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We consider Iterative Learning Control for the Furuta Pendulum nonlinear mechanical system, where the goal is to learn the input torque such that the pendulum angle follows a reference. We show that the linearization of the considered system is of variable trajectorydependent order and thus some existing solutions do not apply. We propose a novel method based on the observability matrix inversion allowing to deal with the variable-order minimum realization. The applicability of the proposed method is illustrated with simulations.

INTRODUCTION

Iterative Learning Control (ILC) is a popular methodology for improving transient response and tracking performance when a control task is repeatedly executed. When the classical feedback control produces (up to non-repetitive disturbances) the same trajectory with the same tracking error on each trial, the ILC iteratively adjusts the command between the trials aiming for zero tracking error in plant operation. After each trial, the observed system's behavior is compared to the desired reference. The behavior deviation is then used for the iterative control signal update (learning), improving the control task execution performance. [START_REF] Uchiyama | Formation of high-speed motion pattern of a mechanical arm by trial[END_REF] and [START_REF] Arimoto | Bettering operation of dynamic systems by learning: A new control theory for servomechanism or mechatronics systems[END_REF] initially proposed the ILC for mechanical systems, and nowadays, it is widely used for a broad class of control problems, e.g., in the process control, see the surveys by [START_REF] Bristow | A survey of iterative learning control[END_REF] and [START_REF] Wang | Survey on iterative learning control, repetitive control, and run-torun control[END_REF]. It is worth noting one can use the ILC together with a stabilizing feedback control or as a stand-alone feedforward governor. In the stand-alone case, the plant operates in open-loop mode during a trial, and the control signal is then updated between the trials.

The ILC is typically applied to repetitive problems, such as repetitive trajectories in robotics (Norrlof (2002)), chemistry reactors operation (Lee and Lee ( 2007)), or highperformance positioning systems (Huang et al. (2013)). The use of the information contained in the repetitive task executions distinguishes the ILC from the direct or indirect adaptive control [START_REF] Åström | Adaptive control[END_REF]; Sastry and Bodson (2011)). Indeed, in adaptive control, one updates the controller parameters directly or indirectly, e.g., via online system identification. In contrast, the ILC methods update the control signal itself, and thus it can be considered a non-parametric approach. Additionally, adaptive control methods typically work along a singletrial trajectory and do not benefit from the repetitive nature of the executed task.

Considering the control solutions motivated by the recent advances in machine learning, a certain similarity can be found between the ILC and the Reinforcement Learning (RL) methods, as was shown by [START_REF] Zhang | A preliminary study on the relationship between iterative learning control and reinforcement learning[END_REF]. However, the RL is typically a model-free approach that learns only from the observed reward and does not use the plant model. In contrast, the ILC methods are often model-based and assume that a plant model is available and can be used for the control signal update. Thus, the model-based ILC requires a significantly smaller number of trials to arrive at the optimal (in a certain sense) solution than the model-free RL. This difference becomes crucial when the trials must be physically performed and can hardly be simulated with the desired accuracy, i.e. when the simulation-based learning is not possible.

Due to the repetitive task nature, one standard restriction of the ILC was that the trajectories must always start from the same initial conditions. However, this requirement can be relaxed in practice, see, e.g., Hoelzle et al. (2010); [START_REF] Wu | Neural network-based adaptive learning control for robot manipulators with arbitrary initial errors[END_REF]; moreover, an extension to non-repetitive trajectories was recently proposed by Jin (2018a).

Nowadays, an important research direction is the ILC for nonlinear systems, where several solutions based on Lipschitz conditions, contraction analysis, or composite energy functions are available, see [START_REF] Xu | A survey on iterative learning control for nonlinear systems[END_REF]Jin (2018b). One common approach is based on linear ILC techniques applied to linearization of the original nonlinear system along the performed trajectory, see Lu et al. (2017). For example, [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF] used this idea studying the trajectory-learning problem for a pendulum-on-a-cart system, where they also restricted the ILC algorithm to learn only for small linearization errors.

The paper goal. In this work, we consider the Furuta Pendulum nonlinear mechanical system, where the linearization is not observable at specific trajectory segments. Our goal is to design an ILC approach to learn a reference trajectory for such a system.

It is worth noting that ILC algorithms were also applied in the context of inverted pendulums in previous works. However, the majority of studies considered the cart-pendulum dynamics: [START_REF] Schöllig | Optimization-based iterative learning control for trajectory tracking[END_REF] proposed a combination of the ILC with convex optimization techniques, [START_REF] Gao | Inverted pendulum system control by using modified iterative[END_REF] presented a PID-type ILC algorithm for the trajectory tracking problem, and [START_REF] Zhang | Iterative learning control study on single inverted pendulum[END_REF] proposed a solution using a closed-loop ILC algorithm based on Lyapunov theory. In contrast to those works, we consider the Furuta Pendulum dynamics, for which we propose a novel linearization-based solution using the observability matrix pseudo-inversion. This research is motivated by [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF] and extends the results presented therein. More precisely, [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF] study the pendulum-on-a-cart system where the cart's position is considered an input for the pendulum's dynamics. The authors linearize the system along its trajectory, yielding a transfer function; this transfer function is further inverted, and the ILC is applied to learn the reference trajectory.

Novelty and Contribution. In this work, we show that the method of [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF] cannot be directly applied to the mechanical system in which we are interested since the minimum realization of the linearized system is of variable trajectory-dependent order. To deal with this problem, we propose a novel approach based on the observability matrix pseudo-inversion that allows for the desired trajectory learning. We consider the Furuta Pendulum system choosing the torque as the input signal, and thus no extra position controller is required.

The rest of the paper is organized as follows. The problem statement is given in Section 2, and the (motivating to our research) existing solution is discussed in 3. The proposed ILC strategy is presented in 4, and the illustrative learning results for the considered Furuta Pendulum system are given in Section 5. The paper results are discussed and summarized in Conclusion.

PROBLEM STATEMENT

Motivated by the Furuta Pendulum example, we consider a mechanical system with two degrees of freedom (DOF) given by1 M(q)q + C(q, q) + G(q) = τ, y = Dq,

where q = [q 1 q 2 ] , q 1 and q 2 are the generalized coordinates, τ is the generalized torque considered here as an input signal, M(q) is the inertia matrix, C(q, q) is the vector of the centrifugal and Coriolis forces, and G(q) is the vector of the gravity force. We assume that both the generalized coordinates q and their time derivatives q are available, i.e., measured or estimated. The initial conditions of (1) are q(0) = q 0 ∈ R2 and q(0) = q0 ∈ R 2 . The scalar signal y is the trajectory output specified by the matrix D ∈ R 1×2 .

The desired trajectory y d (t) is defined on the finite time interval [0, T ] for some T > 0, and the initial conditions of (1) satisfy the desired trajectory, i.e., y d (0) = y(0) = Dq 0 and ẏd (0) = ẏ(0) = D q0 . Moreover, we assume that the desired trajectory y d is feasible, i.e., there exists an (unknown) input signal τ d such that the solution of (1) for τ (t) ≡ τ d (t) satisfies y d (t) ≡ y(t) for all t ∈ [0, T ]. Note that the feasibility of y d implies that it is bounded and twice differentiable.

The goal is to learn in several trials the open-loop control signal τ capable of generating (with a certain accuracy) the desired trajectory y d , where the control signal is updated between trials. Let us denote the control action applied at j-th trial as τ (t, j) and the solution of (1) obtained for τ (t, j) as q(t, j) and y(t, j), where j ∈ N and t ∈ [0, T ].

Then an iterative learning control algorithm can be written as τ (t, j + 1) = ILC (y d (t), q(t, j), q(t, j), τ (t, j)) .

(2) In other words, the ILC algorithm (2) updates the control input based on the desired trajectory, the control applied on the current trial, and the observed system behavior.

With these definitions, the goal is to design an ILC algorithm of the form (2) such that given the feasible trajectory y d and the desired accuracy > 0, there exists j 0 ∈ N such that the solution of (1) with the input τ (t, j 0 ) satisfies for all t ∈ [0, T ] |y(t, j 0 ) -y d (t)| < .

EXISTING SOLUTION

The current research is motivated by [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF], where the authors studied ILC design for a pendulum-on-a-cart system. The authors considered the cart's position as an input signal 2 rendering the system (1) to the 1-DOF system q1 = c 1 (c 2 (q 2 cos(q 1 ) + g sin(q 1 ))

-c q1 ) , y = q 1 , (3) 
where q 1 is the pendulum angle (the output signal), q 2 is the cart position (the input signal), and c 1 , c 2 , c, and g are constant parameters.

Define the tracking error e := y d -y. Assuming that for the given desired trajectory y d , there exists the corresponding input signal q d 2 and linearizing(3) around a measured (sampled) trajectory q s 1 , q s 2 , we obtain ë + α 1 (q s , qs ) ė + α 0 (q s , qs )e ≈ β 2 (q s , qs ) qd 2 -qs 2 , (4) where the trajectory-varying coefficients α 0 , α 1 , and β 2 depend on the sampled trajectory q s 1 (t), q s 2 (t) and are thus time-varying. In the the linearized model ( 4), the tracking error e and the applied input q s 2 are known, and the goal is to iteratively learn the desired input q d 2 driving the tracking error to zero.

Discretization of (4) with a sampling time

T s yields 1 + a 1,k z -1 + a 2,k z -2 e[k] = b 0,k + b 1,k z -1 + b 2,k z -2 v[k], (5) 
where z -1 is the time-shift operator, for a signal x(t) the notation x[k] stands for x(kT s ), v := q d 2 -q s 2 , and the parameters a i,k for i = 1, 2 and b i,k for i = 0, 1, 2 are computed based on α 0 , α 1 , and β 2 values at the k-th sampled trajectory point q s [k], qs [k].

Next, the discretized model ( 5) is inverted and v[k] is computed along the sampled trajectory based on the tracking error e[k]. After the j-th trial, the ILC update is performed as

q 2 [k, j + 1] = q 2 [k, j] + F [v[k]] , (6 
) where F [•] is a low-pass filtering operator and q 2 is the input signal in (3). Then the updated input signal q 2 is applied to the system, the new sampled trajectory is measured, and the deviation v is computed. These steps are repeated until the desired accuracy is obtained.

Shortcomings. The discussed solution is applied to a simplified 1-DOF system (3), where the linearization (4) and the discretization (5) are well-defined. We will show in the next sections that for the 2-DOF Furuta Pendulum system written in the form (1) where we choose the torque τ as the input (and thus no extra position controller is required), the linearization is not observable at certain trajectory segments. Thus, the minimum realization of the linearized system is of variable trajectory-dependent order, and the ILC via the transfer function inversion can be complicated due to zero-poles cancellation. In the following section, we propose another approach for the linearization-based ILC using the observability matrix pseudo-inversion.

PROPOSED SOLUTION FOR FURUTA PENDULUM

System description

Furuta Pendulum is a mechanism which consists of a driven arm that rotates in the horizontal plane and a pendulum attached to the arm which is free to rotate in the vertical plane, as defined in [START_REF] Cazzolato | On the dynamics of the furuta pendulum[END_REF].

The schematic of the mechanical system is depicted in Fig. 1a, and a photo of the Qunaser Cube equipment used in the paper is given in Fig. 1b. Following the notation shown in the schematic, denote the vertical angle of Arm 2 with respect to z-axis as α, where α = 0 is the downward position, and the horizontal angle of Arm 1 with respect to the x-axis as θ. Defining q := [θ α] , the dynamics of Furuta Pendulum can be written in the form (1) with

M(q) := p 1 + p 2 sin 2 (α) + p 3 cos 2 (α) p 4 cos(α) p 4 cos(α) p 2 , C(q, q) := -p 4 sin(α) α2 + θ α sin(2α) (p 2 -p 3 ) 1 2 θ2 sin(2α) (p 3 -p 2 ) , G(q) := 0 p 5 sin(α) , τ := U 0 . (7) 
Here p i , i = 1, . . . , 5 are constants, and U is the DC motor torque. Since the DC motor is equipped with a fast-time-scale current/torque controller, we assume that the input signal U can be directly assigned. We provide equations for the coupled mechanical parameters p i and the corresponding numerical values in Appendix. In this work, we are interested in learning a control making the (non-actuated) angle α follow a predefined feasible trajectory; thus, the output signal is chosen as y := [0 1] q.

Linearization

Applying the input signal U s to the system, we observe the sampled trajectory α s , αs , and θs . It is worth noting that the angle θ does not affect the system dynamics, see (7), and is not considered here. Then the following approximation holds along the sampled trajectory: θθs ≈ a 1 (α -α s ) + a 2 ( θθs )

+ a 3 ( α -αs ) + a 4 (U -U s ) α -αs ≈ b 1 (α -α s ) + b 2 ( θ -θs ) + b 3 ( α -αs ) + b 4 (U -U s ),
where the coefficients a i and b i for i = 1, . . . , 4 are computed based on the linearization of ( 1) and ( 7 Then the linearized model is given by ẋ =

a 2 a 1 a 3 0 0 1 b 2 b 1 b 3 x + a 4 0 b 4 v = Ax + Bv, e α = Cx, (8) 
where A and B are time-varying matrices, and C := [0 1 0]. The linearized system (8) is not observable for b 2 = 0, which occurs, for instance, when the angle α is zero, see Appendix B. Indeed, the observability matrix is given by

O :=   C CA CA 2   = 0 1 0 0 0 1 b 2 b 1 b 3 .
Here rank O = 2 for b 2 = 0, and rank O = 3 otherwise. It implies that for some segments of the sampled trajectory the linearization ( 8) is not the minimum realization of the input-output relation between v and e α .

Recall that the signals θ d and U d are unknown, i.e., the signals e θ and v are not available, since the only given desired trajectory is α d . To apply the ILC strategy, it is necessary to estimate the vector x based on the signal e α , and then find v driving e α to zero; thus the input U d will be learned iteratively.

Discretization and Inversion

Let T s be the sampling time and let A d and B d be the (time-varying) state and input matrices of the discretized linearized system (8), respectively. Then

x[k + 1] = A d x[k] + B d v[k] e α [k] = Cx[k]. (9) 
Assuming that the linearization changes insignificantly between consecutive steps, i.e., that the sampling frequency is sufficiently high comparing to the trajectory variation, the following relations at step k hold

eα[k -3] = Cx[k -3] eα[k -2] = CA d x[k -3] + CB d v[k -3] eα[k -1] = CA 2 d x[k -3] + CA d B d v[k -3] + CB d v[k -2] (10) and e α [k] = CA 3 d x[k -3] + CA 2 d B d v[k -3] + CA d B d v[k -2] + CB d v[k -1]. ( 11 
)
Equation ( 10) can be rewritten as

O d x[k -3] = eα[k -3] eα[k -2] -CB d v[k -3] eα[k -1] -CA d B d v[k -3] -CB d v[k -2] , (12)
where O d is the discrete-time observability matrix,

O d :=   C CA d CA 2 d   .
To handle both cases when the matrix O d is of full rank or not, we propose to estimate the state x[k -3] as

x[k -3] = O † d eα[k -3] eα[k -2] -CB d v[k -3] eα[k -1] -CA d B d v[k -3] -CB d v[k -2] , (13)
where (•) † is the Moore-Penrose pseudo-inverse, and x is the estimate of the state vector x. When the observability matrix is of full rank, the unique solution x[k-3] = x[k-3] is computed. When the system is not observable, we cannot reconstruct the exact state x[k -3], and we apply the pseudo-inverse approach computing the minimum-norm x[k -3] estimate. This approach allows us to uniformly treat all the trajectory points, disregard the possible observability loss.

Given the estimate x[k -3], we compute the input signal update for the next trial following (11) as

v[k -1] = (CB d ) -1 e α [k] -CA 3 d x[k -3] -CA 2 d B d v[k -3] -CA d B d v[k -2] (14) 
and

U [k, j + 1] = U s [k, j] + F [v[k]] ,
where U [•, j + 1] is the input signal to be applied at the next trial, and F [•] is a low-pass filter operator, cf. (6). The learning is repeated until the desired tracking accuracy is achieved, |e α [k]| < for all k in the trial, or the maximum trials number N max is performed.

Discussion

Singularity points. The control update ( 14) is not feasible when CB d = 0. The trajectory points where CB d = 0 are the singular points, see [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF]. At these points, the output value e α [k] does not depend on the previous input v[k -1]. The zero division can be avoided, e.g., replacing small values of CB d with a predefined constant.

Filtering. The low-pass filter F is introduced to avoid possible instabilities caused by numerical operations. Even though the filter helps smooth the updating signal, it also restricts which trajectories the ILC can learn. Suppose the desired output α d requires a high oscillating or a discontinuous input U d . In that case, the ILC will not learn the desired input since the low-pass filter cuts off the signal's high-frequency components. Thus, the filter F restricts the class of feasible trajectories.

Initial values. As one can see from the update law ( 13), ( 14), the computation of x[k -3] and v[k -1] depends on the measured deviations e α [k -i] for i = 0, 1, 2, 3 and the previous computation results v[k -i], i = 2, 3. Obviously, these equations cannot be used for k ≤ 3. To this end, the following initialization steps are proposed assuming zero initial conditions for x:

x

[1] = 0, x[2] = B d v[1], x[3] = A d x[2] + B d v[2], x[4] = A d x[3] + B d v[3], and v[1] = (CB d ) -1 eα[2], v[2] = (CB d ) -1 (eα[3] -CA d B d v[1]) , v[3] = (CB d ) -1 eα[4] -CA d B d v[2] -CA 2 d B d v[1] . (15) 
Learning from small error only. The linearized system is an approximation of the nonlinear model. Therefore, when the tracking error becomes large, the linearization (8) is not a good approximation of (1), and the learning process becomes inaccurate. Following the ideas of [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF], in this study the learning is performed only for small tracking errors. Specifically, let e max > 0 be a predefined value and let k e be the first time instance where the absolute value of e α overpasses e max , |e α [k e ]| ≥ e max . Then for this trial, for all k ≥ k e the learning is stopped and instead of ( 14), the signal v is further updated as

v[k -1] = v[k -2].

The ILC algorithm

The ILC realization for Furuta Pendulum is summarized in Algorithm 1.

EXAMPLE

This section presents the simulation results of the proposed ILC method for the Furuta Pendulum system. All pendulum parameters are summarized in Appendix A.

To illustrate robustness to possible inaccuracies in model parameters, the values used by the ILC algorithm are not the same as the ones used for the pendulum simulation; see 

CONCLUSION

We considered the Iterative Learning Control design for the Furuta Pendulum system. Motivated by the research of [START_REF] Beuchert | Design of an iterative learning control with a selective learning strategy for swinging up a pendulum[END_REF], the ILC strategy is based on the linearization of the system dynamics along the sampled trajectory. However, for the Furuta Pendulum system, the linearization is not observable at some points, and thus the minimum realization order is trajectory-dependent.

To deal with that, we propose a novel method based on the observability matrix inversion that allows uniform processing of all trajectory points. The applicability of the proposed method is illustrated with the Furuta Pendulum simulations. Cases where the desired trajectory crosses singularity points might be an interesting point of attention for future research activities. (minor) axes y and z, Arm 1 J 1yz 6.04 • 10 -5 6 • 10 -5 (major) axis x, Arm 2 J 2x 3.1 • 10 -7 3.3 • 10 -7 (minor) axes y and z, Arm 2 J 2yz 3.3 • 10 -5
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 1 Fig. 1. Schematic of Furuta Pendulum and a Quanser Cube image.

  ) along α s (t), αs (t), and θs (t) and are thus time-varying. Let α d ≡ y d be a feasible desired trajectory for the vertical angle of the pendulum's arm, and θ d , U d be the corresponding unknown trajectories of θ and U . Define the deviation signals e α := α d -α s , e θ := θ d -θ s and v := U d -U s . Define the state vector x := [ ėθ e α ėα ] .
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 2 Fig. 2. Simulation results for desired trajectory #1.

  Actual and desired output of the system across different trials. The desired and the 99%-learned trajectories are indistinguishable. Error signal across different trials.
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 3 Fig. 3. Simulation results for desired trajectory #2.

  Table A.1 in Appendix A. The pendulum operates in open-loop mode, and the control signal is applied as a Figures 2 and 3 present the evolution of the output of the algorithm across different trials for different desired trajectories fed to the system.
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	Description	Symbol Pendulum ILC algorithm
	Mass of the Arm 1, kg	m 1	0.092	0.080
	Mass of the Arm 2, kg	m 2	0.024	0.025
	Pivot-to-center (of mass) dis-	l 1	0.016	0.02
	tance, Arm 1, m			
	Pivot-to-pivot distance, Arm 1,	L 1	0.085	0.09
	m			
	Pivot-to-center (of mass) dis-	l 2	0.058	0.065
	tance, Arm 2, m			
	Moments of inertia, kg•m 2 :			
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Here and below the argument of time t is omitted when clear form context.
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feedforward input. According to the proposed ILC strategy, the control is updated between the trials based on the sampled trajectories.

We apply the ILC algorithm as described in Section 4.5; the algorithm implements equations ( 13), ( 14) subject to the discussions given in Section 4.4. The algorithm parameters are summarized in Table 1, where the low-pass filter F is the first order Butterworth filter.

In order to check the capability of the algorithm to track different trajectory profiles, 2 desired outputs are tested with the algorithm. Although some trajectories take more iterations to converge than others, all of them are learned in a finite number of iterations, respecting the constraint given by e max .

Appendix A. COUPLED MECHANICAL PARAMETERS AND NUMERICAL VALUES

The coupled mechanical parameters p i , i = 1, . . . , 5 that are introduced in (7), are defined as