)).
The time-reversal transformation has no effect on ω. Indeed, both the positions of the Xi ions and their
associated displacements are invariant under time-reversal (see Figure 1(d)). Moreover, under a spatial
inversion centered in the B cation, the X ions swaps their positions by pairs (X3 swaps with X4, X5 with
X6, and X1 with X2), and the corresponding displacement vectors reverse signs as well (see Figure 1(f)).
As a result, the ω pseudo-vector is invariant under inversion.

Furthermore, some A or B ions (e.g., Gd3+ and Fe3+ in GdFeO3) can carry magnetic moments as
well. In order to discuss the symmetry properties of magnetic moments, it is convenient to imagine
the magnetic moment as originating from an electric current loop, following classical electromagnetism.
(Strictly speaking, this picture is appropriate only if we are dealing with orbital magnetism; yet, symmetry-
wise, it works for the magnetic moments associated to electronic spins as well.) For example, by the right-
hand rule, the electric current (flowing from “b” to “c”, in Figure 1(h)) results in a magnetic moment m
pointing upwards (blue arrow). Notice that the electric current I = dQ

dt
(Q is the electric charge) depends

on the sign of time. Under time reversal, the electric current now flows from “c” to “b” and the magnetic
moment is transformed to −m (see Figure 1(g)). On the other hand, if we apply a spatial inversion
transformation, electric current from “b” and “c” becomes a current from “b′” to “c′”; hence the magnetic
moment is invariant under inversion (cf Figure 1(i)).

To summarize this part, the displacement vector u is invariant under time reversal but reverses its
sign under spatial inversion; the magnetic moment m transforms in just the opposite way from u. Ionic
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2.1 Definition of the order parameters

displacements can also happen in a collective way, which, e.g., leads to a pseudo-vector ω, that is invariant
under both inversion and time reversal. Henceforth, we shall construct order parameters for perovskites
using such u, m, and ω building blocks.

2.1.2 Order parameters

We now focus on order parameters associated with structural distortions and magnetic structures in ABX3

perovskites.
Common distortions are the anti-phase and in-phase tiltings of the BX6 octahedra (Figure 2). As

explained in Section 2.1.1., notice should be taken that (i) the anti-phase and in-phase tiltings essentially
are displacements carried by the X ions, but (ii) such displacements can be characterized by ω pseudo-
vectors centered at the B ions (Figs. 1(d)-(f)). Taking the case of the ω’s being oriented along the z [001]
pseudocubic axis as an example, the ionic motions involved in anti-phase tiltings are shown in Figure 2(a)
and represented by ω vectors in a way demonstrated in Figure 2(b). Similarly, we show and represent the
case of in-phase tiltings about the z−axis in Figs. 2(c) and (d), respectively.

Let us now mathematically represent these structural distortions. To this end, we introduce the defi-
nition of q−points and its modulations in Figure 3. Such definitions can be found in Ref. [28] (see e.g., its
Supplementary Information) and we repeat it here for sake of the completeness and understanding. The
Pm3̄m cubic perovskite has a 5-atom primitive cell whose lattice vectors are denoted as ax, ay, and az (note
that these three latter vectors are along the [100], [010] and [001] pseudo-cubic directions, respectively).
Selecting an arbitrary direct lattice site as the origin point, the rest of the direct lattice sites (which can be
each associated with a specific 5-atom cell) are represented by a lattice vector lxax+ lyay+ lzaz ≡ (lx, ly, lz),
where lx, ly, and lz are integers. Similarly, we define the reciprocal lattice vectors a?x, a?y, and a?z; then,
the q−points belonging to the first Brillouin zone of the cubic perovskite structure can be indexed as
q = qxa

?
x + qya

?
y + qza

?
z ≡ (qx, qy, qz). Notice that qα (α = x, y, z) are non integers and aα · a?β = 2πδα,β. In

particular, the eight q−points indicated in Figure 3(b) are classified into four categories: (i) the Γ point
which corresponds to homogeneous repetitions of our local quantities (e.g., an homogeneous repetition
of the local u-vectors leads to a ferroelectric distortion) that are thus invariant for any arbitrary lattice
translation, (ii) the R point that involves an anti-phase spatial modulation of the local quantities (e.g., the
ω pseudo-vectors), thus reversing sign when translating by one lattice vector along the x, y or z direction,
(iii) the Mα point that involves a different type of modulation, whereby the local quantities (e.g., the
magnetic moments) are invariant upon lattice translations along the α-axis but reverse their sign upon
lattice translations perpendicular to the α-axis, and (iv) the Xα point that involves yet another type of
modulation whereby the local quantities are invariant upon lattice translations perpendicular to the α-axis
while they reverse their sign upon translations parallel to the α-axis.

Let us take the anti-phase and in-phase tiltings as examples to demonstrate how to link the physical
local quantities to a specific q−point. The basic idea is to form collective modes spanning the whole lattice
coordinate space containing N primitive cells. For anti-phase tiltings, any two nearest-neighboring BX6

octahedra rotate in anti-phase to each other. We can thus express the ω pseudo-vector associated to the
(lx, ly, lz) lattice site as

ω(lx, ly, lz) = (−1)(lx+ly+lz)ω ≡ e−2πi(qxlx+qyly+qzlz)ω (1)

where, for anti-phase tiltings, (qx, qy, qz) = (1
2
, 1

2
, 1

2
) is identified as the R point by comparing Figure 2(b)

and Figure 3(b). We thus represent anti-phase tiltings about the z-axis (Figure 2(b)) in terms of an order
parameter defined as:

ωRz =
1

N

∑
lx,ly ,lz

e2πi(qxlx+qyly+qzlz)ωz(lx, ly, lz) (2)

where the superscript R and subscript z mark the corresponding q point and orientation of the collective
mode ωRz , respectively. Similarly, one can describe the in-phase tilting about the z−axis as:
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2.2 Transformation of the order parameters

ωMz
z =

1

N

∑
lx,ly ,lz

e2πi(qxlx+qyly+qzlz)ωz(lx, ly, lz) (3)

where now we have (kx, ky, kz) = (1
2
, 1

2
, 0), which is identified as the Mz q-point (see Figure 3b).

Similarly, in-phase tiltings about the x− or y−axis involve the Mx and My q-point, respectively. So far, we
have thus arrived at the symbolic representation of anti-phase and in-phase BX6 tiltings (termed as tilting
order parameters), via ωqα = 1

N

∑
lx,ly ,lz

e2πi(qxlx+qyly+qzlz)ωα(lx, ly, lz) with q = (1
2
, 1

2
, 1

2
), (1

2
, 1

2
, 0), (1

2
, 0, 1

2
),

and (0, 1
2
, 1

2
) that are, respectively, associated with R, Mz, My and Mx points (see also Figure 3(b)).

In ABX3 perovskites, the displacement u and magnetic moment m vectors can be associated to B
and/or A ions. For example, in Figure 3(c), the A or B sublattice is magnetized with the blue arrow
denoting the magnetic moment m. In such a case, with the m vectors pointing along the ±x direction,
the magnetic moments within the yz plane are ferromagnetically coupled to each other while they are an-
tiferromagnetically coupled to each other between two sites separated by ±ax. This magnetic structure is
accordingly denoted by the symbol mXx

x , since the local magnetic moments m point along the ±x direction
and are modulated according to the Xx point (defined in Figure 3(b) and for which the corresponding
q−point is (1

2
, 0, 0)). Note that the close relatives of Xx point are the Xy and Xz points whose reciprocal

coordinates are (0, 1
2
, 0) and (0, 0, 1

2
), respectively. Moreover, Figure 3(d) displays a displacement u asso-

ciated to either the A or B sublattice, along the z direction and modulated according to the My q-point.
This displacement collective mode is thus denoted by uMy

z .
So far, in this subsection we have defined eight important q−points, and shown how to represent some

order parameters symbolically. Specifically, order parameters, linked to the α-component of any local
physical vectors r (e.g., r can be the displacements u, pseudo-vectors ω, and magnetic moments m) and
being modulated according to a q−point can be generally expressed as

rqα =
1

N

∑
lx,ly ,lz

e2πi(lxqx+lyqy+lzqz)rα(lx, ly, lz) (4)

Thanks to these notations, we are now ready to enumerate the typical order parameters in ABX3

perovskites, which are summarized in Table 1. Note that the displacement u and magnetic moments m
can be associated to both A and B sublattices, and these two cases must be distinguished. Hence, to
further define displacement or magnetic order parameters, we use the notation rqY,α (r = u or r = m),
where Y = A,B denote the atomic sublattice to which the physical quantity is associated. On the other
hand, the rotation-related pseudo-vector ω can only be centered in the B sublattice in perovskites, and we
thus simply use ωqα to denote it. Finally, let us indicate that the homogeneous strain order parameters ηαβ
(α and β being x, y, and z) can also be defined; further, they are associated to the Γ point and affect the
full lattice (i.e., they affect all A, B, or X atomic sublattices). Let us also emphasize that ηαβ transforms
under symmetry operations exactly as the product uΓ

Y,αu
Γ
Y,β.

2.2 Transformation of the order parameters

Before (re)deriving some energetic couplings, there is one last obstacle to overcome: we should know the
symmetry operations of the considered systems and the transformations of each of the order parameter
under such operations. Since our order parameters in Table 1 are defined with respect to the cubic
Pm3̄m perovskite structure, the energetic couplings have to be invariant under the symmetry operations
of the Pm3̄m space group. There are plenty of symmetry operations for this space group, including the
infinite number of lattice translation operations, forty-eight point operations and time-reversal symmetry.
Fortunately, all these crystallographic symmetry operations are simply generated by a small subset of
them: (i) the two-fold rotation about the [001] direction (2001), the two-fold rotation about the [010]
direction (2010), the three-fold rotation about the [111] direction (3+

111), the two-fold rotation about the
[110] direction (2110), and the inversion (1̄); (ii) time-reversal (1′); and (iii) the lattice translations given
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2.3 Principles for energetic couplings

by the ax, ay, and az vectors, in the following denoted by T (ax), T (ay), and T (az), respectively. These
operations are termed as “generators” of the space group, and can be found at https://www.cryst.ehu.
es/cryst/get_gen.html. Notice again that the [100], [010], and [001] directions coincide with our x, y,
and z pseudo-cubic axes, respectively.

Let us now demonstrate how various order parameters transform under the point and time-reversal
symmetry operations, as schematized in Figure 4. We first take the order parameter uXxB,z as an example,
recalling that it represents the collective displacements (along the z direction) carried by the B ionic
sublattice and modulated according to the Xx reciprocal-space point. The original order parameter (i.e.,
before transformation) is shown in Figure 4(a) with eight B ions labelled by i (i.e., Bi with i = 1, ..., 8).
The 2110 operation transforms the situation in Figure 4(a) into the situation in Figure 4(b), and three
changes have occurred simultaneously : (i) the ions B1, B2, B3, and B4 are interchanged with B5, B8, B7,
and B6, respectively; (ii) the displacements originally along the +z direction (associated to the B1, B4,
B5, and B8 ions) now point along −z; (iii) conversely, the displacements originally along the −z direction
(associated to the B2, B3, B6, and B7 ions) now point along the +z direction. Translating the sketches

into symbolic language, we see the transformation from uXxB,z to −uXyB,z under the 2110 operation, noticing,
in particular, that the 2110 rotation changes the q−point (i.e., the spatial modulation) from Xx to Xy.

Similarly, comparing Figure 1(d) and Figure 1(e), mXx
B,z is transformed to −mXy

B,z by 2110. Indeed, the
order parameter rqY,α always transforms identically by proper rotation operations (i.e., rotations without

combining with 1̄ or 1′), regardless of whether r is u, m, or ω [29]. Comparing Figs. 4(a) and 4(c), the
inversion leaves uXxB,z invariant. On the other hand, the inversion transforms mXx

B,z into −mXx
B,z, because

the inversion transforms m and u in different way (see Section 2.1.1). Note also that, in general, the
proper rotation symmetry operations, denoted by nα (e.g., n−fold rotation axis about the α-axis), can be
combined with inversion to form the so-called improper rotations [29]. For example, the combination of 2001

with 1̄ is equivalent to the mirror plane perpendicular to the [001] orientation. If we need to transform
an order parameter by a improper rotation, we thus “just” need to transform it by the proper rotation
nα followed by an additional inversion transformation. Finally, the time-reversal operation has no effect
on uqY,α and ωqα, but always transforms mq

Y,α to −mq
Y,α. Using the graphical rule depicted in Figure 4, the

transformations of the various order parameters under point operations and time-reversal symmetry are
readily obtained and summarized in Table 1.

Regarding the transformation of the order parameters under the T (aβ) translations, it depends on their
q−point modulations. For instance, let us consider the transformation of rqY,α = 1

N

∑
lx,ly ,lz

e2πi(qxlx+qyly+qzlz)

rY,α(lx, ly, lz) under, e.g., T (ax). Since T (ax) changes rY,α(lx, ly, lz) to rY,α(lx − 1, ly, lz), we have

rqY,α →
1

N

∑
lx,ly ,lz

e2πi(qxlx+qyly+qzlz)rY,α(lx − 1, ly, lz)

= e2πiqx
1

N

∑
lx,ly ,lz

e2πi(qxlx+qyly+qzlz)rY,α(lx, ly, lz) = e2πiqxrqY,α . (5)

More generally, T (aκ) transforms rqY,α into e2πiqκrqY,α, where κ is the direction, e.g., x, y, or z.
In summary, we emphasize that uqY,α, mq

Y,α, and ωqα are three types of order parameters that are key
to understand the physical properties of many perovskites. In this section we have seen that (i) under
the pure proper rotations, uqY,α and mq

Y,α (as well as uqB,α, mq
B,α and ωqα) transform identically; (ii) under

time-reversal, uqY,α and ωqα remain invariant, while mq
Y,α becomes −mq

Y,α; and (iii) under improper rotations
(inversion center, mirror planes), mq

B,α and ωqα transform identically, but in an opposite way than uqB,α.

2.3 Principles for energetic couplings

Now we are ready to construct the energetic couplings making use of Table 1. Notice that we still limit
ourselves to perovskites at this moment. Readers might realize that we can easily guess a term, like, e.g.,
a bilinear coupling UV (U , V being two order parameters), and prove that such a term (to be discussed
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2.3 Principles for energetic couplings

later) is invariant under (i) the translations T (ax), T (ay), T (az); (ii) the rotations 2001, 2010, 3111, 2110, 1̄;
and (i) the time-reversal (1′). Indeed, this is exactly the basic principle, i.e., the energetic coupling must be
invariant under all the generators of the reference phase (e.g., the Pm3̄m space group plus time-reversal
symmetry in perovskites). In the following, we will arrive at some rules that can simplify our analysis
when constructing energetic couplings.

2.3.1 Rules from translation symmetry

Given two order parameters rq1

Y1,α
and rq2

Y2,β
(Y1 and Y2 being A or B), a coupling rq1

Y1,α
rq2

Y2,β
is readily formed.

Under T (aκ), we have the transformation rq1

Y1
rq2

Y2,β
→ e2πi(q1κ+q2κ)rq1

Y1
rq2

Y2,β
following Eq. (5). To make rq1

Y1
rq2

Y2,β

invariant under T (aκ) (κ being x, y, or z), e2πi(q1κ+q2κ) must be 1, so that q1κ+q2κ must thus be an integer. In
other words, given two order parameters modulated according to q1 = q1xa

?
x+q1ya

?
y +q1za

?
z ≡ (q1x, q1y, q1z)

and q2 = q2xa
?
x + q2ya

?
y + q2za

?
z ≡ (q2x, q2y, q2z), their multiplication might be an energy invariant only if

q1 + q2 = G with G a reciprocal lattice vector. If this condition is not satisfied, the translation symmetry
will be violated. Similarly, for a potential invariant coupling n order parameters rqiYi,αi (i = 1 to n),
translation symmetry requires

∑
i qiκ being integer for all κ, i.e.,

∑
i qi = G.

2.3.2 Rules from time-reversal

For couplings involving magnetic order parameters (e.g., mqi

Yi,α
), we have to consider time-reversal symmetry

(1′) as well. Under this operation, we have the transformations mqi

Yi,α
→ −mqi

Yi,α
, uqi

Yi,α
→ uqi

Yi,α
, and

ωqi
α → ωqi

α . Hence, the coupling Πir
qi

Yi,αi
may be invariant only if we have an even number of magnetic

order parameters mqi
Yi,α

appearing in the product.

2.3.3 Constraints from rotation symmetry

We have many possible rotation operations. Here we present some examples to indicate how to deal with
them. By now, we know that neither mR

B,xm
Mx
A,y nor mR

B,xω
R
x are energy invariants because the former

violates translation symmetry while the later breaks the time-reversal operation. Then, one may wonder
if, for instance, the coupling mR

B,xm
R
B,y is an invariant. To answer this question, we must consider the

constraints from the rotation symmetry operations. Regarding mR
B,xm

R
B,y, let us examine how this product

is transformed by 2001, 2010, 3+
111, 2110, and 1̄. According to Table 1, we have, mR

B,xm
R
B,y → mR

B,xm
R
B,y under

2001, mR
B,xm

R
B,y → −mR

B,xm
R
B,y by 2010, mR

B,xm
R
B,y → mR

B,ym
R
B,z when applying 3+

111, mR
B,xm

R
B,y → mR

B,ym
R
B,x

under 2110, and mR
B,xm

R
B,y → mR

B,xm
R
B,y by 1̄, respectively. We thus know that mR

B,xm
R
B,y is not an invariant

because 2010 changes its sign.
What about the coupling mR

B,xm
R
B,x? Here, we have mR

B,xm
R
B,x → mR

B,xm
R
B,x under 2100, mR

B,xm
R
B,x →

mR
B,xm

R
B,x by 2010, mR

B,xm
R
B,x → mR

B,ym
R
B,y when applying 3+

111, mR
B,xm

R
B,x → mR

B,ym
R
B,y by 2110, and

mR
B,xm

R
B,x → mR

B,xm
R
B,x under 1̄ , respectively. mR

B,xm
R
B,x is thus not an invariant either because 3+

111

and 2110 change it to a different term, namely mR
B,ym

R
B,y. Interestingly, this suggests that we can consider

the coupling mR
B,xm

R
B,x + mR

B,ym
R
B,y + mR

B,zm
R
B,z, which is indeed invariant and a legit (bilinear) energy

coupling.
To end this subsection, we emphasize that to obtain an invariant energetic coupling term, we shall (i)

first verify that the considered term that fulfills the rules from the translation symmetry (see Section 2.3.1)
and time-reversal (cf Section 2.3.2), and (ii) then verify that it is also invariant under rotation symmetry
operations.

2.3.4 Trilinear energetic term: an example

Let us now try to derive some trilinear energetic couplings. Before proceeding, we stress that there are
many possibilities for trilinear energetic couplings involving the order parameters defined in Table 1. As
an example, we consider here a trilinear term UVW with U and V being ωRα and mR

B,β, respectively. Now
the question is: what can the third order parameter W be? First, we quickly notice that the q−points for
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2.3 Principles for energetic couplings

ωRα and mR
B,β are both (1

2
, 1

2
, 1

2
). If the q−point for the W order parameter is (qx, qy, qz), the translation

symmetry requires that qx + 1
2

+ 1
2
, qy + 1

2
+ 1

2
, and qz + 1

2
+ 1

2
should all be integers; in other words,

we must have(qx, qy, qz) ≡ G. Notice that the reciprocal G vector is equivalent to the Γ point since
e2πi(Gxlx+Gyly+Gzlz) = 1 ≡ e2πi(0lx+0ly+0lz) always holds for lx, ly, and lz integers. Hence, we conclude that W
should be a Γ-point (homogeneous) order. On the other hand, invariance under time-reversal symmetry
operation implies that W must be a magnetic order parameter. Thus, there are only two options for
W , i.e., mΓ

B,γ or mΓ
A,γ. Hence, we have that the possible energetic couplings might be ωRαm

R
B,βm

Γ
B,γ or

ωRαm
R
B,βm

Γ
A,γ.

However, this is not the end because we must confirm that ωRαm
R
B,βm

Γ
B,γ or ωRαm

R
B,βm

Γ
A,γ are invariant

under rotation symmetry operations, and link α, β, and γ with the x, y, or z directions. We focus on
ωRαm

R
B,βm

Γ
B,γ and try four cases, e.g., α = β = γ, α = β 6= γ, α 6= β = γ, and α 6= β 6= γ, since

such four cases exhaust all the possibilities. The α = β = γ, α = β 6= γ and α 6= β = γ cases can
be eliminated because under 2001, ωRxm

R
B,xm

Γ
B,x → −ωRxmR

B,xm
Γ
B,x, ω

R
xm

R
B,ym

Γ
B,y → −ωRxmR

B,ym
Γ
B,y and

ωRxm
R
B,xm

Γ
B,y → −ωRxmR

B,xm
Γ
B,y. The reader may also want to verify that couplings such as ωRy m

R
B,ym

Γ
B,y,

ωRy m
R
B,zm

Γ
B,z and ωRy m

R
B,ym

Γ
B,z are not invariant under some rotation symmetry operations. Hence, our

only hope to have an invariant of the form ωRαm
R
B,βm

Γ
B,γ is the case with α 6= β 6= γ (e.g., ωRxm

R
B,ym

Γ
B,z).

Indeed, the 2001, 2010, and 1̄ symmetry operations all leave ωRxm
R
B,ym

Γ
B,z invariant. We now need a “closed”

form based on ωRxm
R
B,ym

Γ
B,z, which can be obtained by employing the 3+

111 and 2110 operations. Considering

(i) that 2110 transforms ωRxm
R
B,ym

Γ
B,z into −ωRy mR

B,xm
Γ
B,z, implying that ωRxm

R
B,ym

Γ
B,z − ωRy m

R
B,xm

Γ
B,z is

invariant under such operation, and (ii) the effect of 3+
111 on these two terms, we can conclude that

ωRxm
R
B,ym

Γ
B,z +ωRy m

R
B,zm

Γ
B,x +ωRz m

R
B,xm

Γ
B,y −ωRy mR

B,xm
Γ
B,z −ωRz mR

B,ym
Γ
B,x−ωRxmR

B,zm
Γ
B,x is invariant under

the symmetry operations considered so far. In fact, we can easily confirm that such term, that can
be rewritten in a compact way as ωR · (mR

B ×mΓ
B), is invariant under all the generators of the Pm3̄m

perovskite. Realizing that the order parameters mΓ
B,α and mΓ

A,α transform identically (see Table 1), another

symmetry-allowed energetic term, namely ωR · (mR
B ×mΓ

A), is thus obtained. In fact, the energetic terms
ωR · (mR

B ×mΓ
B) and ωR · (mR

B ×mΓ
A) have already been used in phenomenological theories to interpret

spin cantings in magnetic perovskites such as rare-earth orthoferrites and orthochromites [9,12,28,30,31]; we
will be back to this in Section 3.3.

2.3.5 Construction of energetic terms for materials beyond perovskites

To construct energetic couplings for non-perovskite materials, the procedures and basic principles are es-
sentially identical to what is discussed above. We “only” need to pay attention to two specific aspects.
First of all, for non-perovskite materials, we have to define new order parameters instead of the ones
indicated in Table 1. Let us for instance assume that the phase of the target material, to be denoted as
Plow, is of low symmetry. We thus have to find its corresponding high-symmetry reference phase Phigh
and define the order parameters of Plow with respect to Phigh. Fortunately, some online softwares can
help us do this. We will not show how to use these tools here, but will simply list their names. In
particular, we recommend readers to be familiar with the following applications by checking the man-
uals therein: the “PSEUDO” module in the Bilbao Crystallographic Server (https://www.cryst.ehu.
es/cryst/pseudosymmetry.html) and the “ISODISTORT” module in the ISOTROPY Software Suite
(https://stokes.byu.edu/iso/isodistort.php), which provide possible choices for Phigh based on giv-
ing Plow as input. In many cases, there are several different options for Phigh (associated to Plow) and one
has to select an appropriate Phigh as the starting point. There are no general rules for such a selection.
Which Phigh to use depends on the specific physical questions. Given Phigh and Plow, we can then compute
the distortion modes characterizing Plow (with respect to Phigh) by the “AMPLIMODES” module in the
Bilbao Crystallographic Server (https://www.cryst.ehu.es/cryst/amplimodes.html) or the “ISODIS-
TORT” module in the ISOTROPY Software Suite (https://stokes.byu.edu/iso/isodistort.php),
and identify these modes as the relevant structural order parameters. We can also define the magnetic
order parameters by assigning magnetic moments to the magnetically activate ions (e.g., m defined in
Figure 1(h)). Notice that the order parameters are atomic motions or magnetic moments carried by ions
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in the Phigh phase, and should be transformed by the symmetry operations of Phigh. We can get the
generators of symmetry operations for Phigh by the “GENPOS” module in the ISOTROPY Software Suite
(https://www.cryst.ehu.es/cryst/get_gen.html). Having such information at hand, we shall define
the transformations of each order parameter and form the energetic couplings following the aforementioned
procedures.

2.3.6 A short summary

We have shown the basic principles for constructing energetic couplings for structural and magnetic order
parameters in perovskites. In particular, for the coupling Πir

qi

Yi,αi
,
∑

i qiκ should be integer and magnetic
order parameters should appear in couples, as required by translation and time-reversal symmetries, re-
spectively. The rotation symmetry operations provide further constrains. We have also showcased how
to construct some trilinear energetic couplings. Note, however, that even for the trilinear couplings there
are many different possibilities to be considered, and that constructing a phenomenological theory can be
quite difficult when starting from scratch. However, if one gains some information about which quantity
couples to which (e.g., from experiments or first-principles simulations) in advance, the development of the
phenomenological theory may not be that complicated. In the next section, we will illustrate these ideas
by reviewing some works introcuding various energetic couplings.

3 Some recently discovered energetic couplings

3.1 Structural distortions in orthorhombic perovskites

To begin with, let us emphasize that many ABX3 perovskites (such as rare-earth orthoferrites [32] and
orthochromites [33]) crystallize into the Pbnm phase [23,34]. Starting from the Pm3̄m cubic perovskite,
such a phase is achieved by condensing both in-phase and anti-phase tiltings of BX6 octahedral (e.g.,
(ωRx ,−ωRy , ωMz

z ) tilting pattern, as shown Figure 5). This Pbnm phase additionally possesses anti-polar

motions of the A ions along the x or y directions (see e.g., Refs. [35,36]), as shown in Figure 5(b). More pre-
cisely, there are two types of anti-polar motions for the A ions [22,23], namely those defined by (uXzA,x,−uXzA,y)
and those associated with (uRA,x, u

R
A,y) in the symbolic language introduced in the present review (cf

Figs. 6(a),(c)). These anti-polar motions were shown to be induced from anti-phase and in-phase tilt-
ings of the BX6 octahedral in, e.g., Refs. [22,23]. We now outline the basic ideas to obtain the corresponding
energetic couplings.

Sketching the crystal structure of the Pbnm phase in Figs. 5(a) and (b), it is easy to recognize its char-
acteristic distortions (anti-phase tilting, in-phase tilting and anti-polar motions of A ions). The difficulty
is how to relate the anti-polar motions to the in-phase and/or anti-phase tiltings. Incidentally, one may
notice that for perovskites with only BX6 anti-phase tilting (e.g., the I4/mcm phase of SrTiO3

[37]) the
anti-polar motions of A ions disappear [22] (see Figure 5(c)). Similarly, when only the in-phase BX6 tilting
is present, there are no anti-polar motions either [22]. This means that the combination of in-phase and
anti-phase tiltings is a key factor driving the anti-polar motions of the A ions. Based on this observation,
readers could proceed according to the principles for energetic couplings introduced in Section 2.3.1.

For instance, the translation symmetry operations suggest the possibilities of having (i) a trilinear
coupling among ωR, ωMz, and uXz, and (ii) a quartic coupling among ωR, ωMz, ωMz, and uR, as low-
order couplings. Let us, for instance, guess a trilinear term of the form ωRx ω

Mz
z uXzA,x and use Table 1

to proceed following the strategy mentioned in 2.3.4. We find that ωRx ω
Mz
z uXzA,x → ωRx ω

Mz
z uXzA,x under

2001, ωRx ω
Mz
z uXzA,x → ωRx ω

Mz
z uXzA,x by 2010, ωRx ω

Mz
z uXzA,x → ωRy ω

Mx
x uXxA,y when applying 3+

111, ωRx ω
Mz
z uXzA,x →

ωRy ω
Mz
z uXzA,y due to 2110, and ωRx ω

Mz
z uXzA,x → ωRx ω

Mz
z uXzA,x under 1̄, respectively. Our guessed terms are

invariant under 2001, 2010, and 1̄. but not when applying 2110, which rather suggests to inspect the
combination ωRx ω

Mz
z uXzA,x+ωRy ω

Mz
z uXzA,y – which can be written in a compact form as ωRxȳω

Mz
z uXzA,xȳ, following

the notation in Ref. [23]. Taking then 3+
111 into consideration, the full symmetry-allowed energetic coupling

is (ωRx ω
Mz
z uXzA,x + ωRy ω

Mz
z uXzA,y) + c.p. where c.p. means cyclic permutations, e.g., x → y, y → z, z → x
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3.1 Structural distortions in orthorhombic perovskites

and x → z, y → x, z → y. This coupling clearly shows why there are uXzA,x and −uXzA,y anti-polar motions

in ABX3 given the (ωRx ,−ωRy , ωMz
z ) tilting pattern. Similarly, readers may derive the quartic coupling

ωRxȳω
Mz
z ωMz

z uRA,xy + c.p. shown in Ref. [23], where xȳ means the direction along the x− y direction.

It is worth emphasizing that the two couplings ωRxyω
Mz
z uXzA,xy and ωRxyω

Mz
z ωMz

z uRA,xȳ are crucial for ob-

taining the so-called hybrid improper ferroelectricity in perovskite ABX3/A
′BX3 superlattices [6,8]. For

example, in Figure 6(a), the Pbnm phase of ABX3 is antipolar (null polarization) because the A ions
displace along the opposite direction (e.g., b and −b for uXzA,xȳ) from one plane to another with precisely
the same magnitude. However, when forming a ABX3/A

′BX3 superlattice with the composition modu-
lated along the direction of the in-phase tilts (see Figure 6(b)), A and A′ displaced oppositely but with
different magnitudes. Consequently, the ABX3/A

′BX3 superlattice will exhibit an uncompensated po-
larization along the −b or b direction for (001) 1 × 1 ABX3/A

′BX3 superlattice. Interestingly, based on
this hybrid improper ferroelectricity, one can design near-room temperature multiferroic superlattices, e.g.
in La2NiMnO6/R2NiMnO6 (R being rare earth) [38]. It was also predicted that a five-state path resulting
in the switching of polarization and magnetization under an electric field, via the reversal of anti-phase
octahedral tiltings, can occur in some superlattices exhibiting hybrid improper ferroelectricity [39]. Here, we
will not go through with so many details on hybrid improper ferroelectricity and its application, but refer
interested readers to Refs. [5–8,38,39]. Nevertheless, we point to the fact that Ref. [40] numerically found that
the phonon modes associated with polarization or antipolar motions in hybrid improper ferroelectrics can
act rather unusually, namely they are hard in the high-temperature paraelectric phase (like in improper
ferroelectrics [41,42]) while they soften on approaching the ferroelectric-to-paraelectric phase transition from
below (as, in proper ferroelectrics). Such a unusual mixed behavior originates from the ωRxȳω

Mz
z uXzA,xȳ

coupling, as also previously found in Ref. [43].
It is also worthwhile to indicate that Ref. [22] first looks for energetic couplings at an atomistic level,

that is, involving the local displacement of a central A ion and the pseudo-vectors of its eight nearest B
ions. Two energies were then found to be, having the following form:

∆E1 = K1

∑
i

[uA,i,z(ωi,1,yωi,1,z + ωi,2,yωi,2,z + ωi,5,yωi,5,z + ωi,6,yωi,6,z)

−uA,i,z(ωi,3,yωi,3,z + ωi,4,yωi,4,z + ωi,7,yωi,7,z + ωi,8,yωi,8,z)

+uA,i,z(ωi,1,xωi,1,z + ωi,4,xωi,4,z + ωi,5,xωi,5,z + ωi,8,xωi,8,z)

−uA,i,z(ωi,2,xωi,2,z + ωi,3,xωi,3,z + ωi,6,xωi,6,z + ωi,7,xωi,7,z)]

+uA,i,x(ωi,1,xωi,1,z + ωi,2,xωi,2,z + ωi,3,xωi,3,z + ωi,4,xωi,4,z)

−uA,i,x(ωi,5,xωi,5,z + ωi,6,xωi,6,z + ωi,7,xωi,7,z + ωi,8,xωi,8,z) (6)

+uA,i,x(ωi,1,xωi,1,y + ωi,2,xωi,2,y + ωi,5,xωi,5,y + ωi,6,xωi,6,y)

−uA,i,x(ωi,3,xωi,3,y + ωi,4,xωi,4,y + ωi,7,xωi,7,y + ωi,8,xωi,8,y)

+uA,i,y(ωi,1,xωi,1,y + ωi,4,xωi,4,y + ωi,5,xωi,5,y + ωi,8,xωi,8,y)

−uA,i,y(ωi,2,xωi,2,y + ωi,3,xωi,3,y + ωi,6,xωi,6,y + ωi,7,xωi,7,y)

+uA,i,y(ωi,1,zωi,1,y + ωi,2,zωi,2,y + ωi,3,zωi,3,y + ωi,4,zωi,4,y)

−uA,i,y(ωi,5,zωi,5,y + ωi,6,zωi,6,y + ωi,7,zωi,7,y + ωi,8,zωi,8,y)

and
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3.1 Structural distortions in orthorhombic perovskites

∆E2 = K2

∑
i

[uA,i,z(ω
2
i,2,yωi,2,z + ω2

i,4,yωi,4,z + ω2
i,5,yωi,5,z + ω2

i,7,yωi,7,z)

−uA,i,z(ω2
i,1,yωi,1,z + ω2

i,3,yωi,3,z + ω2
i,6,yωi,6,z + ω2

i,8,yωi,8,z)

+uA,i,z(ω
2
i,1,xωi,1,z + ω2

i,3,xωi,3,z + ω2
i,6,xωi,6,z + ω2

i,8,xωi,8,z)

−uA,i,z(ω2
i,2,xωi,2,z + ω2

i,4,xωi,4,z + ω2
i,5,xωi,5,z + ω2

i,7,xωi,7,z)

+uA,i,x(ω
2
i,2,zωi,2,x + ω2

i,4,zωi,4,x + ω2
i,5,zωi,5,x + ω2

i,7,zωi,7,x)

−uA,i,x(ω2
i,1,zωi,1,x + ω2

i,3,zωi,3,x + ω2
i,6,zωi,6,x + ω2

i,8,zωi,8,x) (7)

+uA,i,x(ω
2
i,1,yωi,1,x + ω2

i,3,yωi,3,x + ω2
i,6,yωi,6,x + ω2

i,8,yωi,8,x)

−uA,i,x(ω2
i,2,yωi,2,x + ω2

i,4,yωi,4,x + ω2
i,5,yωi,5,x + ω2

i,7,yωi,7,x)

+uA,i,y(ω
2
i,2,xωi,2,y + ω2

i,4,xωi,4,y + ω2
i,5,xωi,5,y + ω2

i,7,xωi,7,y)

−uA,i,y(ω2
i,1,xωi,1,y + ω2

i,3,xωi,3,y + ω2
i,6,xωi,6,y + ω2

i,8,xωi,8,y)

+uA,i,y(ω
2
i,1,zωi,1,y + ω2

i,3,zωi,3,y + ω2
i,6,zωi,6,y + ω2

i,8,zωi,8,y)

−uA,i,y(ω2
i,2,zωi,2,y + ω2

i,4,zωi,4,y + ω2
i,5,zωi,5,y + ω2

i,7,zωi,7,y)

where ωi,m,α is the α-component of the tilting pseudo-vector associated with the mth B ion surrounding
A ion i (where m can range between 1 and 8, see Figure 3a), and this A ion displaces by uA,i,β along the
β-direction.

Interesting, for the Pbnm structure, ∆E1 and ∆E2 precisely correspond to (ωRx ω
Mz
z uXzA,x+ωRy ω

Mz
z uXzA,y)+

c.p. and ωRxyω
Mz
z ωMz

z uRA,xȳ + c.p., respectively, when going from the atomic scale to a formula involving
macroscopic order parameters. Strikingly, ∆E1 and ∆E2 can also be used to understand the occurrence of
antipolar displacements originating from X octahedral tiltings in various other phases, as detailed in Table
I of Ref. [22]. In particular, ∆E1 naturally explains why long-period antipolar displacements can happen
in the so-called nanotwin phases having a complex tilting patterns [44]. In such case, ωRx (respectively, ωRy )
can interact with both ωq1

z and uq2

A,x (respectively, uq2

A,y), where q1 = (1/2, 1/2, δ) and q2 = (0, 0, 1/2− δ),
with δ between 0 and 1/2 (q1 is thus a q-point between M and R, while q2 is between X and Γ).

Note that such long-wave atomic arrangements can generate unusual phenomena, such as “pinched”
hysteresis polarization-versus-electric field loop in defect-free materials [45]. Interestingly, the ∆E1 coupling
can also interact with other energetic couplings to provide novel physics. For instance, ∆E1 has been
found in Refs. [46,47] to be responsible for generating the Pbcm state of NaNbO3, for which δ = 1/4 and
thus q1 = (1/2, 1/2, 1/4) is the T-point and q2 = (0, 0, 1/4) is the ∆-point. However, the existence of all
these physical quantities also implies that another energetic coupling is activated, that is one coupling four
order parameters, namely ωRx , ωTz , u∆

A,x and uΓ
A,z, as well as an equivalent one coupling ωRy , ωTz , u∆

A,y and

uΓ
A,z. Consequently, a polarization appears along the z-axis (which is associated with uΓ

A,z), which in fact
transforms the antipolar Pbcm state into a polar one of symmetry Pca21. In other words, the existence
of simultaneous energetic couplings leads to wondering if the room-temperature state of NaNbO3 is not
Pbcm but rather Pca21. Experiments are called for to check such recent prediction.

In summary, in this subsection we have illustrated the logic of how to guess a coupling and derive the
associated phenomenological theory based on some previous information (e.g., crystal structures of Pbnm
and related perovskites) or atomistic energies. We will now review other works on phenomenological
theories involving phenomena such as: bilinear couplings between cation displacements and octahedral
tiltings, spin and dipole canting, magnetically driven improper ferroelectricity, and some magnetoelectric
couplings, taking perovskites as a platform. We will review some experimental facts and local interactions,
and outline the ideas for deriving the energetic couplings, but (for the sake of brevity) omit the details
on how to apply the symmetry operations. We will also provide two other sections dedicated to couplings
generating electrical polarization and complex phenomena.
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3.2 Bilinear couplings between cation displacements and octahedral tiltings

3.2 Bilinear couplings between cation displacements and octahedral tiltings

One may wonder if the aforementioned trilinear energetic coupling is the lowest in order when dealing
with structural deformations. Surprisingly, it was found that there is an even lower order between cation
displacements and octahedral tilings in perovskites [24]. It is a bilinear coupling that has the following
atomistic form:

∆E3 = K3

∑
i

[uA,i,x(ωi,1,y + ωi,2,y + ωi,3,y + ωi,4,y)

−uA,i,x(ωi,5,y + ωi,6,y + ωi,7,y + ωi,8,y)

+uA,i,y(ωi,5,x + ωi,6,x + ωi,7,x + ωi,8,x)

−uA,i,y(ωi,1,x + ωi,2,x + ωi,3,x + ωi,4,x)

+uA,i,y(ωi,1,z + ωi,4,z + ωi,5,z + ωi,8,z)

−uA,i,y(ωi,2,z + ωi,3,z + ωi,6,z + ωi,7,z) (8)

+uA,i,z(ωi,2,y + ωi,3,y + ωi,6,y + ωi,7,y)

−uA,i,z(ωi,1,y + ωi,4,y + ωi,5,y + ωi,8,y)

+uA,i,z(ωi,1,x + ωi,2,x + ωi,5,x + ωi,6,x)

−uA,i,z(ωi,3,x + ωi,4,x + ωi,7,x + ωi,8,x)

+uA,i,x(ωi,3,z + ωi,4,z + ωi,7,z + ωi,8,z)

−uA,i,x(ωi,1,z + ωi,2,z + ωi,5,z + ωi,6,z)]

Note that Ref. [24] also proposed that this ∆E3 energy can be rewritten in the continuum limit by
involving (real-space) curl of cation displacements coupled with tiltings, and vice-versa (i.e., real-space
curl of tiltings coupled with cation displacements). Interestingly, Ref. [24] further demonstrated that two
specific modes each provide a non-zero ∆E3 local energetic coupling: one is the Σ2 = (1/4, 1/4, 0) mode and
another is S4 = (1/4, 1/4, 1/2). In other words, these previously overlooked couplings can be used to explain
the origin of the complex Pbam ground state of the prototype of antiferroelectrics, that is PbZrO3, that has
Σ2 and S4 modes [48–53]. In fact, these modes should be considered as hybrid, in the sense that they are made
of a mixture of unusual cation displacements and octahedral tiltings, as consistent with Ref. [54]. Strikingly,
the local bilinear coupling of Ref. [24] can also yield other complex structural arrangements, including those
(i) indexed by the Λ3 q-point defined as (1/4, 1/4, 1/2) and responsible for a predicted

√
2×4×

√
2 phase of

Pnma symmetry in BiFeO3 and Bi(Fe1/2Sc1/2)O3 systems [55,56]; (ii) incommensurate phases known to occur

in lead-based perovskites [57] for which the modulation has an irrational repetition period; and (iii) even
the existence of an uncompensated polarization in incommensurate structural modulations of perovskite
antiferroelectrics [58].

3.3 Spin and dipole canting in perovskites

Let us now recall that rare-earth orthoferrites RFeO3
[32] and orthochromites RCrO3

[33] adopt a Pbnm
ground state (see, e.g., Figs. 5(a) and (b)). The predominant antiferromagnetic (AFM) structures of the
transition-metal (Fe3+ or Cr3+) sublattice are termed as G−type, with an associated AFM vector pointing
along the a, b, or c directions and denoted as Ga, Gb, or Gc (in our language, mR

B,xy, m
R
B,x̄y, or mR

B,z, with

B =Fe, Cr), respectively [11,59]. Because of the magnetic Dzyaloshinskii–Moriya interaction [60,61], spin cant-
ing occurs in RFeO3 and RCrO3 compounds; in particular, with Ga or Gc ordering, weak ferromagnetism
appears with the magnetization direction being along c or a (say, mΓ

B,z or mΓ
B,xy in our language), respec-

tively, which was both experimentally observed and theoretically confirmed (sketched in Figure 7) [9,11,59].
How to link the above experimental facts with symmetry-allowed energetic couplings? We can first

notice that RFeO3 and RCrO3 are both ABX3 perovskites with a (ωRx ,−ωRy , ωMz
z ) tilting pattern, and

wonder if these octahedral rotations may be the driving force for spin canting. To check this, readers may
employ first-principles techniques and conduct non-collinear magnetism calculations for ABX3 compounds
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3.3 Spin and dipole canting in perovskites

with various tilting patterns and predominant G−type antiferromagnetic vectors along different directions.
As shown in Ref. [9], in e.g., BiFeO3, when G−type antiferromagnetic vectors (on the Fe sublattice) and
anti-phase FeO6 tiltings are along two perpendicular directions, there appears a weak magnetic component
along the third, orthogonal direction. Such “numerical experiments” strongly suggest a coupling involving
ωRα , mR

B,β, and mΓ
B,γ (B=Fe) with α 6= β 6= γ, which is fully consistent with the ωR · (mR

B ×mΓ
B) energetic

coupling derived in Section 2.3.4.
Note that, in rare-earth orthoferrites and orthochromites, as indicated above, the anti-phase tilting

corresponds to ωRxȳ, i.e., it is along the −b direction. As a result, the predominant AFM ordering, mR
B,xy

(i.e., Ga, along the a direction) or mR
B,z (i.e., Gc, along the c direction), implies the occurrence of mΓ

z

and mΓ
xy, which correspond to a weak ferromagnetic moment along the c and a directions, respectively.

Hence, the ωR · (mR
B ×mΓ

B) energy coupling naturally explains the weak ferromagnetism (and associated
spin canting) in rare-earth orthoferrites and orthochromites, and ascribes the structural origin of the
Dzyaloshinskii–Moriya interaction to anti-phase tilting of FeO6 or CrO6 octahedra.

Furthermore, other energetic couplings (Eq. 9) regarding various kinds of magnetic structures have also
been introduced in Refs. [9,12]. The whole set of these couplings is given by:

∆E4 = ηωR · (mR
B ×mΓ

B) + ξωR · (mM
B ×mX

B ) + χωM · (mM
B ×mΓ

B)

+ζωM · (mR
B ×mX

B ) + κωR · (mR
B ×mΓ

A) + λωM · (mM
B ×mΓ

A) (9)

for which the M and X symbols should be understood as Mα and Xβ, respectively, with α and β being
determined according to the rules from translation symmetry (see Section 2.3.1). η, ξ, χ, ζ, κ and λ are
coefficients that characterize the strength of these interactions and are material dependent. Note also that
Equation 9 naturally explains why the R3c phase of bulk BiFeO3, and the related Cc phases of BiFeO3

films, can exhibit weak magnetism when their predominant magnetic order parameter is of G-type [62].
Strikingly, readers might notice that uRB transforms oppositely under 1̄ and 1′ but identically under the

rest of the generators, as compared with mR
B. This is also valid for uΓ

B versus mΓ
B. In other words, (uRB×uΓ

B)
and (mR

B ×mΓ
B) always transform identically under all symmetry operations. Hence, ωR · (uRB × uΓ

B) can
be naturally obtained by simply generalizing ωR · (mR

B ×mΓ
B) to electric dipoles! This is quite important

since the energy coupling ωR · (uRB × uΓ
B) indicates clearly the existence of a mechanism describing the

possible canting of electric dipoles, as similar to Dzyaloshinskii–Moriya interaction describing the canting
of magnetic moments. Reference [28] conducted first-principles calculations that did confirm the existence of
this novel ωR · (uRB ×uΓ

B) coupling energy in perovskites and coined it the “electric Dzyaloshinskii–Moriya
interaction” [28] – to emphasize that it is the counterpart of the magnetic Dzyaloshinskii–Moriya interac-
tion [60,61]. In fact, a detailed analysis proved the existence of twelve different mechanisms in perovskites,
all involving octahedral tiltings, that are consistent with electric Dzyaloshinskii–Moriya interactions. For
instance, the energy couplings in the electric regime, which form the electric counterpart of Eq. 9, is given
by [28]

∆E ′4 = η′ωR · (uRB × uΓ
B) + ξ′ωR · (uMB × uXB ) + χ′ωM · (uMB × uΓ

B)

+ζ ′ωM · (uRB × uXB ) + κ′ωR · (uRB × uΓ
A) + λ′ωM · (uMB × uΓ

A) (10)

where η′, ξ′, χ′, ζ ′, κ′ and λ′ are material-dependent parameters. In particular, and as discussed in
Ref. [28], the terms associated wth χ′ and λ′ imply dipole cantings in perovskites possessing an in-phase
tilting and a polarization whose directions are perpendicular to each other, and are at the heart of the
inhomogeneous Pmc21 phase discovered in tensilely strained BiFeO3

[13,63,64], PbTiO3/BiFeO3 superlat-
tices [65], and RFeO3

[66] (R being a rare earth). The occurrence of these latter two terms, along with the
one associated with ζ in Eq. 9, was further found to induce an original magnetoelectric effect that makes
it possible to control magnetism with an electric field [13]. As a matter of fact, switching the polarization
in the Pmc21 state of BiFeO3 first results in the change of the sense of the rotation of the in-phase oxygen
octahedra, thanks to χ′ωM · (uMB × uΓ

B) and λ′ωM · (uMB × uΓ
A). Then, this change in rotation induces

the switching of the mX
B antiferromagnetic vector, as governed by ζωM · (mR

B ×mX
B ). Note that other

magnetoelectric effects can be designed by combining appropriate terms of Eqs. 9 and 10.
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3.4 Magnetically-driven-ferroelectricity in perovskites with two magnetic sublattices

Let us also indicate that Ref. [28] further (i) derived six other energetic couplings that can also yield non-
collinear electric dipolar configurations but that are not as simple as Dzyaloshinskii–Moriya interaction
(that is, they do not involve a cross product between two electric quantities); and (ii) constructed a one-
by-one correspondence between the magnetic and electric Dzyaloshinskii–Moriya interactions, strongly
suggesting that physical quantities different from the oxygen octahedral tiltings can be at the heart of
non-collinear electric dipolar arrangements. One obvious question for future studies is to determine what
are these latter quantities, if any.

3.4 Magnetically-driven-ferroelectricity in perovskites with two magnetic sublattices

Let us illustrate the discusssion in this subsection by focusing on the GdFeO3 perovskite. It has a Pbnm
space group (cf Figure 5(a) [32]), and the Fe3+ and Gd3+ sublattices are magnetically ordered when temper-
atures are lower than 661 K and 2.5 K, respectively [15,67]. Interestingly, GdFeO3 exhibits no polarization
until both Fe3+ and Gd3+ adopt G−type ordering, as reported by Ref. [15]. The observed polarization is
about 0.12 µC/cm2, and oriented along the c-direction [15]. Such small value strongly hints at the fact
that the polarization is of improper origin, and, in particular, may originate from the magnetic structures
involving both Fe3+ and Gd3+ sublattices. It is clear that the predominant magnetic order for Fe3+ sub-
lattice is G−type. However, because of the weak superexchange interaction between Gd3+ sites, the Gd3+

sublattice can be ordered in diverse ways, e.g., with G−, C−, A−, or F−type orderings (see Ref. [26] for
sketches) associated with R, M , X and Γ points defined in Figs. 3(a) and (b), respectively. One question
to ask is thus: which magnetic order of Gd3+ sublattice can give rise to the polarization of GdFeO3 and
what is the responsible energy coupling?

A direct but tedious route to answer that is to start from the G−type ordering for Fe3+ along an α
direction, and enumerate all the magnetic cases involving the Gd3+ sublattice, namely G−, C−, A−,
or F−type orderings along β directions, with α and β being a, b, and c (as defined in Figs. 5(a),(b)).
In total, 36 magnetic configurations can thus be considered and first-principles simulations using non-
collinear magnetism can be performed on them, computing polarization along the way after structural
relaxation are done. This is precisely what was done in Ref. [26]. Among the 36 cases, three were found to
have a polarization of about 0.4 µC/cm2 along the c direction, which is consistent with experiments [26].
All these three cases share the same characteristic, namely, Fe3+ and Gd3+ sublattices present a dual
G−type ordering, with their resulting AFM vectors being aligned along the same direction. Such fact
then motivated the authors of Ref. [26] to conduct additional computations, now using collinear magnetism.
These additional calculations did find such a polarization, which strongly suggests that it does not originate
from spin-orbit interactions. For instance, it is not a result of specific magnetic DMI effects, like the spin-
curent model [68,69] valid for, e.g., BiFeO3

[70] and TbMnO3
[71].

Now, we aim at deriving the phenomenological theory for GdFeO3 according to our above analysis.
We know that the polarization is along the c-direction of the Pbnm phase (which is also our z-axis), and
we thus pick uΓ

B,z from Table 1 since we are searching for a polarization. Note that it does not matter

whether we consider uΓ
B,z or uΓ

A,z, because they transform identically. We also now know that both Fe3+

and Gd3+ should be ordered as G−type along the same direction if we hope to induce a polarization. In our
language, we pick the mR

B and mR
A quantities along the same direction (e.g., mR

B,x and mR
A,x). Naturally,

we can form a coupling mR
B,xm

R
A,xu

Γ
B,z that fulfills the requirements from both translation and time-reversal

symmetries. Unfortunately, mR
B,xm

R
A,xu

Γ
B,z is not a symmetry-allowed energetic coupling, because under

the 2010 operation we have mR
B,xm

R
A,xu

Γ
B,z → −mR

B,xm
R
A,xu

Γ
B,z. Before losing hope, we shall keep thinking

about what was omitted so far. For instance, why not also taking the structural distortion (e.g., in-phase
and anti-phase tiltings) into consideration? For instance, what about a ωRx ω

R
y m

R
B,xm

R
A,xu

Γ
B,z coupling, when

realizing that the tilting pattern is (ωRx ,−ωRy , ωMz
z ) for Pbnm perovskite (see Section 3.1) and that such

a coupling is invariant when applying 2010 (as evidenced by looking at each involved physical quantity
in this coupling under 2010 in Table 1). In fact, using all operation symmetries, it is straightforward
to find that a symmetry-allowed energy coupling is (ωRx ω

R
y m

R
B,xm

R
A,xu

Γ
B,z + ωRx ω

R
y m

R
B,ym

R
A,yu

Γ
B,z) + c.p..

Similarly, starting from ωRx ω
R
y m

R
B,zm

R
A,zu

Γ
B,z (for which the magnetic orderings are along the z-axis), we
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3.5 High-order Magnetoelectric couplings

can determine that ωRx ω
R
y m

R
B,zm

R
A,zu

Γ
B,z + c.p. is another invariant. In fact, the collinear feature of the dual

G−type magnetization of both Gd3+ and Fe3+ sublattices implies that we can involve mR
B ·mR

A. We thus
arrive at (ωRx ω

R
y u

Γ
B,z + ωRy ω

R
z u

Γ
B,x + ωRz ω

R
x u

Γ
B,y)m

R
B ·mR

A, which is precisely one energetic coupling derived

in Ref. [26] to explain the occurrence of polarization in GdFeO3. Note, however, that other mechanisms
can result in a magnetically driven polarization in GdFeO3 according to Ref. [26]. For example, the shear
strain and anti-polar motions combining with mR

B · mR
A can give rise to polarization via the following

couplings: (ηxyu
Γ
B,z + ηyzu

Γ
B,x + ηzxu

Γ
B,y)m

R
B ·mR

A, (uRA,xu
R
A,yu

Γ
B,z + uRA,yu

R
A,zu

Γ
B,x + uRA,zu

R
A,xu

Γ
B,y)m

R
B ·mR

A, and

(uXzA,xu
Xz
A,yu

Γ
B,z + uXxA,yu

Xx
A,zu

Γ
B,x + uXyA,zu

Xy
A,xu

Γ
B,y)m

R
B ·mR

A, respectively (see Ref. [26] for details).

3.5 High-order Magnetoelectric couplings

Higher-order couplings can give rise to ever more complex effects that may be of interest, even for appli-
cation. As an example, we briefly note an investigation of magnetoelectric couplings in CaMnO3. Let us
first recall that the perovskite CaMnO3 has a Pbnm symmetry and a predominant G−type magnetic or-
dering [72], similar to the case of rare-earth orthoferrites and orthochromites (see Figure 5(a)). Due to spin
canting, it also shows weak ferromagnetism along the a or c directions when G−type magnetic vectors are
along the c or a directions, respectively [72]. The underlying mechanism is similar to the one describing the
spin canting in Section 3.3. Morever, under tensile strain, Pb21m and P21mn phases have been predicted
to happen, the latter being the ground state and the former being metastable [14,72]. Unlike the Pbnm
state, these two phases are polar with a polarization pointing along the b and a direction, respectively (see
Figure 5(a)) for these directions). Furthermore, by applying electric field along the b direction, it should
be possible to transform the P21mn into the Pb21m state. During the switch of the polarization from a to
−a, b to −b or a to b, the weak ferromagnetic moments are greatly changed, according to first-principles
calculations; magnetoelectric coupling is thus demonstrated [14]. Interestingly, Ref. [14] determined that such
magnetoelectric coupling is of high-order, namely of the form

∆E5 = γ1(uΓ
B,xu

Γ
B,yω

R
xm

R
xm

Γ
z + uΓ

B,yu
Γ
B,zω

R
y m

R
ym

Γ
x + uΓ

B,zu
Γ
B,xω

R
z m

R
zm

Γ
y

−uΓ
B,xu

Γ
B,yω

R
y m

R
ym

Γ
z − uΓ

B,yu
Γ
B,zω

R
z m

R
zm

Γ
x − uΓ

B,zu
Γ
B,xω

R
xm

R
xm

Γ
y ) (11)

+γ2(uΓ
B,xu

Γ
B,yω

R
xm

R
zm

Γ
x + uΓ

B,yu
Γ
B,zω

R
y m

R
xm

Γ
y + uΓ

B,zu
Γ
B,xω

R
z m

R
ym

Γ
z

−uΓ
B,xu

Γ
B,yω

R
y m

R
zm

Γ
y − uΓ

B,yu
Γ
B,zω

R
z m

R
xm

Γ
z − uΓ

B,zu
Γ
B,xω

R
xm

R
ym

Γ
x)

3.6 Other energy couplings involving electrical polarization

There are, in fact, a plethora of symmetry-allowed energy couplings that involve polarization. The aim of
this section is to briefly mention some of them, putting an emphasis on their physical consequences.

For instance, one may wonder if, in addition to the couplings indicated in Sections 3.1 and 3.2, there
are other energies involving both polar cation displacements and tilting of BX6 octahedra. The an-
swer is definitely yes, since the following bi-quadratic couplings are known to exist in perovskites [73]:
ωRx ω

R
x u

Γ
A,xu

Γ
A,x+c.p., ωRx ω

R
x u

Γ
B,xu

Γ
B,x+c.p., ωRx ω

R
x u

Γ
A,yu

Γ
A,y+c.p., ωRx ω

R
x u

Γ
B,yu

Γ
B,y+c.p., ωMx

x ωMx
x uΓ

A,xu
Γ
A,x+c.p.,

ωMx
x ωMx

x uΓ
B,xu

Γ
B,x+ c.p., ωMx

x ωMx
x uΓ

A,yu
Γ
A,y + c.p., ωMx

x ωMx
x uΓ

B,yu
Γ
B,y + c.p.. Interestingly, these couplings were

typically found to be competitive in nature, e.g., a tilting occurring about an α-axis tends to annihilate
the development of the polarization along such axis, and vice-versa [73,74].

On the other hand, there are other bi-quadratic couplings that are collaborative in nature. They are of
the form, ωRx ω

R
y u

Γ
A,xu

Γ
A,y + c.p., ωRx ω

R
y u

Γ
B,xu

Γ
B,y + c.p., ωMx

x ωMy
y uΓ

A,xu
Γ
A,y + c.p. and ωMx

x ωMy
y uΓ

B,xu
Γ
By + c.p..

Such couplings can, e.g., explain why various phases possess a R3c phase where polarization along < 111 >
pseudo-cubic directions coexist with tiltings about the same direction [73,74]. They may also induce novel
phenomena such as a structural transition possessing several order parameters with none of them being
primary, that is, a phase transition that is neither proper nor improper but rather of special trigger-type
nature [74,75].
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3.6 Other energy couplings involving electrical polarization

Even more surprising is the recent discovery of another collaborative high-order interaction in Ref. [76].
It is quadratic in cation displacements and quartic in tiltings, say (uΓ

A,xu
Γ
A,x + uΓ

A,yu
Γ
A,y + uΓ

A,zu
Γ
A,z)(ω

R
x ω

R
x +

ωRy ω
R
y +ωRz ω

R
z )2. It can result in ferroelectricity induced by universal steric mechanisms, and induce unusual

behavior, such as an enhancement of all the three Cartesian components of the electric polarization under
hydrostatic pressure or compressive epitaxial strain. Such coupling appears to be important in ABX6

perovskites with small A cations, such as ZnSnO3
[76].

There are also couplings between other quantities and polarization, in perovskites or non-perovskites.
For instance, a Jahn-Teller distortion Q can interact with the electrical polarization P (e.g., uΓ

A or uΓ
B)

in perovskites via, e.g., couplings of the form PQuMA
[64] and P 2QωM [64] (notice that, for simplicity, we

omit the details about the spatial directions associated with displacement u, tilting ω and the M point in
these expressions). Such energy terms lead to an electric-field manipulation of Jahn-Teller effect, orbital
ordering and magnetic orderings [64,77].

Furthermore, other original energy coupling were found in the so-called NH4CdCl3-type structures [78–84],
which were also denoted as post-post-perovskite in Ref. [85]. This is a trilinear coupling involving the polar
mode and two pseudo-Jahn Teller deformations, and has the potential to make some magnetic systems
multiferroic – such as rare-earth manganites [85].

Another example: in hexagonal rare-earth ferrites, a symmetry-allowed energy involves the polarization
and the so-called K3 mode [86–88], via a term that is proportional to PK3

3 . It also results in a strengthening of
the polarization under pressure, as a consequence of the natural pressure-induced increase of the amplitude
of the K3 mode [87].

Similarly, a polar Pmc21 phase was recently found from first-principles in some brownmillerite materi-
als [89], with the associated electrical polarization originating from an original energy coupling that is linear
in the polar mode, quadratic in another distortion associated with a Λ3 mode and linear in a X−4 mode.
Due to such couplings, the resulting ferroelectricity can be considered to be of novel type, since it differs
from previously reported proper, improper, hybrid improper, and triggered kinds.

As regards magnetoelectric effects, in addition to the mechanisms indicated in Sections 3.4 and 3.5,
the electrical polarization, P, can couple with magnetism via other ways. For instance, it was recently
predicted that the polarization of 134-type AA′3B4O12 perovskites, such as LaMn3Cr4O12, can be induced
thanks to three original and previously overlooked interaction terms for which other physical quantities
mediate the coupling between G-type antiferromagnetic vectors [25]. These quantities are oxygen tiltings or
shear strain, and the resulting couplings are given by [25]: Σα,β,γ|εαβγ|GMn

α GCr
β Pγ, ω

MΣα,β,γεαβγG
Mn
α GCr

β Pγ,

(GMn
x GCr

x +GMn
y GCr

y +GMn
z GCr

z )Σα,β,γ|εαβγ|ηα,βPγ, Σα,β,γ|εαβγ|GMn
α GCr

β ηγαPα, and Σα,β,γ|εαβγ|GMn
α GCr

β ηβγPβ,

where ωM , P , η, and G are in-phase CrO6 tilting, polarization, shear strain and magnetic orders (associated
with Mn and Cr sublattices), respectively. εαβγ (α, β, and γ being x, y, or z) is the Levi-Civita symbol
whose value is 1 for αβγ being even permutation, −1 for odd permutation and 0 otherwise. Such energies
explain why LaMn3Cr4O12 has a polarization [90–95]. Note that, strictly speaking, LaMn3Cr4O12 is not the
same as the perovskites ABX3. As a result, the order parameters defined in Table 1 can not be directly used
for LaMn3Cr4O12. Readers may treat it as an example to understand how to construct phenomenological
theory for non-perovskite materials as shown in Section 2.3.5 and Ref. [25].

Another original magnetoelectric effect was found in the boracite family, explaining why electric-field
control of magnetism can occur there [96], thanks to the coupling of the form MxMyPz+MyMzPx+MzMxPy,
where M and P are magnetization and polarization order parameters. Such magnetoelectric effect was
further put in use to predict that the LaSrMnOsO6 perovskite should be a near room-temperature and
switchable multiferroic, having rather large ferroelectric polarization and spontaneous magnetization as
well as strong magnetoelectric coupling [96].

Moreover, the first-principles calculations of Refs. [97–99] predicted the occurrence of an electrical po-
larization near magnetic domain walls in both perovskites and rare-earth iron garnets, via a so-called
symmetric exchange-striction mechanism. This effect implies that P can be written as

∑
<i,j> Pi,j

ex Si · Sj,

where the summation is over all the spin pairs and Pi,j
ex is the polarization coefficient vector associated

with the < i, j > spin pair [97,98].
The electrical polarization, P, can also play a role as part of the magnetic DMI vector, via the energy

15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3.7 Some “exotic” energetic couplings

provided by the spin-current model [68,69]: C(P×eij) · (mi×mj), where C is a coefficient and eij is the unit
vector joining the sites i and j, which possess the local magnetic moments mi and mj, respectively. This
spin-current model has been recently used to model and understand magnetic cycloids of the multiferroic
BiFeO3 perovskites [100–103], in general, and to predict that one can make a right-handed cycloid becoming
left-handed (or vice-versa) by applying an electric field [104], in particular.

It is also important to mention that several physical quantities, including non-trivial ones, can simulta-
neously interact with each other, giving rise to interesting phenomena. For instance, Ref. [105] revealed, via
first-principles calculations and their analysis, that one can control magnetization, Jahn-Teller distortion
and orbital ordering via an electric field in some ferroelectric ferromagnets. This is because of three differ-
ent types of energetic coupling: one coupling polarization with anti-phase and in-phase oxygen octahedral
tiltings Pxω

R
x ω

Mz
z and Pyω

R
y ω

Mz
z , a second one coupling polarization with anti-phase oxygen octahedra

tilting and Jahn-Teller distortions Pxω
R
xQz and Pyω

R
y Qz, and finally a biquadratic coupling between anti-

phase oxygen octahedral tilting and magnetization ωRx ω
R
y m

Γ
B,xm

Γ
B,y. Of comparable complexity was the

recent prediction that an electric-field (E) can switch magnetic topological charge (Q) in a controllable
and reversible fashion in some Type-I multiferroics [106]. This mechanism happens through the mediation
of electric polarization (P ) and Dzyaloshinskii-Moriya interaction (D), and was coined EPDQ.

3.7 Some “exotic” energetic couplings

Regarding topology, electrical topological defects can also occur, in addition to magnetic ones. For in-
stance, electrical vortices, nanobubbles, dipolar waves, disclinations and skyrmions were predicted [107–112]

and recently experimentally confirmed [110,113–116]. Such complex arrangements can have their own order
parameter, such as the so-called electrical toroidal moment TE for polar vortices, which consists of aver-
aging the cross product of local electric dipoles with position of these dipoles over the whole system [107].
These “exotic” order parameters can, in principle, couple with other physical quantity, and generate novel
effects. Of particular importance may be the coupling of the electrical toroidal moment with polariza-
tion and strain which are of the general form (when also incorporating coupling between polarization and
strains): Σijkl(ζijklTE,iTE,jηkl+λijklTE,iTE,jPkPl+qijklPiPjηkl)+ΣihiTE,i with hi being the TE,i’s conjugate
field (that is, the curl of the electric field) [117]. Such couplings were predicted to (i) make the materials
spontaneously optically active; and (ii) allow the systems to transform from their dextrorotatory to laevoro-
tatory forms (and vice-versa) via the application of an electric field. Optical rotation of polarized light, as
characterized by gyrotropic coefficients, was further found to be possibly maximized at room temperature
by such application too, thanks to these couplings [118].

The electrical toroidal moment can also interact with BX6 octahedral tiltings, in analogy to the bi-
quadratic coupling between polarization and the tiltings indicated in Section 3.6. Such coupling can
induce unusual patterns of these tiltings according to Ref. [119]. It can also generate novel phenomena:
applying the curl of an electric field along some specific directions to a system with a predominant G-type
antiferromagnetic vector can rotate TE and, thus, also the axis about which BX6 octahedra tilt in anti-
phase fashion (because the electrical toroidal moment couples with these tiltings). This, in turn, makes the
weak magnetization rotate (because of a tilting-driven DMI indicated in Eq. 9). In other words, applying
curled electric fields can result in a control of the direction of the magnetization (note that it can also
result in controlling the magnitude of the magnetization for other directions of the curled electric fields).
This constitutes what was coined the “magnetotoroidic” effect in Ref. [120].

Other subtle interactions can also involve TE. For instance, it can interact with zero-point atomic
vibrations in some specific systems, such as KTaO3 dots, effectively annihilating the electrical toroidal
moment [120]. Such a vanishing is reminiscent of the quantum-induced annihilation of the electrical polar-
ization in systems known as incipient ferroelectrics [121]. Hence the name “incipient ferrotoroidics” given to
materials like KTaO3 dots in Ref. [122]. Note also that, as indicated in Ref. [123], time-dependent electrical
toroidal moment has the dimension of a magnetic moment and can also be expressed as a product of the
polarization and its time derivative. Consequently, Ref. [123] predicted that pulses of magnetization can
occur in nominally nonmagnetic systems, if they adopt nanoscale ferroelectric domains that are moving
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under the application of a GHz electric field. These striking magnetoelectric effects are, in fact, consistent
with those observed and interpreted starting in the 1980’s in Refs. [124–128].

Let us finish this presentation of “exotic” couplings by mentioning an energy that was first proposed
based on symmetry arguments alone [69]. It is of the form: E = −a

2

∫
(r× (E×H)) · M(r) d3r, where

a is a material-dependent constant, r is the position vector, E and H are electric and magnetic fields,
respectively, and M(r) is the magnetization field. Such an energy can be considered as the coupling
between the electromagnetic angular momentum density and magnetic moments, and was accordingly
coined “AME for Angular MagnetoElectric coupling” in Ref. [129]. It was later found to originate from the
relativistic Dirac equation, and, in fact, completes the traditional spin-orbit interaction by making the
sum of the two interactions gauge-invariant (neither the traditional spin-orbit Hamiltonian nor the AME
Hamiltonian is gauge invariant by itself) [130]. Very surprisingly, this AME energetic coupling was found to
reproduce in a straightforward manner (i.e., via simple analytical derivations) the spin-current model [69],
anomalous Hall effect [131–133], anisotropic magnetoresistance and planar Hall effects [134,135], interface-driven
Rashba-Edelstein effects [136–138], inverse Faraday effect [130,139–142], and some uncommon spin-orbit-driven
spin-torque terms [143–147]. This AME interaction may be further put in use to understand other complex
phenomena or even perhaps design novel ones.

4 Summary

Using perovskite as a model system, we have shown how to define the order parameters, to obtain their
transformations, and to derive symmetry-invariant energetic couplings. In particular, we have reviewed
some previous works dealing with energetic couplings for perovskites and describing e.g., structural distor-
tions, spin (dipole) cantings and magnetically driven ferroelectricity.

Let us briefly summarize the basic principles and procedures that allow us to deduce such energetic
couplings. First, readers should notice that, when deriving energetic couplings, one has to define the
order parameters and the transformations under symmetry operations. For this purpose, the target phase
(e.g., phase to be investigated) and a high-symmetric reference phase are both needed; the order parameter
(characterizing the target phase) and its transformation properties are defined with respect to the reference
phase. Then, the principle to obtain energy couplings is that the interaction terms involving various
order parameters, Πir

qi
Yi,αi

, must be invariant under all the symmetry operations of the reference phase
(i.e., translation, time-reversal, rotation symmetry operations). There are many possible couplings to
find, but the constraints by translation and time-reversal symmetries drastically reduce the number of
possible invariants, and the rotation symmetry further restricts the energetic couplings. Hence, the task
of identifying the specific ones connected to experimental phenomena gets much simplified.

To determine the energetic couplings, one basically proceeds as follows:

• Based on the target phase, find its high-symmetric reference phase, a phase from which the target
phase can be reached by reducing the symmetry (e.g., phase transition).

• Define the order parameters relating the reference and target phases. The order parameters may be
related to either structural distortions or magnetic arrangements.

• Find the generators of the symmetry operations of the reference phase and identify the transformations
of the order parameters according to these generators.

• Link each order parameter with its q−point (in the first Brillouin zone) according to its transformation
by lattice translations (listed in the set of generators).

• Guess a coupling involving the relevant order parameters. The translational symmetry requires the
sum of the q−points (of the order parameters involved in the energy coupling) to be a reciprocal
lattice G vector. The time-reversal symmetry requires the magnetism-related order parameters to
have a total even power.
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• Verify that the guessed coupling does not “disappear” by rotation symmetry operations. If it does,
this coupling is not a symmetry invariant; hence, go back to the previous step and consider a new
coupling. If the coupling does not disappear, find its corresponding “closed” form and verify that it
is indeed an energetic coupling. For the meaning of “closed”, see Sections 2.3.3 and 2.3.4.

• Try linking the derived energetic coupling with the experimental phenomena, or make your prediction
(and verify it) according to the energetic coupling.

Indeed, the derivation of a phenomenological theory is not an easy task. It usually requires trial and error
by deeply considering the information at hand, such as experimental measurements and/or first-principles
calculated data. An alternative way to generate the energy couplings is to use the INVARIANTS module
in the ISOTROPY Software Suite (https://stokes.byu.edu/iso/invariants.php). Interested readers
might check the manual, verify the energetic couplings mentioned in the above sections, and generate their
own invariants.

Before we conclude we should stress that, while in this article we have discussed a large variety of
couplings and effects, our compilation is by no means exhaustive. Indeed, particularly in recent years,
there are plenty of examples of interesting multi-functional couplings and ever-more-complex phenomena
being discussed in the literature. One especially interesting category relates to the effects associated to
spatial gradients of the ferroic order parameters (e.g., flexoelectric couplings), which would warrant a review
of their own. We refer the interested reader to Refs. [148–151] to get a feeling of the recent developments on
that front.

We should also emphasize that another all-important aspect: When one develops a phenomenological
theory to explain a set of experimental or computational data, one typically aims at identifying the simplest
model (simplest energy couplings) that are able to account for the data. However, achieving this does not
necessarily imply that the identified simple theory is correct; indeed, new data could prove it incomplete
and requiring an extension. The case of PbZrO3 is a likely example of this. The trilinear and harmonic
couplings discussed, respectively, in Refs. [48] and [24] offer a plausible explanation for the stability of the
observed ground state of the compound. However, new first-principles data point at the possible key role
of other flexoelectric-like couplings [152] of the type introduced in Ref. [151], suggesting that a refined theory
is needed. This “need for refinement” can potentially apply to all the specific examples presented here.

In sum, we hope that the techniques described in this crash course, and the cited softwares, will provide
some assistance for researchers in the development of phenomenological theories tackling (multi)functional
effects in ferroic materials. We also hope that the sections in which we review work on specific couplings
and effects may be of interest to scientists working on these ever-surprising compounds.
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Zheng, J. Zhang, W. Ren, J. Íñiguez, L. Bellaiche, Sci. Rep. 2016, 6, 1 37529.

[31] S. J. Yuan, W. Ren, F. Hong, Y. B. Wang, J. C. Zhang, L. Bellaiche, S. X. Cao, G. Cao, Phys. Rev.
B 2013, 87, 18 184405.

[32] M. Marezio, J. P. Remeika, P. D. Dernier, Acta Crystallogr. B: Struct. Cryst. Cryst. Chem. 1970,
26, 12 2008.

[33] J.-S. Zhou, J. A. Alonso, V. Pomjakushin, J. B. Goodenough, Y. Ren, J.-Q. Yan, J.-G. Cheng, Phys.
Rev. B 2010, 81, 21 214115.

19

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



REFERENCES

[34] M. W. Lufaso, P. M. Woodward, Acta Crystallogr. B 2001, 57, 6 725.

[35] H. J. Zhao, W. Ren, Y. Yang, X. M. Chen, L. Bellaiche, J. Phys.: Condens. Matter 2013, 25, 46
466002.

[36] H. J. Zhao, W. Ren, X. M. Chen, L. Bellaiche, J. Phys.: Condens. Matter 2013, 25, 38 385604.

[37] W. Jauch, A. Palmer, Phys. Rev. B 1999, 60 2961.
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5 eaau7023.

[113] C.-L. Jia, K. W. Urban, M. Alexe, D. Hesse, I. Vrejoiu, Science 2011, 331, 6023 1420.

[114] C. T. Nelson, B. Winchester, Y. Zhang, S.-J. Kim, A. Melville, C. Adamo, C. M. Folkman, S.-H.
Baek, C.-B. Eom, D. G. Schlom, L.-Q. Chen, X. Pan, Nano Lett. 2011, 11, 2 828.

22

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



REFERENCES

[115] A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepütz, A. R. Damodaran,
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[116] S. Das, Y. L. Tang, Z. Hong, M. A. P. Gonçalves, M. R. McCarter, C. Klewe, K. X. Nguyen,
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Table 1: Transformation rules for various order parameters in ABX3 perovskites. The order parameters of tiltings (for the
BX6 octahedra), displacement and magnetism are represented by ω, u, and m, respectively. Also, we adopt the convention
that the symmetry operators are centered on the A site. FE, AFE, FM and AFM wordings denote that the corresponding
order parameters belong to the ferroelectric, anti-ferroelectric, ferromagnetic, and anti-ferromagnetic categories. Some order
parameters and their transformation rules have already been proposed in, e.g., Ref. [26].

2001 2010 3+
111 2110 1̄ 1′

ωRx −ωRx −ωRx ωRy −ωRy −ωRx ωRx
ωRy −ωRy ωRy ωRz −ωRx −ωRy ωRy Tiltings (R point)
ωRz ωRz −ωRz ωRx ωRz −ωRz ωRz
ωMx
x ωMx

x ωMx
x ωMy

y −ωMy
y ωMx

x ωMx
x

ωMy
y ωMy

y ωMy
y ωMz

z −ωMx
x ωMy

y ωMy
y Tiltings (M point)

ωMz
z ωMz

z ωMz
z ωMx

x −ωMz
z ωMz

z ωMz
z

uRB,x −uRB,x −uRB,x uRB,y −uRB,y uRB,x uRB,x (B site)
uRB,y −uRB,y uRB,y uRB,z −uRB,x uRB,y uRB,y AFE (R point)
uRB,z uRB,z −uRB,z uRB,x uRB,z uRB,z uRB,z
uΓ
B,x −uΓ

B,x −uΓ
B,x uΓ

B,y uΓ
B,y −uΓ

B,x uΓ
B,x (B site)

uΓ
B,y −uΓ

B,y uΓ
B,y uΓ

B,z uΓ
B,x −uΓ

B,y uΓ
B,y FE (Γ point)

uΓ
B,z uΓ

B,z −uΓ
B,z uΓ

B,x −uΓ
B,z −uΓ

B,z uΓ
B,z

uXxB,x uXxB,x uXxB,x uXyB,y uXyB,y uXxB,x uXxB,x
uXxB,y uXxB,y −uXxB,y uXyB,z uXyB,x uXxB,y uXxB,y
uXxB,z −uXxB,z uXxB,z uXyB,x −uXyB,z uXxB,z uXxB,z
uXyB,x uXyB,x −uXyB,x uXzB,y uXxB,y uXyB,x uXyB,x (B site)

uXyB,y uXyB,y uXyB,y uXzB,z uXxB,x uXyB,y uXyB,y AFE (X point)

uXyB,z −uXyB,z −uXyB,z uXzB,x −uXxB,z uXyB,z uXyB,z
uXzB,x −uXzB,x uXzB,x uXxB,y −uXzB,y uXzB,x uXzB,x
uXzB,y −uXzB,y −uXzB,y uXxB,z −uXzB,x uXzB,y uXzB,y
uXzB,z uXzB,z uXzB,z uXxB,x uXzB,z uXzB,z uXzB,z
uMx
B,x uMx

B,x uMx
B,x uMy

B,y −uMy
B,y −uMx

B,x uMx
B,x

uMx
B,y uMx

B,y −uMx
B,y uMy

B,z −uMy
B,x −uMx

B,y uMx
B,y

uMx
B,z −uMx

B,z uMx
B,z uMy

B,x uMy
B,z −uMx

B,z uMx
B,z

uMy
B,x uMy

B,x −uMy
B,x uMz

B,y −uMx
B,y −uMy

B,x uMy
B,x (B site)

uMy
B,y uMy

B,y uMy
B,y uMz

B,z −uMx
B,x −uMy

B,y uMy
B,y AFE (M point)

uMy
B,z −uMy

B,z −uMy
B,z uMz

B,x uMx
B,z −uMy

B,z uMy
B,z

uMz
B,x −uMz

B,x uMz
B,x uMx

B,y uMz
B,y −uMz

B,x uMz
B,x

uMz
B,y −uMz

B,y −uMz
B,y uMx

B,z uMz
B,x −uMz

B,y uMz
B,y

uMz
B,z uMz

B,z uMz
B,z uMx

B,x −uMz
B,z −uMz

B,z uMz
B,z

uRA,x −uRA,x −uRA,x uRA,y uRA,y −uRA,x uRA,x (A site)
uRA,y −uRA,y uRA,y uRA,z uRA,x −uRA,y uRA,y AFE (R point)
uRA,z uRA,z −uRA,z uRA,x −uRA,z −uRA,z uRA,z
uΓ
A,x −uΓ

A,x −uΓ
A,x uΓ

A,y uΓ
A,y −uΓ

A,x uΓ
A,x (A site)

uΓ
A,y −uΓ

A,y uΓ
A,y uΓ

A,z uΓ
A,x −uΓ

A,y uΓ
A,y FE (Γ point)

uΓ
A,z uΓ

A,z −uΓ
A,z uΓ

A,x −uΓ
A,z −uΓ

A,z uΓ
A,z

uXxA,x −uXxA,x −uXxA,x uXyA,y uXyA,y −uXxA,x uXxA,x
uXxA,y −uXxA,y uXxA,y uXyA,z uXyA,x −uXxA,y uXxA,y
uXxA,z uXxA,z −uXxA,z uXyA,x −uXyA,z −uXxA,z uXxA,z
uXyA,x −uXyA,x −uXyA,x uXzA,y uXxA,y −uXyA,x uXyA,x (A site)

uXyA,y −uXyA,y uXyA,y uXzA,z uXxA,x −uXyA,y uXyA,y AFE (X point)

uXyA,z uXyA,z −uXyA,z uXzA,x −uXxA,z −uXyA,z uXyA,z
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uXzA,x −uXzA,x −uXzA,x uXxA,y uXzA,y −uXzA,x uXzA,x
uXzA,y −uXzA,y uXzA,y uXxA,z uXzA,x −uXzA,y uXzA,y
uXzA,z uXzA,z −uXzA,z uXxA,x −uXzA,z −uXzA,z uXzA,z
uMx
A,x −uMx

A,x −uMx
A,x uMy

A,y uMy
A,y −uMx

A,x uMx
A,x

uMx
A,y −uMx

A,y uMx
A,y uMy

A,z uMy
A,x −uMx

A,y uMx
A,y

uMx
A,z uMx

A,z −uMx
A,z uMy

A,x −uMy
A,z −uMx

A,z uMx
A,z

uMy
A,x −uMy

A,x −uMy
A,x uMz

A,y uMx
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Figure 1: Sketches of displacement (b), rotation of BX6 octahedra (e) and magnetization (h) vectors, and their transforma-
tions under time reversal (a, d, g) and inversion (c, f, i). In panel b, the inversion center locates at the position bisecting “a”
and “a′”; in panel e, the inversion is centered at the B ion (green sphere); in panel h, the inversion is the center of the cyan
circle.
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Figure 2: Sketches of anti-phase (a) and in-phase (c) tiltings of BX6 octahedra about the z direction for ABX3 perovskites,
and their representations by the ω vectors (b, d). Here, the green and yellow spheres denote the B and X ions, while the A
ions are not shown for clarity.
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Figure 3: Definition of q−points and the modulations. Panel a shows the A or B sublattices in ABX3 perovskites. Panel b
defines the modulations of various q−points; the number (1 to 8) denoted the ions labelled by numbers in panel a; the symbols
(e.g., Γ, R) mark the q−points. Also, in panel b, the cyan and yellow colors indicate that the physical quantities centered
on the corresponding ions are with plus and minus signs, respectively. Panels c and d are examples of magnetic structures
and structural distortions (see Text); the blue and red arrows are magnetic moments and displacements, respectively.
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Figure 4: The transformations of order parameters under the rotational operations 2110 and inversion 1̄. Panels a and d
are the patterns of uXx

B,z and mXx
B,z, respectively. Panels b and e (respectively, c and f) are the transformed patterns by 2110

(respectively, by 1̄). The magnetic moments and displacements are represented by blue and red arrows, respectively. The B
ions are shown as green spheres, while the 2110 rotational axis and inversion center are denoted by yellow arrow and small
yellow sphere (e.g., centered on A ion of ABX3), respectively.
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Figure 5: Panels (a) and (b) are sketches of the Pbnm perovskite ABX3. Panel (a) is its three-dimensional view with the
anti-phase tilting of BX6 shown along a + b direction; panel (b) is the top view with the in-phase tilting of BX6 along c
direction (also, z direction). Panel (c) sketches the I4/mcm perovskite ABX3.

Figure 6: The sketches of the anti-polar motions (of A and A′ ions) in perovskites. Panels (a) and (c) are the (uXz
A,x,−uXz

A,y),

and (uR
A,x, u

R
A,y) motions of Pbnm ABX3 perovskite, respectively. Panel (b) shows the displacement mode for ABX3/A

′BX3

superlattice. The lattice and Cartesian coordinate systems coincide with Figure 5.
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Figure 7: Two typical magnetic structures associated with the B−sublattice (green spheres) in ABX3 perovskites. The blue
and yellow arrows denote the G−type antiferromagnetic components and weak ferromagnetic components, respectively. The
lattice and Cartesian coordinate systems coincide with Figure 5.
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