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Abstract: We propose a solution to the problem of parameter estimation of nonlinearly
parameterized regressions—continuous or discrete time—and apply it for system identification
and adaptive control. We restrict our attention to parameterizations that can be factorized as
the product of two functions, a measurable one and a nonlinear function of the parameters
to be estimated. Another feature of the proposed estimator is that parameter convergence is
ensured without a persistency of excitation assumption. It is assumed that, after a coordinate
change, some of the elements of the transformed function satisfy a monotonicity condition. The
proposed estimators are applied to design identifiers and adaptive controllers for nonlinearly
parameterized systems, which are traditionally tackled using overparameterization and assuming
persistency of excitation.

Keywords: Adaptive control, systems identification, nonlinear control.

Caveat This is an abridged version of the full paper
(Ortega et al., 2019) where all proofs and simulation
results are omitted.

1. INTRODUCTION AND LITERATURE REVIEW

It is well known that nonlinear parameterizations are in-
evitable in any realistic practical problem (Ljung, 1987;
Nelles, 2001; Ortega et al., 1998). Unfortunately, designing
adaptive (identification or control) algorithms for nonlin-
early parameterized systems is a difficult poorly under-
stood problem (Pyrkin et al., 2014). See (Ortega et al.,
2019) for an extensive review of the literature.

Some results for gradient estimators have been reported
in the literature for convexly or monotonically parame-
terized continuous-time (CT) systems. A very important
drawback of these approaches is that the monotonicity
or convexity conditions are imposed on functions that
depend, not only on the parameters, but also on external
signals, e.g., time or the system state. This renders the
verification of the condition very hard to carry out. One
of the main contributions of this paper is to overcome this
limitation.

To the best of the authors’ knowledge no developments—
similar to the ones done for CT—have been reported
for case of nonlinearly parameterized discrete-time (DT)
regressions that, in spite of its great practical impor-
tance, have attracted less attention in the identification
and adaptive control community. One of the objectives
of our paper is to contribute, if modestly, towards the
development of estimation algorithms for DT NPRE. In
particular, we provide solutions to the, essentially open,
problems of direct and indirect adaptive pole-placement
control (APPC) without overparameterization nor per-
sistency of excitation (PE) requirements. 1 It should be
pointed out that a solution to the direct APPC problem
using overparameterization, hence requiring some excita-
tion conditions, has been reported in (Pyrkin et al., 2019).

The dependence of the convexity or monotonicity assump-
tion on external signals mentioned above happens even

1 We recall that a bounded vector signal Ω ∈ Rq is said to be PE

if there exist δ ∈ R>0 such that
∫ t+T
t

Ω(τ)Ω>(τ)dτ ≥ δIq for some

T ∈ R>0 and all t ∈ R≥0 in CT, or
∑k+K

j=k+1
Ω(j)Ω>(j) ≥ δIm, ∀k ∈

N≥0, for some K ∈ N>0, with K ≥ m, in DT.
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in the case when the uncertain terms appear as prod-
ucts of a function of the unknown parameters times a
known function—the so-called, factorized mappings, that
is NPRE of the form

y = ΩS(θ),

with S : Rq → Rp, with p > q. Although in this case it
is possible to define the extended parameter vector θa :=
S(θ) to obtain a linear parametrization, overparametriza-
tion suffers from the following well-known shortcomings
(Ljung, 1987; Sastry and Bodson, 1989).

(S1) Performance degradation, e.g., slower convergence,
due to the need of a search in a larger parameter space.

(S2) More stringent conditions imposed on the reference
signals to ensure the PE requirement needed for conver-
gence of the new parameters.

(S3) Inability to recover the true parameters—except for
injecting mappings.

(S4) Conservativeness introduced when incorporating prior
knowledge in restricted parameter estimation.

In this paper we propose a parameter estimator for mono-
tonic, factorized NPRE that achieves the following objec-
tives.

(O1) It does not rely on overparameterization.

(O2) Imposes the monotonicity property directly to the
function S(θ).

(O3) Ensures parameter convergence without the stringent
PE requirement.

CT estimators for NPRE with factorizable mappings that
avoid overparameterization and rely on monotonicity have
been reported in (Liu et al., 2011, Section 3) and (Ara-
novskiy et al., 2017, Section III). In (Liu et al., 2011)
neither the second nor the third objectives above are
achieved. On the other hand, in (Aranovskiy et al., 2017)
these objectives are achieved, via the use of a dynamic
regressor extension and mixing (DREM) estimator. As is
well known, the main feature of DREM is that it generates,
out of a q-dimensional regression equations, one scalar
equation for each of the q unknown parameters. Another
important feature of DREM is that parameter convergence
is ensured without assuming PE.

In this paper, we also use DREM to derive both, CT and
DT, parameter estimators. We obtain simpler and stronger
results than (Aranovskiy et al., 2017) due to the following
three key modifications.

(M1) Generate the extended regressor matrix using the
linear time-varying (LTV) operators first introduced in
(Kreisselmeier, 1977).

(M2) Directly apply the “mixing” operation—that is the
multiplication by the adjugate of the extended matrix—to
generate the scalar regressions.

(M3) Incorporate the possibility of adding a change of co-
ordinates to the original parameters to satisfy the required
monotonicity property.

Notation. R>0, R≥0, N>0 and N≥0 denote the positive
and non-negative real and integer numbers, respectively.

For n ∈ N>0 we define the set n̄ := {1, 2, . . . , n}. For
x ∈ Rn, we denote |x|2 := x>x. CT signals s : R≥0 → R
are denoted s(t), while for DT sequences s : N≥0 → R
we use s(k) := s(kTs), with Ts ∈ R>0 the sampling
time. When a formula is applicable to CT signals and DT
sequences the time argument is omitted. The action of an
operator H : L∞ → L∞ is denoted H[u](t), while for an
operator H : `∞ → `∞ we use H[u](k). With i ∈ N>0

we define q±iu(k) := u(k ± i), and pi[u](t) := diu
dti . All

mappings and reference signals are assumed smooth. Given

a function F : Rn → R we define ∇F :=
(
∂F
∂x

)>
.

2. MONOTONIZABLE NONLINEARLY
PARAMETERIZED FACTORIZED REGRESSIONS

2.1 Problem formulation

In many system identification and adaptive control appli-
cations one is confronted with the problem of estimation
of the parameters appearing in a NPRE of the form

y = ΩS(θ) + ε (1)

where y ∈ Rn, Ω ∈ Rn×p are measurable signals, θ ∈ Rq
is a constant vector of unknown parameters, S : Rq → Rp,
with

p > q, (2)

and ε is a (generic) exponentially decaying term. The
task is to identify on-line the parameters θ, out of the
measurements of y and Ω.

Remark 2.1. The NPRE (1) is a particular case of the
more general regression y(·) = H(·, θ), with (·) = t in
CT or k in DT. Although in the factorized case it is
possible to introduce extra parameters to obtain a lin-
ear parametrization, overparametrization suffers from the
well-known shortcomings S1-S5 mentioned in the Intro-
duction.

2.2 Key monotonicity assumption

Similarly to (Aranovskiy et al., 2017; Liu et al., 2011) the
key property of the parameterization that we will exploit
is P -monotonicity, which is defined a follows.

Definition 2.1. Given a positive definite matrix P ∈ Rq×q,
a mapping L : Rq → Rq is strongly P -monotone if and
only if there exists a constant ρ ∈ R>0 such that

(a− b)>P [L(a)− L(b)] ≥ ρ|a− b|2 > 0, ∀a, b ∈ Rq, a 6= b.
(3)

Lemma 2.1. A sufficient condition for a differentiable
mapping L : Rq → Rq to be strictly P–monotone is

P∇L+ (∇L)>P ≥ ρIq > 0. (4)

Assumption 2.1. Consider the mapping S(θ). There ex-
ists:

(i) a bijective mapping D : Rq → Rq, θ 7→ η with right
inverse DI : Rq → Rq, η 7→ θ;

(ii) a permutation matrix T ∈ Rp×p and;
(iii) a positive definite matrix P ∈ Rq×q

such that

P∇W(η)C> + C[∇W(η)]>P ≥ ρIq > 0, (5)



where

W(η) := S(DI(η)), C :=
[
Iq | 0q×(p−q)

]
T. (6)
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In words, the construction associated with Assumption 2.1
proceeds as follows. First, introduce a bijective coordinate
change for the parameters θ, namely η = D(θ), with
inverse θ = DI(η). Second, write the original mapping
S(θ) in terms of the parameters η via the definition of
the new mapping W(η) := S(DI(η)). Third, assuming
that these mapping contains q elements that are “good”—
term to be defined below—place them at the top with the
permutation matrix T and select them with the fat matrix[
Iq | 0q×(p−q)

]
. Whence, define the new “good” mapping

G : Rq → Rq as
G(η) := CW(η). (7)

Observing that ∇G = ∇WC>, and invoking Lemma 2.1,
the condition (5) ensures that this “good” mapping is
strongly P -monotonic. For future reference we rewrite this
condition in terms of the “good” mapping as

P∇G(η) + [∇G(η)]>P ≥ ρIq > 0. (8)

Using the definitions above in the NPRE (1) we obtain the
new NPRE in terms of the parameters η as

y = ΩW(η) (9)

3. GENERATION OF SCALAR NPRE VIA DREM

3.1 Continuous-time case

Proposition 1. Consider the NPRE (9) for CT signal. Fix
λ > 0 and define the signals

Ẏ (t) = −λY (t) + Ω>(t)y(t)

Φ̇(t) = −λΦ(t) + Ω>(t)Ω(t)

Y(t) = Cadj{Φ(t)}Y (t)

∆(t) = det{Φ(t)}. (10)

The q scalar NPRE hold

Yi(t) = ∆(t)Gi(η), i ∈ q̄ ⇔ Y(t) = ∆(t)G(η). (11)

3.2 Discrete-time case

Proposition 2. Consider the NPRE (9) for DT sequences.
Fix 0 < α < 1 and define the signals

Y (k) = −αY (k − 1) + Ω>(k − 1)yp(k − 1)

Φ(k) = −αΦ(k − 1) + Ω>(k − 1)Ω(k − 1)

Y(k) = Cadj{Φ(k)}Y (k)

∆(k) = det{Φ(k)}. (12)

The q scalar NPRE hold

Yi(k) = ∆(k)Gi(η), i ∈ q̄ ⇔ Y(k) = ∆(k)G(η). (13)

4. PARAMETER ESTIMATORS CONVERGENCE
ANALYSIS

4.1 Continuous-time case

Proposition 3. Consider the NPRE (11) satisfying (8) of
Assumption 2.1. Propose the parameter estimator

˙̂η(t) = ΓP∆(t)[Y(t)−∆(t)G(η̂(t))], (14)

with Γ ∈ Rq×q, Γ > 0 the adaptation gain.

(i) The norm of the parameter estimation vector η̃(t) :=
η̂(t)− η is monotonically non-increasing, that is,

|η̃(t2) ≤ |η̃(t1)|,∀t2 ≥ t1 ∈ R≥0. (15)

(ii) The following implication holds

∆(t) /∈ L2 ⇒ lim
t→∞

|η̃(t)| = 0.

Remark 4.1. Convergence in all parameter estimators—as
well as in state observers—can only be ensured under some
kind of excitation conditions (Ljung, 1987). In particular,
for standard gradient and least-squares estimators this
property is encrypted in the well known PE requirement of
the regressor. As it has been shown in (Aranovskiy et al.,
2017) convergence of DREM estimators can be ensured
without requiring PE and replacing it, instead, by the
assumption ∆(t) /∈ L2, which is necessary and sufficient
for parameter convergence for linear regression equation.
Proposition 3 shows that this condition is sufficient for
NPRE of the form (1) with a P -“monotonizable” regressor
S(θ).

Remark 4.2. We have assumed that the mapping G(η) is
strongly P -monotonic. This can be relaxed to strictly P -
monotonic adding some further assumptions on ∆(t).

4.2 Discrete-time case

Assumption 4.1. The mapping G(η) satisfies the Lipschitz
condition

|G(a)− G(b)| ≤ ν|a− b|, ∀a, b ∈ Rq, (16)

for some ν > 0.

Proposition 4. Consider the DT NPRE (13) with G(η)
satisfying (8) of Assumption 2.1 and Assumption 4.1.
Propose the DT parameter estimator

η̂(k+ 1) = η̂(k) + γP
∆(k)

1 + κ∆2(k)
[Y(k)−∆(k)G(η̂)], (17)

with γ > 0 the adaptation gain selected such that the
constant 2

σ := 2γρ− γ2ν2λ2max{P} > 0, (18)

and the constant κ verifying

κ ≥ max{1, σ}. (19)

P1 The norm of the parameter estimation error η̃(k) :=
η̂(k)− η is monotonically non-increasing, that is,

|η̃(k2) ≤ |η̃(k1)|,∀k2 ≥ k1 ∈ N≥0. (20)

P2 The following implication is true
∞∏
i=0

1 + (κ− σ) ∆2(k)

1 + κ∆2(k)
= 0 ⇒ lim

k→∞
|η̃(k)| = 0.

P3 The following implication is true

lim
k→∞

∆(k) =: ∆(∞) 6= 0 ⇒ lim
k→∞

|η̃(k)| = 0.

Remark 4.3. Similarly to the observation made in Remark
4.1 the sufficient conditions for parameter convergence of
Properties P2 and P3 should be interpreted as excitation
requirements imposed on ∆(k). Notice that the condition
of Property P3 is sufficient to ensure ∆(k) /∈ `2 and
necessary for it to be PE.

2 Clearly, for any positive ρ, ν and P > 0, this condition is satisfied
with γ < 2ρ

ν2λ2
max{P}

.



5. APPLICATION TO CT NONLINEARLY
PARAMETERIZED NONLINEAR SYSTEMS

5.1 Direct adaptive control of a general class of CT
nonlinear systems

Consider CT systems described by the state equations

ẋ(t) = F (x(t), u(t)) +R(x(t))S(θ) (21)

where x(t) ∈ Rn is the measurable state, u(t) ∈ Rm, with
n ≥ m, is the control signal, the mappings F : Rn ×
Rm → Rn, R : Rn → Rn×p and S : Rq → Rp are known
with p > q, and θ ∈ Rq is a constant vector of unknown
parameters.

Assumption 5.1. There exists a mapping β : Rn × Rq →
Rm, such that the system

ẋ(t) = F (x(t), β(x(t), θ)) +R(x(t))S(θ) =: f?(x(t)) (22)

has a globally exponentially stable (GES) equilibrium at a
desired value x? ∈ Rn.

The control objective is then to design a parameter estima-
tor such that the (certainty-equivalent) adaptive control

u = β(x(t), θ̂(t)) ensures the asymptotic convergence

lim inf x(t) = x?, (23)

with all signals bounded. A fist step in the design is the
derivation of the NPRE (1) for the system (21). This
is easily obtained applying to (21) the stable, LTI filter
H(p) = 1

p+λ and defining

y(t) := pH(p)[x](t)−H(p)[F (x, u)](t)

Ω := H(p)[R(x)](t), (24)

and ε(t) is the solution of H(p)[ε](t) = 0. A state-space
realization of (24) is given by

ż(t) = −λ(z(t) + x(t))− F (x(t), u(t))

Ω̇(t) = −λΩ(t) +R(x(t))

y(t) = z(t) + x(t). (25)

Proposition 5. Consider the nonlinearly parameterized,
nonlinear system (21) satisfying Assumptions 2.1 and 5.1.
Let the adaptive control be given by

u(t) = β(x(t),DI(η̂(t))),

together with the parameter estimator (10), (14) and (25).
If ∆(t) /∈ L2 (23) holds with all signals bounded.

5.2 Adaptive tracking of Euler-Lagrange systems

System dynamics and adaptive control problem formula-
tion. We consider nq degrees-of-freedom (dof), possibly
underactuated, EL systems with generalized coordinates
q(t) ∈ Rnq and control vector u(t) ∈ Rm, m ≤ nq, whose
dynamics is described by

M(q)q̈ + C(q, q̇)q̇ +∇U(q) = G(q)u, (26)

where M : Rnq → Rnq×nq is the generalized inertia matrix,
which is positive definite and assumed to be bounded, U :
Rnq → R the potential energy function, G : Rnq → Rnq×m

the input matrix and C : Rnq × Rnq → Rnq×nq represents
the Coriolis and centrifugal forces matrix, which satisfies
the key skew-symmetry property

z>[Ṁ(q)− 2C(q, q̇)]z, ∀z ∈ Rnq , (27)

holds. See Ortega et al. (1998) for additional details on
this model and many practical examples.

Assumption 5.2. Given a desired bounded trajectory for
the state vector (q?(t), q̇?(t)) ∈ Rnq×Rnq . Define the state

tracking error col(q̃, ˙̃q) := col(q − q?, q̇ − q̇?). There exists
a mapping β : Rnq ×Rnq ×Rq×R≥0 → Rm, such that the
system

M(q)q̈ + C(q, q̇)q̇ +∇U(q) = G(q)β(q, q̇, θ, t),

has an error dynamics[
˙̃q
¨̃q

]
= f?(q̃, ˙̃q, t)

whose origin is GES.

The control objective is then to design a parameter estima-
tor such that the (certainty-equivalent) adaptive control

u = β(q, q̇, θ̂, t) ensures global asymptotic tracking, that
is,

lim inf col(q̃(t), ˙̃q(t)) = 0, (28)
with all signals bounded.

Derivation of the regression equation. A fist step in
the design is the derivation of the NPRE (1) for the
system (26)—which was already reported in (Slotine and
Li, 1989). Towards this end, we introduce the following
parameterization of the inertia matrix M(q) and the
potential energy U(q)

M(q) =

`∑
i=1

mi(q)Smi (θ), U(q) =

r∑
j=1

Uj(q)SUj (θ) (29)

with known matrices mi : Rnq → Rnq×nq and functions
Uj : Rnq → R and known functions Smi (θ),SUj (θ) : Rq → R
of the unknown physical parameters θ ∈ Rq. We group
together all functions Smi (θ),SUj (θ) in a single vector
mapping S : Rq → Rp as

S(θ) := col(Sm1 (θ), · · · ,Sm` (θ),SU1 (θ), · · · ,SUr (θ)) ∈ Rp, (30)

where p := ` + r > q. We are in position to present the
following.
Proposition 6. The regressor matrix Ω : Rnq × Rnq →
Rnq×p

Ω(q, q̇) := H(p)



pm1(q)q̇ −
1

2
∇q(q̇>m1(q)q̇)

...

pm`(q)−
1

2
∇q(q̇>m`(q)q̇)
∇U1(q)

...
∇Ur(q)



>

, (31)

is such that the EL system (26) satisfies the NPRE

y = Ω(q, q̇)S(θ) (32)

where
y := H(p) [G(q)u] , (33)

with θ and S(θ) defined via (29) and (30).

Main stabilization result. We are now in position of
present the main result of this subsection.

Proposition 7. Consider the EL system (26) with NPRE
(32) verifying Assumptions 2.1 and 5.2. Let the adaptive
control be given by

u = β(q, q̇,DI(η̂), t) (34)

together with the parameter estimator (10), (14), (33) and
(31). If ∆ /∈ L2 we have that (28) holds with all signals
bounded.



In what follows we present two well-known choices of
β(q, q̇, θ, t) for fully actuated systems, i.e., m = nq, and
prove that they satisfy the key GES Assumption 5.2

• The Computed Torque Controller in the known param-
eter case is given by

β(q, q̇, θ, t) = M(q)[q̈? −K1
˙̃q −K2q̃] + C(q, q̇)q̇ + g(q),

resulting in the LTI closed-loop system ¨̃q+K1
˙̃q+K2q̃ = 0,

that, obviously, has a GES equilibrium at the origin for all
positive definite control gains K1,K2 ∈ Rnq×nq .

• The Slotine-Li Controller in the known parameter case
is given by (Slotine and Li, 1988)

β(q, q̇, θ, t) = M(q)q̈r + C(q, q̇)q̇r + g(q) +K1s, (35)

where we defined the signals

q̇r := q̇? −K2q̃, s := ˙̃q +K2q̃. (36)

The closed-loop system is then M(q)ṡ+ [C(q, q̇) +K1]s =

0, ˙̃q+K2q̃ = s, that—as indicated in (Ortega et al., 1998,
Remark 4.5)—has an GES equilibrium at the origin.

Remark 5.1. To the best of our knowledge, the proof of
global stability of the adaptive version of the computed
torque scheme proposed above is the first one reported in
the literature.

Verifying Assumption 2.1 on a 2-DOF robot manipulator.
The equations of motion of the robot are given by (26)

with

M(q) =

[
S1(θ) + 2S2(θ) cos(q2) S3(θ) + S2(θ) cos(q2)
S3(θ) + S2(θ) cos(q2) S3(θ)

]
U(q) = S4(θ)g (1 + sin(q1 + q2)) + S5(θ)g (1 + sin(q1)) , (37)

with g the gravitational constant, the physical parameters
θ := col(l1, l2,m1,m2), where li > 0 is the the length of
the link i with mass mi > 0 for i = 1, 2, and the mappings

Sm(θ) :=

[
θ22θ4 + θ21(θ3 + θ4)

θ1θ2θ4
θ22θ4

]
, SU(θ) :=

[
θ2θ4

θ1(θ3 + θ4)

]
, (38)

and S(θ) :=

[
Sm(θ)

SU(θ))

]
. In the following lemma we verify

Assumption 2.1 for the mapping S(θ).

Lemma 5.1. Consider the vector θ ∈ R4
>0 and the map-

ping S : R4
>0 → R5

>0 given by (38). Assume the bounds

θ1 ≤ θM1 , θm2 ≤ θ2 ≤ θM2 , θm4 ≤ θ4. (39)

The mapping D : R4
>0 → R4

>0

η = D(θ) = col(θ1, θ2, θ2θ4, θ1(θ3 + θ4)),

with right inverse DI : R4
>0 → R4

θ = DI(η) = col(η1, η2,
η4
η1
− η3
η2
,
η3
η2

), (40)

verifies Assumption 2.1 with

T =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 , P = diag{a, a, 1, 1}

for any a ≥ 1
4θm

4

[
θM2 +

(θM1 )2

θm
2

]
.

Adaptive Slotine-Li control of the 2-DOF robot manipu-
lator. In this subsubsection we present in detail the
adaptive controller of Proposition 7 with the Slotine-Li

Fig. 1. Simulation results for the DREM-based adaptive
scheme and the classical adaptive Slotine-Li.

scheme for the 2-DOF robot manipulator. Simulation re-
sults showing that the proposed scheme largely outper-
forms the classical one relying on overparameterization
may be found in (Ortega et al., 2019).

To derive the NPRE (32) we invoke (29) and (37) and
define

m1 :=

[
1 0
0 0

]
, m2(q2) := cos(q2)

[
2 1
1 0

]
, m3 :=

[
0 1
1 1

]
U1(q) := g[1 + sin(q1 + q2)], U2(q1) := g[1 + sin(q1)].

Thus, the regressor matrix (32) takes the form

Ω(q, q̇) = H(p)

[
Ω11 Ω12 Ω13 Ω14 Ω15

Ω21 Ω22 Ω23 Ω24 Ω25

]
where Ω11 = pq̇1, Ω12 = p cos(q2)(2q̇1 + q̇2), Ω13 = pq̇2,

Ω14 = Ω24 = g cos(q1 + q2), Ω15 = g cos(q1), Ω21 = Ω25 = 0,

Ω22 = p cos(q2)q̇1 + sin(q2)(q̇21 + q̇1q̇2) and Ω23 = p(q̇1 + q̇2).

The known parameter version of the Slotine-Li con-
troller (35) may be parameterized as β(q, q̇, θ, t) :=
W (q, q̇, t)S(θ) +K1s, with the matrix

W (q, q̇, t) :=

[
W11 W12 W13 W14 W15

W21 W22 W23 W24 W25

]
,

withW11 = q̈r1,W12 = cos(q2)(2q̈r1+q̈r2)−sin(q2)(q̇2q̇r1+
(q̇1 + q̇2)q̇r2), W13 = q̈r2, W14 = W24 = Ω14, W15 = Ω15,
W21 = W25 = Ω21, W22 = cos(q2)q̈r1 + sin(q2)q̇1q̇r1 and
W23 = q̈r1 + q̈r2, where q̇r and s are defined in (36). In
its standard version (Slotine and Li, 1988), to get a linear
parametrization, the adaptive implementation is obtained
estimating the vector S := S(η), yielding β(q, q̇, Ŝ, t) :=

W (q, q̇, q̇r, q̈r)Ŝ + K1s. The parameter estimator is given

as
˙̂
S := −ΓW>(q, q̇, t)s, that, as shown in (Ortega et al.,

1998), yields a globally stable closed-loop system and
ensures global tracking of the desired references.

In the proposed approach we estimate directly θ, that is,

the adaptive control is β(q, q̇, θ̂, t) := W (q, q̇, q̇r, q̈r)S(θ̂) +
K1s, with the parameter estimator (10), (14), (33) and



(31), combined with θ̂ = DI(η̂), where the mapping DI(·)
is given in (40).

Figure 1 shows the results of the simulations of the DREM-
based and the standard schemes, from which we can
observe that the trajectory tracking and the parameter
estimation capabilities of our proposal clearly outperforms
those of the classical adaptive controller.

6. APPLICATION TO NONLINEARLY
PARAMETERIZED DT SYSTEMS

6.1 Adaptive Pole Placement Control of LTI Systems

We are interested in this subsection in the problem of
APPC of LTI DT system represented by it pulse transfer
function

A(q−1)yp(k) = B(q−1)u(k), (41)

where the polynomials

A(q−1) = 1 + a1q
−1 + · · ·+ anA

q−nA ,

B(q−1) = b0 + b1q
−1 + · · ·+ bnB

q−nB ,

are coprime, with a known upperbound on their order, say
v, but with unknown coefficients ai, bi. The pole-placement
problem consists of designing a controller

L(q−1)u(k) + P (q−1)yp(k) = r(k) (42)

such that the closed-loop system takes the form yp(k) =
B(q−1)
Am(q−1)r(k), where r(k) is a bounded external signal and

Am(q−1) = 1 + am1 q
−1 + · · · + amnAm

q−nAm , is a desired
closed-loop polynomial whose roots are inside the unit
circle. That is, the controller relocates the poles of the
system in a desired position but preserves the open-loop
zeros. For a lucid exposition of this problem see (Goodwin
and Sin, 1984, Section 5.3) and (Pyrkin et al., 2019) for a
review of the recent literature.

6.2 Obstacles for the adaptive implementation.

Computing (41) in closed-loop with (42) we get

yp(k) =
B(q−1)

A(q−1)L(q−1) +B(q−1)P (q−1)
r(k). (43)

Hence, to achieve the objective, we need to verify the
Bezout equation

A(q−1)L(q−1) +B(q−1)P (q−1) = Am(q−1). (44)

As is well-known (Goodwin and Sin, 1984, Theorem 5.3.1),
selecting nAm

:= 2v − 1, there exists unique polynomials
L(q−1) and P (q−1), both of order (v−1), solutions of (44).
Indeed, it is possible to show that (44) admits a matrix
representation

S(ai, bi)η = col(am0 , a
m
1 , . . . , a

m
2v−1), (45)

where

η := col(l0, l1, . . . , lv−1, p0, p1, . . . , pv−1) (46)

and S(ai, bi) ∈ R2v×2v—called the Sylvester matrix—is
linearly dependent on the coefficients ai, bi, and is full rank
if and only if A(q−1) and B(q−1) are coprime.

It is well-known that the adaptive version of the previous
controller, called APPC, suffers from serious drawbacks
(Goodwin and Sin, 1984; Pyrkin et al., 2019). In its

indirect version—that is when we estimate the parameters
of the plant ai, bi and then compute from them, via
the solution of (45), the parameters of the controller
li, pi—the problem is that the Sylvester matrix with the

estimated parameters âi(k), b̂i(k) may loose rank during
the transient behavior. Although this phenomenon can be
avoided adding parameter projections, the prior knowledge
required to implement this efficiently is never available in
practice and relies on the availability of PE, see (Pyrkin
et al., 2019, Section 1).

On the other hand, in its direct version the estimation
of the controller parameters involves a NPRE. Indeed,
applying (44) to the output of the plant yp(k) we get

L(q−1)A(q−1)yp(k) + P (q−1)B(q−1)yp(k) = Am(q−1)yp(k)

⇔ B(q−1)[L(q−1)u(k) + P (q−1)yp(k)] = Am(q−1)yp(k). (47)

The known parameter version of the direct pole-placement
controller may be written in the LRE form u(k) +
η>ψ(k) = r(k) where we have used the fact that L(q−1)
is monic and defined ψ(k) := col(yp(k), . . . , yp(k − v +
1), u(k−1), . . . , u(k−v+1)) ∈ R2v−1, with η, as defined in
(46), contains the unknown coefficients of the polynomials
L(q−1) and P (q−1). A direct adaptive implementation of
this controller takes then the form u(k) + η̂>(k)ψ(k) =
r(k), where η̂(k) denotes the estimates of η. The difficulty
of designing an estimator for the controller parameters
η is due to the fact that, in terms of η, (47) defines a
parameterization of the form

B(q−1)[u(k) + η>ψ(k)] = Am(q−1)yp(k) =: y(k), (48)

which is bilinear because the polynomial B(q−1) is un-
known.

In the next two subsubsections we show that using the
results reported in the paper it is possible to overcome
the two obstacles mentioned above. To simplify the pre-
sentation we illustrate this fact with simple representative
examples, that can be easily extended to the general case.

6.3 DREM-based indirect APPC.

Consider the LTI DT system

yp(k + 1) + θyp(k) = u(k) + θ3u(k − 1), (49)

where, to ensure the coprimeness assumption, θ 6= ±1.
Fixing a dead-beat objective, e.g., Am(q−1) = 1, and
selecting L(q−1) = l0 + l1q

−1 and P (q−1) = p0 + p1q
−1

the Bezout equation (44) takes the form

(1 + θq−1)(l0 + l1q
−1) + q−1(1 + θ3q−1)(p0 + p1q

−1) = 1. (50)

The latter can be rewritten as 1 0 0 0
θ 1 1 0
0 θ θ3 1
0 0 0 θ3


 l0l1p0
p1

 =

1
0
0
0

 , (51)

whose solution is l0 = 1, p1 = 0 and[
1 1
θ θ3

] [
l1
p0

]
=

[
−θ
0

]
, (52)

which corresponds to

[
l1
p0

]
= 1

θ3−θ

[
−θ4
θ2

]
. Hence, the

known-parameter controller (42) takes the form

u(k) = − 1

θ3 − θ
[
θ2yp(k)− θ4u(k − 1)

]
+ r(k) (53)



and yields the desired closed-loop system

yp(k) = q−1(1 + θ3q−1)r(k).

Obviously, the system admits an NPRE of the form (1)
with

yp(k) := yp(k)− u(k − 1), Ω(k) :=

[
−yp(k − 1)
u(k − 2)

]
(54)

and S(θ) :=

[
θ
θ3

]
. If we overparametrize the NPRE and

estimate the vector S ∈ R2 the controller parameters are
computed from[

1 1

Ŝ1(k) Ŝ2(k)

] [
l̂1(k)
p̂0(k)

]
=

[
−Ŝ1(k)

0

]
, (55)

which yields the adaptive controller

u(k) = −
1

Ŝ2(k)− Ŝ1(k)

[
Ŝ21 (k)yp(k)− Ŝ1(k)Ŝ2(k)u(k − 1)

]
+ r(k).

(56)

Clearly, the controller computation has a singularity on
the line Ŝ1(k) = Ŝ2(k). On the other hand, if we estimate
θ, the adaptive version of (53) has a singularity only at

the points θ̂(k) = ±1. Simulation results illustrating these
facts may be found in (Ortega et al., 2019).

7. CONCLUSIONS

It has been shown that the DREM procedure can be used
to estimate the parameters of a CT or DT NPRE of
the form (1), provided the “monotonizability” Assumption
2.1 holds and some weak excitation conditions—encrypted
in the scalar signal ∆—are satisfied. The applicability
of the method has been illustrated with several classical
examples.

We are currently pursuing the following research avenues.

(R1) The highly attractive parameterization of EL systems
proposed in (Slotine and Li, 1989) seems to yield a non-
identifiable NPRE. A rigorous proof of this claim is yet to
be established.

(R2) Although the DREM estimator has a few tuning
gains, e.g., the filter constants (λ for CT, and α for DT)
and the adaptation gain γ, their impact on the transient
behavior is hard to predict—see Subsubsection 5.2.5 in
(Ortega et al., 2019). A more thorough analysis of the
sensitivity of the design vis-à-vis these coefficients is yet
to be derived.

(R3) Although avoiding overparameterization to handle
NLPRE seems, in principle, a sensible objective, it is not
clear under which conditions this approach is really more
convenient. Particularly considering that this is, until now,
only applicable to “monotonizable” NLPRE. The results
presented in the paper shows that there are practically
important examples where this is the case.

(R4) The verification of the conditions of Proposition 1
is carried out in our examples via direct inspection. A
deeper understanding of the underlying structural features
of the mapping S(θ) under which this is possible would be
highly desirable. It seems that such a study should appeal
to principles of differential algebra.
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