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Iterative Learning Control Strategy for a
Furuta Pendulum System with
Variable-Order Linearization

Ricardo Binz ∗ Stanislav Aranovskiy ∗

∗ IETR – CentaleSupélec, Avenue de la Boulaie, 35576
Cesson-Sévigné, France.

Abstract: We consider Iterative Learning Control for the Furuta Pendulum nonlinear mechan-
ical system, where the goal is to learn the input torque such that the pendulum angle follows
a reference. We show that the linearization of the considered system is of variable trajectory-
dependent order and thus some existing solutions do not apply. We propose a novel method
based on the observability matrix inversion allowing to deal with the variable-order minimum
realization. The applicability of the proposed method is illustrated with simulations.
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1. INTRODUCTION

Iterative Learning Control (ILC) is a popular methodology
for improving transient response and tracking performance
when a control task is repeatedly executed. When the
classical feedback control produces (up to non-repetitive
disturbances) the same trajectory with the same tracking
error on each trial, the ILC iteratively adjusts the com-
mand between the trials aiming for zero tracking error in
plant operation. After each trial, the observed system’s
behavior is compared to the desired reference. The behav-
ior deviation is then used for the iterative control signal
update (learning), improving the control task execution
performance. Uchiyama (1978) and Arimoto et al. (1984)
initially proposed the ILC for mechanical systems, and
nowadays, it is widely used for a broad class of control
problems, e.g., in the process control, see the surveys by
Bristow et al. (2006) and Wang et al. (2009). It is worth
noting one can use the ILC together with a stabilizing
feedback control or as a stand-alone feedforward governor.
In the stand-alone case, the plant operates in open-loop
mode during a trial, and the control signal is then updated
between the trials.

The ILC is typically applied to repetitive problems, such as
repetitive trajectories in robotics (Norrlof (2002)), chem-
istry reactors operation (Lee and Lee (2007)), or high-
performance positioning systems (Huang et al. (2013)).
The use of the information contained in the repetitive task
executions distinguishes the ILC from the direct or indirect
adaptive control (Åström and Wittenmark (2013); Sas-
try and Bodson (2011)). Indeed, in adaptive control, one
updates the controller parameters directly or indirectly,
e.g., via online system identification. In contrast, the ILC
methods update the control signal itself, and thus it can
be considered a non-parametric approach. Additionally,
adaptive control methods typically work along a single-
trial trajectory and do not benefit from the repetitive
nature of the executed task.

Considering the control solutions motivated by the recent
advances in machine learning, a certain similarity can be
found between the ILC and the Reinforcement Learning
(RL) methods, as was shown by Zhang et al. (2019).
However, the RL is typically a model-free approach that
learns only from the observed reward and does not use
the plant model. In contrast, the ILC methods are often
model-based and assume that a plant model is available
and can be used for the control signal update. Thus, the
model-based ILC requires a significantly smaller number of
trials to arrive at the optimal (in a certain sense) solution
than the model-free RL. This difference becomes crucial
when the trials must be physically performed and can
hardly be simulated with the desired accuracy, i.e. when
the simulation-based learning is not possible.

Due to the repetitive task nature, one standard restriction
of the ILC was that the trajectories must always start from
the same initial conditions. However, this requirement can
be relaxed in practice, see, e.g., Hoelzle et al. (2010); Wu
et al. (2019); moreover, an extension to non-repetitive
trajectories was recently proposed by Jin (2018a).

Nowadays, an important research direction is the ILC
for nonlinear systems, where several solutions based on
Lipschitz conditions, contraction analysis, or composite
energy functions are available, see Xu (2011); Jin (2018b).
One common approach is based on linear ILC techniques
applied to linearization of the original nonlinear system
along the performed trajectory, see Lu et al. (2017). For
example, Beuchert et al. (2018) used this idea studying
the trajectory-learning problem for a pendulum-on-a-cart
system, where they also restricted the ILC algorithm to
learn only for small linearization errors.

The paper goal. In this work, we consider the Furuta
Pendulum nonlinear mechanical system, where the lin-
earization is not observable at specific trajectory segments.
Our goal is to design an ILC approach to learn a reference
trajectory for such a system.
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It is worth noting that ILC algorithms were also applied in
the context of inverted pendulums in previous works. How-
ever, the majority of studies considered the cart-pendulum
dynamics: Schöllig and D’Andrea (2009) proposed a com-
bination of the ILC with convex optimization techniques,
Gao et al. (2009) presented a PID-type ILC algorithm for
the trajectory tracking problem, and Zhang et al. (2008)
proposed a solution using a closed-loop ILC algorithm
based on Lyapunov theory. In contrast to those works,
we consider the Furuta Pendulum dynamics, for which
we propose a novel linearization-based solution using the
observability matrix pseudo-inversion.

This research is motivated by Beuchert et al. (2018)
and extends the results presented therein. More precisely,
Beuchert et al. (2018) study the pendulum-on-a-cart sys-
tem where the cart’s position is considered an input for
the pendulum’s dynamics. The authors linearize the sys-
tem along its trajectory, yielding a transfer function; this
transfer function is further inverted, and the ILC is applied
to learn the reference trajectory.

Novelty and Contribution. In this work, we show that the
method of Beuchert et al. (2018) cannot be directly applied
to the mechanical system in which we are interested
since the minimum realization of the linearized system
is of variable trajectory-dependent order. To deal with
this problem, we propose a novel approach based on
the observability matrix pseudo-inversion that allows for
the desired trajectory learning. We consider the Furuta
Pendulum system choosing the torque as the input signal,
and thus no extra position controller is required.

The rest of the paper is organized as follows. The problem
statement is given in Section 2, and the (motivating to our
research) existing solution is discussed in 3. The proposed
ILC strategy is presented in 4, and the illustrative learning
results for the considered Furuta Pendulum system are
given in Section 5. The paper results are discussed and
summarized in Conclusion.

2. PROBLEM STATEMENT

Motivated by the Furuta Pendulum example, we consider
a mechanical system with two degrees of freedom (DOF)
given by 1

M(q)q̈ + C(q, q̇) + G(q) = τ,

y = Dq,
(1)

where q = [q1 q2]
>

, q1 and q2 are the generalized coordi-
nates, τ is the generalized torque considered here as an
input signal, M(q) is the inertia matrix, C(q, q̇) is the
vector of the centrifugal and Coriolis forces, and G(q)
is the vector of the gravity force. We assume that both
the generalized coordinates q and their time derivatives
q̇ are available, i.e., measured or estimated. The initial
conditions of (1) are q(0) = q0 ∈ R2 and q̇(0) = q̇0 ∈ R2.
The scalar signal y is the trajectory output specified by
the matrix D ∈ R1×2.

The desired trajectory yd(t) is defined on the finite time
interval [0, T ] for some T > 0, and the initial conditions of
(1) satisfy the desired trajectory, i.e., yd(0) = y(0) = Dq0

1 Here and below the argument of time t is omitted when clear form
context.

and ẏd(0) = ẏ(0) = Dq̇0. Moreover, we assume that
the desired trajectory yd is feasible, i.e., there exists an
(unknown) input signal τd such that the solution of (1)
for τ(t) ≡ τd(t) satisfies yd(t) ≡ y(t) for all t ∈ [0, T ]. Note
that the feasibility of yd implies that it is bounded and
twice differentiable.

The goal is to learn in several trials the open-loop control
signal τ capable of generating (with a certain accuracy) the
desired trajectory yd, where the control signal is updated
between trials. Let us denote the control action applied
at j-th trial as τ(t, j) and the solution of (1) obtained
for τ(t, j) as q(t, j) and y(t, j), where j ∈ N and t ∈ [0, T ].
Then an iterative learning control algorithm can be written
as

τ(t, j + 1) = ILC (yd(t), q(t, j), q̇(t, j), τ(t, j)) . (2)

In other words, the ILC algorithm (2) updates the control
input based on the desired trajectory, the control applied
on the current trial, and the observed system behavior.

With these definitions, the goal is to design an ILC
algorithm of the form (2) such that given the feasible
trajectory yd and the desired accuracy ε > 0, there exists
j0 ∈ N such that the solution of (1) with the input τ(t, j0)
satisfies for all t ∈ [0, T ]

|y(t, j0)− yd(t)| < ε.

3. EXISTING SOLUTION

The current research is motivated by Beuchert et al.
(2018), where the authors studied ILC design for a
pendulum-on-a-cart system. The authors considered the
cart’s position as an input signal 2 rendering the system
(1) to the 1-DOF system

q̈1 = c1 (c2 (q̈2 cos(q1) + g sin(q1))− cq̇1) ,

y = q1,
(3)

where q1 is the pendulum angle (the output signal), q2 is
the cart position (the input signal), and c1, c2, c, and g
are constant parameters.

Define the tracking error e := yd−y. Assuming that for the
given desired trajectory yd, there exists the corresponding
input signal qd2 and linearizing(3) around a measured
(sampled) trajectory qs1, qs2, we obtain

ë+ α1(qs, q̇s)ė+ α0(qs, q̇s)e ≈ β2(qs, q̇s)
(
q̈d2 − q̈s2

)
, (4)

where the trajectory-varying coefficients α0, α1, and β2
depend on the sampled trajectory qs1(t), qs2(t) and are thus
time-varying. In the the linearized model (4), the tracking
error e and the applied input qs2 are known, and the goal
is to iteratively learn the desired input qd2 driving the
tracking error to zero.

Discretization of (4) with a sampling time Ts yields(
1 + a1,kz

−1 + a2,kz
−2) e[k]

=
(
b0,k + b1,kz

−1 + b2,kz
−2) v[k],

(5)

where z−1 is the time-shift operator, for a signal x(t) the
notation x[k] stands for x(kTs), v := qd2 − qs2, and the
parameters ai,k for i = 1, 2 and bi,k for i = 0, 1, 2 are
computed based on α0, α1, and β2 values at the k-th
sampled trajectory point qs[k], q̇s[k].

2 That implies existence of a position controller not discussed by
Beuchert et al. (2018).
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Next, the discretized model (5) is inverted and v[k] is
computed along the sampled trajectory based on the
tracking error e[k]. After the j-th trial, the ILC update
is performed as

q2[k, j + 1] = q2[k, j] + F [v[k]] , (6)

where F [·] is a low-pass filtering operator and q2 is the
input signal in (3). Then the updated input signal q2
is applied to the system, the new sampled trajectory is
measured, and the deviation v is computed. These steps
are repeated until the desired accuracy is obtained.

Shortcomings. The discussed solution is applied to a sim-
plified 1-DOF system (3), where the linearization (4) and
the discretization (5) are well-defined. We will show in the
next sections that for the 2-DOF Furuta Pendulum system
written in the form (1) where we choose the torque τ as the
input (and thus no extra position controller is required),
the linearization is not observable at certain trajectory
segments. Thus, the minimum realization of the linearized
system is of variable trajectory-dependent order, and the
ILC via the transfer function inversion can be complicated
due to zero-poles cancellation. In the following section, we
propose another approach for the linearization-based ILC
using the observability matrix pseudo-inversion.

4. PROPOSED SOLUTION FOR FURUTA
PENDULUM

4.1 System description

Furuta Pendulum is a mechanism which consists of a
driven arm that rotates in the horizontal plane and a
pendulum attached to the arm which is free to rotate in the
vertical plane, as defined in Cazzolato and Prime (2011).
The schematic of the mechanical system is depicted in
Fig. 1a, and a photo of the Qunaser Cube equipment used
in the paper is given in Fig. 1b. Following the notation
shown in the schematic, denote the vertical angle of Arm
2 with respect to z-axis as α, where α = 0 is the downward
position, and the horizontal angle of Arm 1 with respect

to the x-axis as θ. Defining q := [θ α]
>

, the dynamics of
Furuta Pendulum can be written in the form (1) with

M(q) :=

[
p1 + p2 sin2(α) + p3 cos2(α) p4 cos(α)

p4 cos(α) p2

]
,

C(q, q̇) :=

[
−p4 sin(α)α̇2 + θ̇α̇ sin(2α) (p2 − p3)

1
2 θ̇

2 sin(2α) (p3 − p2)

]
,

G(q) :=

[
0

p5 sin(α)

]
, τ :=

[
U
0

]
.

(7)

Here pi, i = 1, . . . , 5 are constants, and U is the DC
motor torque. Since the DC motor is equipped with a
fast-time-scale current/torque controller, we assume that
the input signal U can be directly assigned. We provide
equations for the coupled mechanical parameters pi and
the corresponding numerical values in Appendix. In this
work, we are interested in learning a control making
the (non-actuated) angle α follow a predefined feasible
trajectory; thus, the output signal is chosen as y := [0 1] q.

4.2 Linearization

Applying the input signal Us to the system, we observe
the sampled trajectory αs, α̇s, and θ̇s. It is worth noting

(a) Schematic of Furuta Pendulum. (b) Quanser Cube equip-
ment.

Fig. 1. Schematic of Furuta Pendulum and a Quanser Cube
image.

that the angle θ does not affect the system dynamics,
see (7), and is not considered here. Then the following
approximation holds along the sampled trajectory:

θ̈ − θ̈s ≈ a1(α− αs) + a2(θ̇ − θ̇s)
+ a3(α̇− α̇s) + a4(U − Us)

α̈− α̈s ≈ b1(α− αs) + b2(θ̇ − θ̇s)
+ b3(α̇− α̇s) + b4(U − Us),

where the coefficients ai and bi for i = 1, . . . , 4 are
computed based on the linearization of (1) and (7) along

αs(t), α̇s(t), and θ̇s(t) and are thus time-varying.

Let αd ≡ yd be a feasible desired trajectory for the
vertical angle of the pendulum’s arm, and θd, Ud be the
corresponding unknown trajectories of θ and U . Define
the deviation signals eα := αd − αs, eθ := θd − θs and
v := Ud − Us. Define the state vector

x := [ėθ eα ėα]
>
.

Then the linearized model is given by

ẋ =

[
a2 a1 a3
0 0 1
b2 b1 b3

]
x+

[
a4
0
b4

]
v = Ax+Bv,

eα = Cx,

(8)

where A and B are time-varying matrices, and C :=
[0 1 0]. The linearized system (8) is not observable for
b2 = 0, which occurs, for instance, when the angle α is
zero, see Appendix B. Indeed, the observability matrix is
given by

O :=

 C
CA
CA2

 =

[
0 1 0
0 0 1
b2 b1 b3

]
.

Here rankO = 2 for b2 = 0, and rankO = 3 otherwise. It
implies that for some segments of the sampled trajectory
the linearization (8) is not the minimum realization of the
input-output relation between v and eα.

Recall that the signals θd and Ud are unknown, i.e., the
signals eθ and v are not available, since the only given
desired trajectory is αd. To apply the ILC strategy, it is
necessary to estimate the vector x based on the signal eα,
and then find v driving eα to zero; thus the input Ud will
be learned iteratively.
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4.3 Discretization and Inversion

Let Ts be the sampling time and let Ad and Bd be the
(time-varying) state and input matrices of the discretized
linearized system (8), respectively. Then

x[k + 1] = Adx[k] +Bdv[k]

eα[k] = Cx[k].
(9)

Assuming that the linearization changes insignificantly be-
tween consecutive steps, i.e., that the sampling frequency
is sufficiently high comparing to the trajectory variation,
the following relations at step k hold

eα[k − 3] = Cx[k − 3]

eα[k − 2] = CAdx[k − 3] + CBdv[k − 3]

eα[k − 1] = CA2
dx[k − 3] + CAdBdv[k − 3] + CBdv[k − 2]

(10)

and
eα[k] = CA3

dx[k − 3] + CA2
dBdv[k − 3]

+ CAdBdv[k − 2] + CBdv[k − 1].
(11)

Equation (10) can be rewritten as

Odx[k − 3] =

[
eα[k − 3]

eα[k − 2]− CBdv[k − 3]
eα[k − 1]− CAdBdv[k − 3]− CBdv[k − 2]

]
, (12)

where Od is the discrete-time observability matrix,

Od :=

 C
CAd
CA2

d

 .
To handle both cases when the matrix Od is of full rank
or not, we propose to estimate the state x[k − 3] as

x̂[k − 3] = O†
d

[
eα[k − 3]

eα[k − 2]− CBdv[k − 3]
eα[k − 1]− CAdBdv[k − 3]− CBdv[k − 2]

]
, (13)

where (·)† is the Moore-Penrose pseudo-inverse, and x̂ is
the estimate of the state vector x. When the observability
matrix is of full rank, the unique solution x̂[k−3] = x[k−3]
is computed. When the system is not observable, we can-
not reconstruct the exact state x[k− 3], and we apply the
pseudo-inverse approach computing the minimum-norm
x̂[k − 3] estimate. This approach allows us to uniformly
treat all the trajectory points, disregard the possible ob-
servability loss.

Given the estimate x̂[k − 3], we compute the input signal
update for the next trial following (11) as

v[k − 1] = (CBd)
−1 (eα[k]− CA3

dx̂[k − 3]

−CA2
dBdv[k − 3]− CAdBdv[k − 2]

) (14)

and
U [k, j + 1] = Us[k, j] + F [v[k]] ,

where U [·, j + 1] is the input signal to be applied at the
next trial, and F [·] is a low-pass filter operator, cf. (6). The
learning is repeated until the desired tracking accuracy ε
is achieved,

|eα[k]| < ε
for all k in the trial, or the maximum trials number Nmax
is performed.

4.4 Discussion

Singularity points. The control update (14) is not feasi-
ble when CBd = 0. The trajectory points where CBd = 0

are the singular points, see Beuchert et al. (2018). At these
points, the output value eα[k] does not depend on the pre-
vious input v[k−1]. The zero division can be avoided, e.g.,
replacing small values of CBd with a predefined constant.

Filtering. The low-pass filter F is introduced to avoid
possible instabilities caused by numerical operations. Even
though the filter helps smooth the updating signal, it also
restricts which trajectories the ILC can learn. Suppose
the desired output αd requires a high oscillating or a
discontinuous input Ud. In that case, the ILC will not
learn the desired input since the low-pass filter cuts off
the signal’s high-frequency components. Thus, the filter F
restricts the class of feasible trajectories.

Initial values. As one can see from the update law (13),
(14), the computation of x̂[k− 3] and v[k− 1] depends on
the measured deviations eα[k − i] for i = 0, 1, 2, 3 and the
previous computation results v[k − i], i = 2, 3. Obviously,
these equations cannot be used for k ≤ 3. To this end, the
following initialization steps are proposed assuming zero
initial conditions for x:

x[1] = 0,

x[2] = Bdv[1],

x[3] = Adx[2] +Bdv[2],

x[4] = Adx[3] +Bdv[3],

and

v[1] = (CBd)−1eα[2],

v[2] = (CBd)−1 (eα[3]− CAdBdv[1]) ,

v[3] = (CBd)−1
(
eα[4]− CAdBdv[2]− CA2

dBdv[1]
)
.

(15)

Learning from small error only. The linearized system is
an approximation of the nonlinear model. Therefore, when
the tracking error becomes large, the linearization (8) is
not a good approximation of (1), and the learning process
becomes inaccurate. Following the ideas of Beuchert et al.
(2018), in this study the learning is performed only for
small tracking errors. Specifically, let emax > 0 be a
predefined value and let ke be the first time instance where
the absolute value of eα overpasses emax,

|eα[ke]| ≥ emax.
Then for this trial, for all k ≥ ke the learning is stopped
and instead of (14), the signal v is further updated as

v[k − 1] = v[k − 2].

4.5 The ILC algorithm

The ILC realization for Furuta Pendulum is summarized
in Algorithm 1.

5. EXAMPLE

This section presents the simulation results of the pro-
posed ILC method for the Furuta Pendulum system. All
pendulum parameters are summarized in Appendix A.
To illustrate robustness to possible inaccuracies in model
parameters, the values used by the ILC algorithm are not
the same as the ones used for the pendulum simulation;
see Table A.1 in Appendix A. The pendulum operates in
open-loop mode, and the control signal is applied as a
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Algorithm 1: ILC algorithm for Furuta Pendulum

Result: signal UILC that tracks αd
Load parameters p1 to p5 (pendulum parameters)
Load desired trajectory αd
Set the pendulum’s initial state q0, q̇0 and the ILC
algorithm parameters
while maxt|eα(t)| > ε and Ntrial < trialsmax do

Run simulation
Collect sampled trajectory (αs, α̇s, θ̇s)
Compute eα(t)
Linearize around the sampled trajectory
Discretize the system
for the first 4 sampled points do

Compute v as in (15)
end
for all other sampled points do

Compute v as in (14)
end
Update UILC

end

Table 1. The ILC algorithm parameters.

Description Symbol Value

Initial pendulum position, rad q0
[
0 0
]>

Initial pendulum velocity, rad/s q̇0
[
0 0
]>

Sampling time, s Ts 0.02
Small-error bound, rad emax 0.3
Filter F normalized cutoff frequency, rad/sample – 0.7
Desired accuracy, rad ε 0.001
Maximum trials number Nmax 100

feedforward input. According to the proposed ILC strat-
egy, the control is updated between the trials based on the
sampled trajectories.

We apply the ILC algorithm as described in Section 4.5;
the algorithm implements equations (13), (14) subject
to the discussions given in Section 4.4. The algorithm
parameters are summarized in Table 1, where the low-pass
filter F is the first order Butterworth filter.

In order to check the capability of the algorithm to track
different trajectory profiles, 2 desired outputs are tested
with the algorithm. Although some trajectories take more
iterations to converge than others, all of them are learned
in a finite number of iterations, respecting the constraint
given by emax.

Figures 2 and 3 present the evolution of the output of
the algorithm across different trials for different desired
trajectories fed to the system.

6. CONCLUSION

We considered the Iterative Learning Control design for
the Furuta Pendulum system. Motivated by the research
of Beuchert et al. (2018), the ILC strategy is based on the
linearization of the system dynamics along the sampled
trajectory. However, for the Furuta Pendulum system, the
linearization is not observable at some points, and thus
the minimum realization order is trajectory-dependent.
To deal with that, we propose a novel method based
on the observability matrix inversion that allows uniform
processing of all trajectory points. The applicability of the

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

-2

-1

0

1

2

3

A
lp

h
a

 [
ra

d
]

40% learned

70% learned

99% learned

(a) Actual and desired output of the system across different trials.
The desired and the 99%-learned trajectories are indistinguishable.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

-0.2

-0.1

0

0.1

0.2

T
o

rq
u

e
 [

N
/m

]

40% learned 70% learned 99% learned

(b) Inputs applied across different trials.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

-2

-1

0

1

2

E
rr

o
r 

[r
a

d
]

40% learned 70% learned 99% learned

(c) Error signal across different trials.

Fig. 2. Simulation results for desired trajectory #1.

proposed method is illustrated with the Furuta Pendulum
simulations. Cases where the desired trajectory crosses sin-
gularity points might be an interesting point of attention
for future research activities.
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Appendix A. COUPLED MECHANICAL
PARAMETERS AND NUMERICAL VALUES

The coupled mechanical parameters pi, i = 1, . . . , 5 that
are introduced in (7), are defined as

p1 := J1yz +m1l
2
1 +m2L

2
1, p2 := J2yz +m2l

2
2,

p3 := J2x, p4 := m2L1l2, p5 := gm2l2,

where J1yz, J2yz, J2x, m1, m2, l1, l2, L1, and g are physical
parameters explained in Table A.1; the corresponding
numerical values are also given therein.

Appendix B. LINEARIZATION COEFFICIENT

The linearization coefficient b2, see (8), is defined as

b2 :=
cos(α) sin(α)(2p2 − 2p3)κ(α, θ̇)

p22 sin2(α) + p3p3 cos(α)2 + p1p2 − p24 cos2(α)
,

where

κ(α, θ̇) :=
(
p1 + p2 − (p2 − p3) cos2(α)

)
θ̇ + p4α̇ cos(α).
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