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ABSTRACT A group sparsity penalized CSI in the wavelet domain is proposed to alleviate ill-posedness
within the framework of a contrast-source inversion (CSI) method. It is then applied to the retrieval of a
large inhomogeneous dielectric scatterer from time-harmonic single-frequency data. As dependency exists
between wavelet coefficients at different scales, referred to as the parent-child relationship, it enables to
yield the wavelet quad tree structure. Therefore, wavelet coefficients can be regarded not only as pixel-
wise sparse, but also group-wise sparse. Focus is put on using the dual-tree complex wavelet transform
(CWT) to properly achieve the sought-after group-wise sparse representation of the spatial distribution
of the contrast. It provides a �2,1 norm which is added to the standard cost functional to enforce group
sparsity onto the wavelet coefficients of the spatially-varying contrast. The replication strategy is combined
with the proximal method in order to solve the overlapping group penalized problem. Simulations from
synthetic data in different configurations with in particular different signal-to-noise ratios illustrate pros
and cons of the proposed method. The approach is shown to overcome the standard CSI method in
demanding situations. Comparisons with the discrete wavelet transform (DWT) as usually performed and
the �1 norm confirm the advantage of the proposed methodology.

INDEX TERMS Contrast source inversion, dual-tree complex wavelet transform, group sparsity, wavelet
tree, �2,1 norm.

I. INTRODUCTION

INVERSE scattering problems (ISPs) [1] are about the
retrieval of the characteristics of an unknown or partially

unknown scatterer, such as its geometry or the distribution
of its physical parameters, from the knowledge of the fields
it scatters when probed by known sources (the calculation
of such fields results from the solution of a direct scatter-
ing problem). Those are relevant to various applications [2],
including non-destructive testing [3], medical imaging [4],
and remote sensing [5].
A wide range of solution techniques has been applied

to tackle the ISPs, which may be grouped into two cate-
gories, deterministic methods and stochastic methods. Some
deterministic methods like Rytov [6] and Born [7] approx-
imations employ first-order approximations to linearize the

problem. This type of method requires less computational
time, but they are mostly used for weak-enough scatter-
ers. To more rigorously deal with high contrast scatterers, a
number of iterative methods like the contrast source inver-
sion method (CSI) [8], the distorted Born iterative method
(DBIM) [9], and the subspace-based optimization method
(SOM) [10], and their many variants, have been developed.
In the iterative process which those methods always entail,
the optimal solution is sought step by step according to some
search direction and the step length is determined at each
iteration.
Compared with first-order-approximation-based methods,

the latter suffer from higher computational burden yet enjoy
a much wider range of applications. However, deterministic
methods are essentially local optimization methods. They are
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very efficient in finding local optimal solutions, but hardly
have the ability to get global optimal solutions in multi-
extremal problems unless provided with a reasonable initial
guess, i.e., ill-posedness in Hadamard’s sense remains an
issue.
Stochastic approaches, e.g., colony optimization

method [11] and genetic algorithms [12], to mention
but a few among many, have a better capability to find
global optimal solutions, yet they are generally less popular
in the community due to their often large computational
burden—one will not dwell further on those, and focus
onto the non-linearized deterministic approaches, and ways
one can overcome ill-posedness by benefiting from proper
representations of the sought scatterer and from suitable
priors.
To quickly summarize, the inverse problem is essentially

an optimization problem in which one wishes to minimizes
the discrepancy between obtained results and expected ones.
However, ill-posed inverse problems usually call for addi-
tional penalty terms to regularize the optimization faced
with.
To that intent, various regularization schemes can be

applied [13], generally inserted as prior information or con-
straints, such as positivity [8], total variation (TV) [14], or
sparsity [15]. In [16], the TV regularization is implemented
within the CSI framework as a multiplicative regulariza-
tion term that leads to a better reconstruction quality and
improves robustness to noise. In the DBIM algorithm,
Tikhonov regularization [17] is employed by default in order
to circumvent the instability of the problem. Edge-preserving
regularization has also been introduced into ISPs [18], [19] to
improve the reconstruction quality with respect to noisy cor-
rupted data while preserving the edges of the images. In [19],
Huber regularization is incorporated with CSI method as a
smoothness constraint.
Using sparsity as prior information is becoming increas-

ingly popular due to its potential to effectively solve the
inverse problem and its robustness to noise. A direct way
to find the sparse solution in an optimization problem is to
minimize the number of elements of the entries, which can
be realized by adding a �0 penalty term into the cost function
the minimum of which is sought. However, the optimization
of the �0 norm [20] that counts the number of non-zeros
elements of a vector is well known as a NP-hard problem
and thus it is not computationally practical. Usually, such an
approach can be replaced by indirect approaches including
the use of �1 norm [21], the solution of which has been
verified to be very close to the sparsest solution.
Sparsity has been widely investigated and incorporated

within classical computational methods in order to solve
ISPs [22]. In [23], the fast iterative shrinkage-thresholding
algorithm (FISTA) [24] is combined with a modified gradient
method (MGM) to enforce the sparsity in both non-sparse
and sparse domain, where the discrete wavelet transform
(DWT) [25] is employed to reach a sparse representation of
the unknown. In [23], an iterative algorithm incorporating

a Tikhonov functional with a sparsity promoting �1 term
is proposed, which allows a sharp reconstruction in the
sparse domain. Iterative shrinkage thresholding algorithm
(ISTA) [24] is implemented within the framework of a
boundary integral method in [26] to solve the optimization
problem with zeroth/first-norm penalty term. The proposed
method is proved to be able to yield a sharper and more
accurate reconstruction with benefiting from a faster con-
vergence speed. In [27], a joint �1-�2 norm regularized
BIM approach in the wavelet domain is proposed, where
appropriate weights adaptively updated at each iteration are
allocated to wavelet coefficients at different levels. This
scheme enables the performance to be independent of the
initial weights. In [28] and [29], DBIM is incorporated
with �2-�1 and �1-�0 joint norm, respectively, solved by
various optimization techniques [30], [31]. In [32], two
sparsity-enhanced approaches within the CSI framework are
proposed, the �1 norm being used as weighted penalty
term and constraint. Therein, the stationary wavelet trans-
form (SWT) [33] is adopted to project the unknown onto a
redundant dictionary. Compressive sensing (CS) based recon-
struction algorithms have also been exploited [34], [35].
In [36], the commonly used DWT offers a sparse rep-
resentation of the profile to be reconstructed, then the
linearized inverse scattering problem within the first-order
Born approximation framework is solved with the Bayesian
version CS-based procedure.
The aforementioned �0, �1 and �2 norms regularize each

element individually regardless of its spatial position. When
the elements are not only sparse but also have potential
structure features, using these norms as regularization terms
does not enable to extract the structure information. Mixed
norms [37] such as �2,1 or �∞,1 are usually employed to
impose both sparsity and structural prior information in the
optimization problem [38]. In [39], as the row vectors of the
contrast source share a common non-zero support, a two-
step sparse recovery process is investigated where the �2,1
norm is to enforce joint sparsity on the contrast source.
In the present contribution, a group sparsity penalized

approach within the framework of CSI is proposed. The �2,1
norm is added to the cost functional of CSI to impose group
sparsity on the contrast in the transformed domain. At each
iteration, the contrast is decomposed by the dual-tree com-
plex wavelet transform (CWT) [40], which both makes it
possible to represent the contrast in a sparse manner and
yields the structure information of the contrast. Herein, the
structure information provided by dual-tree CWT lies in
the wavelet tree structure [41], led by the parent-child rela-
tionship [42] between wavelet coefficients across different
scales.
The contribution is organized as follows. The forward

problem is described in Section II. The proposed methods
are developed in Section III. Numerical illustrations are dis-
cussed in Section IV. Conclusion and persepectives are is
in Section V. Preliminary bricks of the analysis are found
in summaries of conferences [43] and [44], the first with
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focus on the multi-scale wavelet-based method, the second
with focus on how soft-thresholding can help to sparsify the
reconstruction.

II. FORWARD PROBLEM
The scenario considered here is of a time-harmonic two-
dimensional electromagnetic scattering problem in the trans-
verse magnetic (TM) polarization with time convention
e− iωt, ω angular frequency. The inhomogeneous linear
isotropic scatterer is embedded within a homogeneous linear
isotropic medium D with permittivity of air ε0 and perme-
ability μ0. εr(r) and σ(r) denote the relative permittivity and
conductivity of the scatterer with r ∈ D as a given obser-
vation point. TM waves generated by Ns ideal line sources
located outside the scatterer at positions rs illuminate it. For
each illumination, the scattered fields are collected by Nr
ideal receivers located at positions rr along a circle of obser-
vation S , not intersecting the scatterer, and not necessarily
jointive with the sources.
The scattered electric field Ediff(rr, rs) collected by a

receiver placed at rr and associated with the source placed
at rs satisfies the integral equation

Ediff(rr, rs) =
∫
D
G

(
rr, r′)J(r′, rs

)
dr′, r ∈ D (1)

with

J(r, rs) = χ(r)Etot(r, rs) (2)

G(r, r′) is the Green’s function which represents the electro-
magnetic response to a line source radiating in free space.
In the case of two dimensions, it is given by G(r, r′) =
−iωμ0

4 H(1)
0 (kB‖r− r′‖), where H(1)

0 is the zero-order Hankel
function of the first kind.
The contrast function is defined as

χ(r) = k2(r) − k2
B (3)

where k2(r) = ω2ε0εr(r)μ0 + iωμ0σ(r), k2
B = ω2ε0μ0.

J(r, rs) and E(r, rs) are the equivalent current and the total
electric field induced within the object by the incident wave.
The total electric field can be obtained according to

Etot(r, rs) = Einc(r, rs) +
∫
D
G

(
r, r′)J(r′, rs

)
dr′, r ∈ D

(4)

where Einc(r, rs) is the incident field.
Using a pulse-basis point matching method of moments

(MoM), the domain D is discretized in N small square pixels
so that the electric field and the contrast can be considered
as constants within each pixel. The discretized version of
the previous equations stands as

Ediff
ir,is =

N∑
i=1

GS;ir,iJi,is (5)

Etot
i,is = Einc

i,is + GD;i,iJi,is (6)

with is = 1, . . . ,Ns, ir = 1, . . . ,Nr, i = 1, . . . ,N, and
Ji,is = diag(χi)Etot

i,is
the contrast source. Subscripts D and S

of the operators indicate the location of the point r, and the
operators are identical in all other aspects:

GD, SJi,is = k2
B

∫
D
G

(
r, r′)J(r′, rs

)
dr′ r ∈ D or r ∈ S (7)

The forward problem is defined as the calculation of Ediff
ir,is

from the knowledge of χi and the inverse scattering problem
is to retrieve χi from Ediff

ir,is
, which is nonlinear and ill-posed.

III. INVERSION ALGORITHM
Due to the non-linearity and ill-posedness of ISPs, classical
iterative methods generally yield local minima, as already
underlined. Sparsity regularization is proposed here to incor-
porate a prior information on the unknown into the CSI
method. In this section, the notion of group sparsity and
how to achieve it are first introduced. The dual-tree CWT is
then explained, as is used as the sparsity-inducing transform
as well as to provide the structural dependencies of the data.
Finally, the implementation of the group sparsity regularizer
into the CSI framework is considered.

A. SPARSITY INDUCING NORMS
1) SPARSITY THROUGH A SINGLE NORM

A vector x of dimension M can be considered as sparse
if most of its elements are zero, or almost zero. For an
optimization problem, sparsity can be directly achieved by
adding a regularization term that penalizes the number of
non-zero elements of the vector. Referring to

x = arg min
x

{
f + ‖x‖q

}
(8)

q = 0 leads to the penalization on x using the �0 norm
defined as ‖x‖0 = #{i = 1, . . . ,M|xi �= 0}.

Solving optimization problems with the non-convex �0
norm is as difficult as trying out all possible non-zeros sup-
ports of coefficients. A tractable approach to solving the �0
minimization problem is to replace it with a reasonable and
convex approximation. When q = 1, the second term in (8)
is the �1 norm, which is a natural approximation of �0 norm,
defined as ‖x‖1 = ∑M

i=1 |xi|.
Due to the presence of the �1 norm, the whole cost func-

tion becomes non-differentiable so that the existence of the
gradient is not always guaranteed. One possible manner to
deal with this kind of optimization problem is to use the
subgradient technique [45], which allows to approximate the
gradient of the non-differentiable function at non-derivable
points. What one adopts in the present work is another well-
known approach called proximal algorithm [46]. For the
optimization problem minx {f (x) + g(x)}, x can be updated
at iteration k according to

xk = proxtg(�)
(
xk−1 − t∇f

(
xk−1

))
(9)

wherein proxtg(�)(x) is the proximal operator of g(�) at point
x with t the descent step size. When g(x) = ‖x‖1, the
corresponding proxtg(�)(x) is the soft-thresholding operator.
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Sparsity Through the Mixed Norm: In the previous for-
mulation with �1 norm, every element is regarded as
independent from the others. In some situations, however,
the elements of a vector share the same support, or depen-
dency relationships exist between different elements, which
allows them to be divided into subgroups. It is then easy to
see that the elements within a given group can be selected or
deleted simultaneously, benefiting from this prior structure
information. This is the so-called sparse group Lasso—least
absolute shrinkage and selection operator—problem, which
can be exploited using the mixed sparsity inducing norms,
e.g., the �2,1 or �∞,1 norms.
In this work, the �2,1 norm is used. Let xgi be the sub-

vectors of x indexed by gi, i = 1, . . . , s where s is the
number of subgroups. The mixed �2,1 norm is defined as

∥∥xg∥∥2,1 =
s∑
i=1

∥∥xgi
∥∥

2 (10)

For a non-overlapping group Lasso problem, the proximal
operator of �2,1 has a closed-form solution [37]

x′gi = xgi ×
(

1 − λ∥∥xgi
∥∥

2

)

+
, ∀i (11)

As for the overlapping group Lasso problem where an
element can appear in different sub-groups, the problem
becomes more complicated since the standard group Lasso
optimization strategies cannot be used directly.
Much attention has been paid to exploiting the overlap-

ping situations, especially for those with a hierarchical tree
structure. In [47], an approach to deal with tree structured
group Lasso problems is offered, in which the Moreau-
Yosida regularization is employed and its analytical solution
is given. In [48], the dual approach is used, and the proximal
operator of the norm associated with overlapping hierarchi-
cal groups proved to be exactly computable, which can be
regarded as the composition of elementary proximal opera-
tors. In [49], [50], [51], replication strategies are proposed
which consist in decoupling the overlapping groups from
each other by replicating the elements appearing repeatedly.
With the decoupled groups, this problem can be tackled by
using the same proximal operator as in the non-overlapping
case.

B. DUAL-TREE COMPLEX WAVELET TRANSFORM
Dual-tree CWT is an enhancement of the discrete wavelet
transform (DWT), with some important additional properties.
The DWT of a signal x is the response obtained by passing it
through a filter bank. There are two filters involved: a scal-
ing filter, which is the low-pass filter, and a wavelet filter,
which is the high-pass filter. The transformed coefficients
of a 2-D DWT can be divided into approximation and
detail coefficients. More precisely, three subbands of detail
coefficients are offered, henceforth denoted as HL, LH and
HH which define the horizontal features, vertical features
and diagonal features of the original image, respectively.

FIGURE 1. Wavelet quadtree structure of transformed 2-D image. For a detail
coefficient located at (x, y) at the decomposition level L, its four children will be in the
next decomposition level L − 1, located at (2x − 1, 2y − 1), (2x − 1, 2y), (2x, 2y − 1),
(2x, 2y), resp.

The DWT coefficients have two main properties. First,
detail transform coefficients are naturally sparse, which
enables near-optimal image processing based on simple
thresholding operation. Second, coefficients across different
scales can be regarded as statistically dependent. If a wavelet
coefficient is large/small, the coefficients at the same orien-
tation in the next adjacent scale are likely to be large/small.
This is the so-called parent-child relationship. Due to the
above characteristic and its multi-scale structure, this depen-
dency can be modeled as a set of trees, the roots of which
are wavelet coefficients from the coarser scale of the decom-
position. Fig. 1 illustrates the wavelet coefficients of a given
image with the decomposition level L = 3. Denote three
subbands of detail coefficients at level L as {HL,LH,HH}L.
Each coefficient in {HL,LH,HH}L possesses four children
coefficients at the same orientation in {HL,LH,HH}L−1.
Hence, a quadtree structure can be established based on
this relationship between wavelet coefficients across different
scales.
However, DWT with real wavelets suffers from some fun-

damental shortcomings. First, the wavelet coefficients tend
to oscillate positively and negatively around the singularities,
and as a result, even a small shift will perturb the wavelet
coefficient, which complicates the wavelet based processing.
Moreover, any wavelet coefficient processing (like thresh-
olding, filtering) will lead to artifacts in the reconstructed
image. And classical 2-D DWT does not allow to efficiently
represent non-horizontal or non-vertical singular features.
Inspired by the Fourier transform based on complex-

valued oscillating sinusoids, one goes with the dual-tree
CWT [40] using two real DWTs, one which produces the real
part of the transform, the other the imaginary part (Fig. 2).
Additionally, the filter pairs of two DWTs have to be care-
fully designed so that the imaginary part of the complex
wavelet is approximately the Hilbert transform of its real
part.
Dual-tree CWT has good shift invariance and directional

selectivity. In the 2-D case, it gains additional properties.
Differently from DWT, dual-tree CWT has six directions
that allow to capture more oriented singularities of an image
without the checkerboard artifact that appears in the diagonal
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FIGURE 2. Analysis filter bank (FB) for 1-D dual-tree CWT. (h0(n), h1(n)) and (g0(n),
g1(n)) are low-pass/high-pass filter pairs for the upper and lower FB, followed by a
down-sampling operator.

wavelet of DWT. Moreover, it has been proved in [52] that
the near shift invariance of the dual-tree CWT leads to better
persistence of the magnitudes around the edgy regions, which
ensures stronger dependence in inter-scale neighborhoods,
in other words, which strengthens the relationship between
parent and children wavelet coefficients.
Notice that the 2-D dual-tree CWT is four times more

expensive than DWT with real wavelets. The implementation
is still very efficient since only additions and subtractions
for respective subbands of all DWTs are required.

C. CONTRAST SOURCE INVERSION
The CSI method is one of the most used methods to tackle
inverse scattering problems, as already noted. First, based
on (5) and (6), the state and data equation stand as

Ji,is = diag(χi)
[
Einc
i,is + GD,i,iJi,is

]
(12)

Ediff
i,is =

N∑
i=1

GS;ir,iJi,is (13)

The cost functional is a linear combination of normalized
mismatches in the data and object equations:

F
(
Ji,is , χi

) =
∑

is

∑
ir ‖ξir,is−

∑
i GS;ir,iJi,is‖2

∑
is

∑
ir

∥∥ξir,is
∥∥2

+
∑

is

∑
i

∥∥∥diag(χi)Einc
i,is

−Ji,is+diag(χi)GD;i,iJi,is
∥∥∥2

∑
is

∑
i

∥∥∥diag(χi)Einc
i,is

∥∥∥2

(14)

ξir,is being the measured scattered fields.
The contrast sources Ji,is and the contrast χi are alter-

natively reconstructed with a conjugate gradient iterative
method. At each iteration, the contrast sources are first
updated by minimizing the entire cost functional, then the
contrast χi is determined by minimizing the error in the
state equation. The minimization at each iteration is linear.
A positivity constraint is imposed on the contrast via the
projection method as described in [8]. The initial guess for
the contrast source and for the contrast function is obtained
by back-propagation.

FIGURE 3. Grouping arrangement of wavelet coefficients.

Employing the dual-tree CWT, the contrast χi is decom-
posed in the wavelet domain at each iteration. Sub-groups
can be constituted based on the dependency between parent
and children coefficients. Thus, the group sparsity regular-
ization can be applied on the contrast in the wavelet-domain,
which both promotes the sparsity on wavelet coefficients of
χi, and the persistence of magnitudes across scales.
With this regularization, the cost functional becomes

F
(
Ji,is , βi

) =
∑

is

∑
ir

∥∥ξir,is − ∑
i GS;ir,iJi,is

∥∥2

∑
is

∑
ir

∥∥ξir,is
∥∥2

+
∑

is

∑
i

∥∥∥(W∗βi)
(
Einc
i,is

+ GD;i,iJi,is
)

− Ji,is

∥∥∥2

∑
is

∑
i

∥∥∥(W∗βi)Einc
i,is

∥∥∥2

+ λ
∥∥βg

∥∥
2,1 (15)

Define W as the dual-tree CWT operator and W∗ its
inverse. β = Wχ is the wavelet coefficients of χ , βg is the
set of sub-vectors of β associated with all sub-groups.
In Fig. 3, given that the elements surrounded by boxes

of the same color belong to the same group, three groups
appear: {1, 5} (in red), {1, 2, 6} (in blue) and {1, 2, 3, 4, 5}
(in yellow), representing three ways to group the wavelet
coefficients.
For a wavelet coefficient A, the sub-groups can be

constituted as follows:
• {A, parent of A} (in red)
• {A, all ancestors of A} (in blue)
• {A, all children of A} (in yellow)

All three grouping choices form overlapping sub-groups.
Thus, the regularized cost functional must be tackled with
specific strategies. Herein, a replication approach proposed
in [51] is adopted. Denote fd as the normalized data error
in (15) and fo the normalized object error. Enforcing the
replication strategy, the previous cost functional becomes

F(J, β) = fd(J) + fo(J, β) + λ1
∥∥zg∥∥2,1 + λ2

2

∥∥z− Gβzβ
∥∥2

2

(16)

z is a “flattened” version of β, where all overlapping groups
in β become non-overlapping by replicating the crossed
elements. Gβz is the mapping matrix that yields z from β.
In equation (16), two hyperparameters λ1 and λ2 have to

be determined. Following [23], they are chosen adaptively
according to the magnitudes of wavelet coefficients, and
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Algorithm 1 CSI With Group Sparsity Regularization
1: Initialize J and β by back-propagation:

2: Jbpis = ‖G∗
Sξis‖2

‖GSG∗
Sξis‖2

G∗
Sξis

3: βbp = W
{∑Ns

is=1 J
bp
is
Etot∗
is∑Ns

is=1 ‖Etot
is

‖2

}

4: for k = 1 : itermax do
5: Calculate data error ρis,k = ξis − GSJis,k−1 and
6: object error ris,k = (W∗βk−1)Etot

is,k−1 − Jis,k−1
7: Update the contrast sources
8: Calculate the gradient gJis,k

= − G∗
Sρis,k∑

is

∑
ir ‖ξir,is‖2

− ris,k − G∗
Dβk−1ris,k∑

is

∑
i ‖(W∗βi)Einc

i,is
‖2

9: Calculate the search direction vis,k

= gJis,k +



{∑
is

〈
gJis,k, g

J
is,k

− gJis,k−1

〉}
∑

is

〈
gJis,k−1, g

J
is,k−1

〉 vis,k−1

10: Determine the step size αJk =
−


{∑
is

〈
gJis,k, vis,k

〉}
∑

is ‖GSvis,k‖2

∑
is

∑
ir ‖ξir,is‖2

+
∑

is ‖vis,k − (W∗βk−1)GDvis,k‖2

∑
is

∑
i ‖(W∗βi)Einc

i,is
‖2

11: Update Jis,k = Jis,k−1 + αJk vis,k
12: Update the contrast in the wavelet domain
13: Update the total field Etot

is,k
= Einc

is
+ GDJis,k

14: Update βk−0.5 = W
{∑Ns

is=1 Jis,kE
tot∗
is,k∑Ns

is=1 ‖Eis,k‖2

}

15: Update zgk

= (
Gβzβk−0.5

)
g ×

(
1 − λ1/λ2

‖(Gβzβk−0.5)g‖2

)
+

16: Update βk = βk−0.5 − ∇β

(
λ2

2
‖z− Gβzβ‖2

2

)

17: Update hyperparameters
18: Enforce positivity constraint on χk = W∗βk
19: end for

updated at each iteration. Let us denote Pi%(�) the i-th per-
centile of an vector, λ1 is set to Pq%(β) and λ2 is associated
with λ1 where the ratio of λ2 to λ1 is set to Pq%(‖zg‖2,1).
q, which remains the only hyperparameter to be chosen,
is fixed via a “trial-error” scheme according to the applied
grouping strategy.
The optimization procedure is sketched in Algorithm 1.

IV. NUMERICAL ILLUSTRATIONS
In this section, numerical experiments on different synthetic
models are considered. For all models, the region of interest
D is of 2 m × 2 m, and is discretized into N square cells.
Cell sizes for the direct and inverse problem are different
in order to avoid “inverse crime”. For the direct problem,
D is discretized into 50 × 50 cells, and for the inverse one,
N = 64 × 64. Nr receivers and Ns transmitters are evenly
distributed on a circle of radius r = 3 m. Save otherwise

FIGURE 4. “Austria” model—Relative permittivity ε(r) and conductivity σ (r) (mS/m).
The axes of the figures in the article are the same and will not be repeated due to
space limitation.

FIGURE 5. Contrast of “Austria” model in the spatial domain (column 1) and the
wavelet domain (column 2, 3) using the dual-tree CWT with a tree pair (Tree 1, Tree 2).
Logarithmic color scale is used in column 2 and 3.

specified, the observed data are corrupted by a random white
Gaussian noise with SNR = 20 dB. The embedding medium
is of εb = 1.

A. RECONSTRUCTION OF THE SYNTHETIC AUSTRIA
PROFILE
The synthetic “Austria” model is made of two disks and one
ring. The disks of radius 0.2m are centered at (0.3,−0.6) m
and (−0.3,−0.6) m. The ring has an exterior radius of 0.6m
and an inner radius of 0.3m, and is centered at (0, 0.2) m.
The scatterer has uniform permittivity and conductivity 2
and 17mS/m. Fig. 4 shows real and imaginary parts of the
model. Fig. 5 depicts the contrast χ in the spatial domain
and its wavelet coefficients obtained with the dual-tree CWT.
The frequency of operation is 600 MHz.
At each iteration, the contrast χ is decomposed by the

dual-tree CWT. The filter bank (FB) of the first stage of
the dual-tree CWT is required to be different from those
of the succeeding stages. Let us denote lmax the maximum
length of the decomposition filters and Nx and Ny the row
and column dimensions of the image respectively. The level
of decomposition L then should be a positive integer holding
that:

L ≤ log2

(
min

(
Nx,Ny

)
lmax

)
+ 1 (17)

Hereafter, Farras filters [53] are used for the first stage and
Kingsbury Q-shift 6-tap filters [54]. So here, Nx = Ny = 64,
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FIGURE 6. Parametric study for the choice of q� and q�. The final error Err(χ) is
plotted as a function of q� and q� and compared to the one of CSI (green line).

TABLE 1. Choice of q for different methods.

lmax = 10 (due to the use of the Kingsbury Q-shift 6-tap
filters) and according to (17) the largest possible decom-
position level available is L = 3 which will be used in
the following. The latter allows a finer description of the
reconstructed obstacle thanks to the largest number of detail
coefficients to be retrieved.
As seen in Fig. 3, three grouping strategies are adopted

to introduce the structure information of the wavelet quad
tree.

• CSI-GS-1 (red): the group size of {A, parent of A}
is 1 or 2.

• CSI-GS-2 (blue): the group size varies according to the
level of decomposition, ranging from 1 to L.

• CSI-GS-3 (yellow): the group is chosen as {A, all
children of A}, the size of which being 1 or 5.

As explained at the end of Section III-C, the complex-
valued hyperparameter q = q
 + iq� has to be a priori
fixed. The choice is made by running the inversion for a
set of (q
, q�) (varying from 50 to 95). In Fig. 6 the final
error Err(χ) is plotted as a function of q
 and q� and
compared to the one of CSI (green line). It exhibits that
CSI-GS methods outperformed the CSI one for a large range
of q
 and that their effectiveness does not depend too much
on the chosen value. It can be noticed that the range for
q
 and q� is narrower for CSI-GS-2 (Fig. 6(b)) than for
CSI-GS-1 (Fig. 6(a)) and CSI-GS-3 (Fig. 6(c)). The choices
of q
 and q� for different methods are in Table 1 and are
drawn as point in each subfigure of Fig. 6.
Results are shown in Fig. 7. To analyze the advantages of

the proposed methods when reduced information is provided,
the algorithms are tested under three settings of sources
and receivers. When there are 32 sources and 32 receivers,
the real part of the model retrieved using CSI is roughly
reconstructed. The general shape of the disks and rings can
be recognized but with obvious discontinuities. As for the
imaginary part, only the external boundary of the profile
is preserved with also discontinuities whereas the internal
pixels cannot be found.

TABLE 2. Relative error with different Ns × Nr – SNR = 20 dB.

TABLE 3. Relative error with different noise level – Ns × Nr = 32 × 32.

With the group sparsity guided regularization, CSI-GS-1,
CSI-GS-2 and CSI-GS-3 allow better reconstructions. The
model is smoother and the edges are well preserved. The
reconstructed permittivity and conductivity both have rela-
tively smaller values. When the number of sensors is reduced
to Ns×Nr = 18×26 and 16×24, more and more discontinu-
ities appear in the results of CSI. Still, the proposed methods
are capable of better reconstructing the model.
It should be noted that the results obtained by CSI-

GS-3 are not as smooth as with the other two methods.
Rectangle artifacts appear in both reconstructed permittivity
and conductivity. This is due to the grouping method. The
supplementary group sparsity regularization can be seen as
an image restoration step. The pixels are supposed to be
restored from their ancestors or children at adjacent scales.
The first two grouping methods consist in connecting each
pixel to its ancestor(s), which makes it possible to smooth
pixels with the same ancestor(s). However, this implicit reg-
ularization disappears in the third grouping method as it
places each pixel and its four children in the same group
and adjacent pixels then do not share the same children.
To evaluate the quality of the reconstruction, the relative

error of the reconstructed contrast is computed as

Err(x) = ‖x̃− x‖2
2

‖x‖2
2

{x = χ,
(χ),�(χ)} (18)

The errors of the above reconstructed results are in Table 2.
The proposed methods provide a better quality of recon-

struction. When the number of sensors is reduced, the relative
error obtained by CSI clearly increases whereas the quality
of reconstruction remains relatively stable with them.
To evaluate the robustness, noises of higher levels are

considered with SNR = 15 dB and 10 dB. Simulations are
conducted with CSI and the proposed methods with the same
parameter settings. Relative errors are in Table 3.
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FIGURE 7. Reconstructed ε(r) (column 1, 3, 5) and σ (r) (column 2, 4, 6) of “Austria profile” for various combinations of receiver and source numbers (Nr and Ns respectively).

TABLE 4. Relative error with other common wavelets – Ns × Nr = 32 × 32 with
CSI-GS-1.

FIGURE 8. DWT-reconstructed ε(r) (top) and σ(r) (bottom) with the decomposition
basis D4. Ns × Nr = 32 × 32.

When the noise is of 15 dB, the relative error of χ with
CSI, CSI-GS-1, CSI-GS-2, and CSI-GS-3 increases by 22%,
1%, 2% and 2%, compared with a noise of 20 dB. For a
10 dB noise, the increase is of 55%, 6%, 12% and 7%. To
conclude, the quality of reconstruction degrades if higher
and higher noise level for all algorithms. Yet, the proposed
methods are much more robust compared with CSI.
To further illustrate the advantages of the dual-tree CWT,

experiments are conducted with DWT using the proposed

TABLE 5. Relative error with DWT – Ns × Nr = 32 × 32 with D4.

FIGURE 9. Reconstructed ε(r) (top) and σ (r) (bottom) with �1-penalized CSI with
different Ns × Nr . The dual-tree CWT is used.

methods. Knowing that a large set of wavelets exists, some
of the more common ones are used in combination with CSI-
GS-1 since the latter generally gives better results. Table 4
shows the obtained relative errors using Haar, Daubechies
4 (D4), Daubechies 6 (D6), Daubechies 8 (D8), Coiflets 6
(C6) and Coiflets 12 (C12), respectively. It can be observed
that the relative errors obtained using DWT with different
wavelet bases do not vary much, so in the following only
D4 will be used.
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FIGURE 10. Ground truth and reconstructed ε(r) of Model 2 (top) and Model 3 (bottom). Ns × Nr is 9 × 12 for Model 2 and 6 × 18 for Model 3.

TABLE 6. Relative error with �1-penalized CSI.

The results for the three approaches (CSI-GS-1, CSI-GS-2
and CSI-GS-3) using D4 are then shown in Fig. 8. Suffering
from lack of directionality, only details of three basic direc-
tions (horizontal, vertical and diagonal) are well retrieved.
Also, the weaker persistence between parent and children
coefficients reduces the quality of the retrieval. The relative
error is given in Table 5. Compared with the methods with
dual-tree CWT, using DWT leads to growths of relative error
of 5%, 5% and 9%.
To enforce sparsity, the most popular regularization term

is the �1 norm. To further demonstrate the benefit of the
structure information provided by the �2,1 norm, simulations
are led with �1-penalized CSI, in which the group sparsity
regularization term λ‖βg‖2,1 in (15) is replaced by λ′‖β‖1.

To tackle the new cost functional with �1 norm, lines
15-16 in the Algorithm dedicated to the �2,1 norm are
replaced by βk = Sλ′ {βk−0.5} with S soft-thresholding oper-
ator. Hyperparameter λ′ is determined like λ2. λ1 = Pq%(β),
q is chosen in accord with Table 1.

The results of �1-penalized CSI are shown in Fig. 9. The
permittivity shape can be roughly identified, though obvi-
ous discontinuities appear when the number of sensors is
reduced. As for the conductivity, only edges are found. The
relative error is in Table 6.
The proposed methods are tested on two more models:

• Model 2 consists of two squares centered at
(−0.2,−0.2) m and (0.4, 0.4) m, of size 0.8m and
0.4m, with permittivity of 2 and 2.5. Frequency is
500 MHz.

• Model 3 contains one square centered at (−0.4,−0.4) m
and 0.5 m-sized with permittivity of 2, and two disks,
one of radius 0.4 m centered at (−0.2, 0.4) m with
permittivity of 1.5, one of radius 0.2 m centered at
(0.6,−0.2) m with permittivity of 2.5. Frequency is
600 MHz.

TABLE 7. Relative error Err(χ) for models 2 and 3.

TABLE 8. Average CPU time (in s) for one iteration on an Intel Core i5-8365U CPU
(1.60 GHz) with 16 GByte memory.

Fig. 10 shows their ground truth and the results by CSI and
the proposed methods. CSI even fails to get the main shape.
The proposed methods appear to perform well, as manifested
by relative errors in Table 7.
As for respective CPU times of the methods, they are illus-

trated on Model 1, with maximum iteration number of 500,
on an Intel Core i5-8365U CPU (1.60 GHz) with 16 GByte
memory, refer to Table 8.

V. CONCLUSION
In this contribution, a group sparsity penalized contrast
source inversion (CSI) approach has been proposed. The �2,1
norm of the wavelet coefficients of the contrast is added
to the cost functional, which promotes, on the one hand,
the pixel-wise sparsity, on the other hand, the group-wise
sparsity. The latter one is based on the parent-child relation-
ship between wavelet coefficients across different scales. The
dual-tree CWT is used to decompose the contrast instead
of the classic DWT. Three grouping strategies have been
investigated to build overlapping sub-groups. The replica-
tion approach and proximal method are combined with the
CSI algorithm to solve the �2,1-penalized cost functional.

Simulations on different synthetic models have been car-
ried out to test the proposed methods. When the collected
data are not sufficient for CSI to yield satisfactory results,
they reconstruct the model well. Robustness to noise is also
tested with different signal-to-noise ratios. In addition, the
benefit of the dual-tree CWT and �2,1 norm has been fur-
ther demonstrated through simulations with DWT and the �1
norm.
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Incorporating the structure information of the unknown
into classical optimization methods is of good potential. The
parent-child dependency of wavelet coefficients can be mod-
eled by Hidden Markov Tree (HMT) by constructing state
transition matrices, which describe the probability that a
wavelet coefficient is large or small when its parent is large
or small [55]. Also, the hierarchical structure of wavelet
coefficients can be combined within the Bayesian inference
framework [56].
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[26] A. Desmal and H. Bağcı, “Shrinkage-thresholding enhanced Born
iterative method for solving 2D inverse electromagnetic scatter-
ing problem,” IEEE Trans. Antennas Propag., vol. 62, no. 7,
pp. 3878–3884, Jul. 2014.

[27] Y. Sanghvi, H. Bisht, U. K. Khankhoje, V. M. Gadre, and
S. V. Kulkarni, “Iteratively reweighted ł1 − ł2 norm minimization
using wavelets in inverse scattering,” J. Opt. Soc. Amer. A, Opt.
Image Sci., vol. 37, no. 4, pp. 680–687, 2020. [Online]. Available:
http://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-37-4-680

[28] D. W. Winters, B. D. Van Veen, and S. C. Hagness, “A sparsity regu-
larization approach to the electromagnetic inverse scattering problem,”
IEEE Trans. Antennas Propag., vol. 58, no. 1, pp. 145–154, Jan. 2010.

[29] M. Azghani, P. Kosmas, and F. Marvasti, “Microwave medical imaging
based on sparsity and an iterative method with adaptive thresholding,”
IEEE Trans. Med. Imag., vol. 34, no. 2, pp. 357–365, Feb. 2015.

[30] H. Zou and T. Hastie, “Regularization and variable selec-
tion via the elastic net,” J. Roy. Stat. Soc. Ser. B, Stat.
Methodol., vol. 67, no. 2, pp. 301–320, 2005. [Online]. Available:
http://www.jstor.org/stable/3647580

[31] M. Azghani and F. Marvasti, “Iterative algorithms for random sam-
pling and compressed sensing recovery,” in Proc. 10th Int. Conf.
Sampling Theory Appl., 2013, pp. 182–185.

[32] M. T. Bevacqua, L. Crocco, L. D. Donato, and T. Isernia, “Non-linear
inverse scattering via sparsity regularized contrast source inversion,”
IEEE Trans. Comput. Imag., vol. 3, no. 2, pp. 296–304, Jun. 2017.

[33] G. P. Nason and B. W. Silverman, The Stationary Wavelet
Transform and some Statistical Applications. New York, NY,
USA: Springer-Verlag, 1995, pp. 281–299. [Online]. Available:
https://doi.org/10.1007/978-1-4612-2544-7_17

[34] G. Oliveri, M. Salucci, N. Anselmi, and A. Massa, “Compressive
sensing as applied to inverse problems for imaging: Theory, applica-
tions, current trends, and open challenges,” IEEE Antennas Propag.
Mag., vol. 59, no. 5, pp. 34–46, Oct. 2017.

[35] A. Massa, P. Rocca, and G. Oliveri, “Compressive sensing in
electromagnetics—A review,” IEEE Antennas Propag. Mag., vol. 57,
no. 1, pp. 224–238, Feb. 2015.

[36] N. Anselmi, M. Salucci, G. Oliveri, and A. Massa, “Wavelet-
based compressive imaging of sparse targets,” IEEE Trans. Antennas
Propag., vol. 63, no. 11, pp. 4889–4900, Nov. 2015.

[37] M. Kowalski, “Sparse regression using mixed norms,” Appl.
Comput. Harmonic Anal., vol. 27, no. 3, pp. 303–324, 2009.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1063520309000608

[38] D. Tomassi, D. Milone, and J. D. B. Nelson, “Wavelet shrink-
age using adaptive structured sparsity constraints,” Signal
Process., vol. 106, pp. 73–87, Jan. 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0165168414002953

[39] H. Zaimaga, A. Fraysse, and M. Lambert, “Sparse reconstruction algo-
rithms for nonlinear microwave imaging,” in Proc. 25th Eur. Signal
Process. Conf. (EUSIPCO), Kos, Greece, Aug. 2017, pp. 713–717.

[40] I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-
tree complex wavelet transform,” IEEE Signal Process. Mag., vol. 22,
no. 6, pp. 123–151, Nov. 2005.

VOLUME 3, 2022 57



ZHANG et al.: GROUP SPARSITY PENALIZED CONTRAST SOURCE SOLUTION METHOD

[41] R. G. Baraniuk, “Optimal tree approximation with wavelets,” in
Proc. Wavelet Appl. Signal Image Process. VII, vol. 3813, 1999,
pp. 196–207. [Online]. Available: https://doi.org/10.1117/12.366780

[42] J. Liu and P. Moulin, “Information-theoretic analysis of interscale and
intrascale dependencies between image wavelet coefficients,” IEEE
Trans. Image Process., vol. 10, pp. 1647–1658, 2001.

[43] Y. Zhang, M. Lambert, A. Fraysse, and D. Lesselier, “A wavelet-
based contrast source inversion method,” in Proc. IEEE 19th Int.
Symp. Antenna Technol. Appl. Electromagn. (ANTEM), Winnipeg, MB,
Canada, Aug. 2021, pp. 1–2.

[44] Y. Zhang, M. Lambert, A. Fraysse, and D. Lesselier, “Use of sparsity
in nonlinear electromagnetic imaging: wavelet-based contrast source
method,” in Proc. 34th Gener. Assembly Sci. Symp. Int. Union Radio
Sci. (URSI GASS), Rome, Italy, 2021, pp. 1–4.

[45] N. Z. Shor, Minimization Methods for Non-Differentiable
Functions (Springer Series in Computational Mathematics).
Berlin, Germany: Springer-Verlag, 1985. [Online]. Available:
https://cds.cern.ch/record/104965

[46] R. T. Rockafellar, Convex Analysis (Princeton Mathematical Series).
Princeton, NJ, USA: Princeton Univ. Press, 1970.

[47] J. Liu and J. Ye, “Moreau-Yosida regularization for grouped tree
structure learning,” in Advances in Neural Information Processing
Systems, vol. 23, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds. Red Hook, NY, USA: Curran Assoc., Inc.,
2010. [Online]. Available: https://proceedings.neurips.cc/paper/2010/
file/d490d7b4576290fa60eb31b5fc917ad1-Paper.pdf

[48] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal meth-
ods for hierarchical sparse coding,” J. Mach. Learn. Res., vol. 12,
pp. 2297–2334, Jul. 2011.

[49] L. Jacob, G. Obozinski, and J.-P. Vert, “Group Lasso
with overlap and graph Lasso,” in Proc. 26th Annu. Int.
Conf. Mach. Learn., 2009, pp. 433–440. [Online]. Available:
https://doi.org/10.1145/1553374.1553431

[50] N. S. Rao, R. D. Nowak, S. J. Wright, and N. G. Kingsbury, “Convex
approaches to model wavelet sparsity patterns,” in Proc. 18th IEEE Int.
Conf. Image Process., Brussels, Belgium, Sep. 2011, pp. 1917–1920.

[51] C. Chen and J. Huang, “The benefit of tree sparsity in acceler-
ated MRI,” Med. Image Anal., vol. 18, no. 6, pp. 834–842, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1361841513001758

[52] H. Choi, J. Romberg, R. Baraniuk, and N. Kingsbury, “Hidden Markov
tree modeling of complex wavelet transforms,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., vol. 1. Istanbul, Turkey, 2000,
pp. 133–136.

[53] A. Abdelnour and I. Selesnick, “Symmetric nearly orthogonal and
orthogonal nearly symmetric wavelets,” Arabian J. Sci. Eng., vol. 29,
no. 2C, pp. 3–16, 2004.

[54] N. Kingsbury, “A dual-tree complex wavelet transform with improved
orthogonality and symmetry properties,” in Proc. Int. Conf. Image
Process., vol. 2. Vancouver, BC, Canada, 2000, pp. 375–378.

[55] B. Deka, S. Datta, and S. Handique, “Wavelet tree support detection
for compressed sensing MRI reconstruction,” IEEE Signal Process.
Lett., vol. 25, no. 5, pp. 730–734, May 2018.

[56] L. Wang, A. Mohammad-Djafari, N. Gac, and M. Dumitru, “Bayesian
3D X-ray computed tomography with a hierarchical prior model
for sparsity in Haar transform domain,” Entropy, vol. 20, no. 12,
p. 977, 2018. [Online]. Available: https://www.mdpi.com/1099-
4300/20/12/977

YARUI ZHANG received the B.E. degree from the School of Electronic
Engineering, Xidian University, Xi’an, China, in 2018, and the M.S. degree
in control, signal and image processing from Université Paris–Saclay, Gif-
sur-Yvette, France, in 2019. She is currently pursuing the Ph.D. degree
in signal and image processing with the Group of Electrical Engineering,
Université Paris–Saclay, Paris. Her research interests include inversion and
imaging, signal and image processing, and inverse scattering problems.

MARC LAMBERT received the Doctorat en Sciences and Habilitation
à Diriger des Recherches degrees from the Université Paris Sud, Orsay,
France, in 1994 and 2001, respectively. Since 1995, he has been with Chargé
de Recherche, Centre National de la Recherche Scientifique (CNRS), Paris,
France, and has carried out his research work with the Laboratoire des
Signaux et Systèmes, Joint Laboratory of Supélec, CNRS and Université
Paris Sud, Gif-sur-Yvette, France, until 2014. In 2015, he joined the Group
of Electrical Engineering Paris. His research focuses on solutions of direct
and inverse scattering problems in both electromagnetics and acoustics, and
their applications to the characterization of complex objects buried in com-
plex environments from limited datasets, most of his attention being on the
numerous theoretical and computational issues which this characterization
entails.

AURÉLIA FRAYSSE was born in Créteil, France, in 1978. She received
the graduation degree from University Paris 12 in 2001, and the Ph.D.
degree in mathematics from University Paris 12 in 2005.

In 2006, she was a Research Assistant with Ecole Nationale Supérieure
des Télécommunications (Telecom Paris Tech). She is currently an Associate
Professor with IUT Cachan and a Researcher with the Laboratoire des
Signaux et Systèmes, Université Paris–Saclay, CNRS, CentraleSupélec.

DOMINIQUE LESSELIER (Senior Member, IEEE) was born in Lons-le-
Saunier, France, in August 1953. He received the Engineering degree from
Ecole Supérieure d’Electricité, Paris, France, in 1975, and the Doctorat
d’Etat et Sciences Physiques degree from the Université Pierre et Marie
Curie, Paris, France, in 1982.

Since October 1981, he has been with the Centre National de la
Recherche Scientifique (CNRS). He is currently Director of Research CNRS
Emeritus. From 1982 to 1983, he was a Visiting Scholar with the Department
of Electrical Engineering, University of California at Los Angeles, Los
Angeles, CA, USA. He is a member of the Laboratoire des Signaux et
Systèmes, Université Paris–Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette,
France. From 2006 to 2009, he was the Director of the Groupement de
Recherche CNRS GDR Ondes, where he managed a network of scientists
involved in the science of waves. His research focuses on the develop-
ment of solution imaging methods of inverse problems under many guises,
from mathematics to simulations to applications and vice versa. He was
the recipient of the R. W. P. King Award in 1982 from the IEEE Antennas
and Propagation Society. From 2005 to 2016, he was on the International
Advisory Panel of Inverse Problems, after serving on its Editorial Board
from 1997 to 2004. From 2003 to 2019, he has been an Associate Editor
of Radio Science. Since 1998, he has been on the Standing Committee of
the Electromagnetic Non-Destructive Evaluation Workshop Series and the
International Steering Committee of the International Symposia on Applied
Electromagnetics and Mechanics. He is a Fellow of the Institute of Physics
and a Member of the Electromagnetics Academy and the International
Union of Radio Science, Commission B.

58 VOLUME 3, 2022



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


