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Predictive Control for Zonal Congestion Management
of a Transmission Network

Duc-Trung Hoang, Sorin Olaru, Alessio Iovine, Jean Maeght, Patrick Panciatici, Manuel Ruiz

Abstract— Nowadays power transmission networks need to
face congestion problems casted on the form of control problems
in the presence of uncertainty. Transmission system operators
(TSOs) as the French one (RTE) want to avoid power overloads
on the lines by focusing on optimal management of battery
systems and, if necessary, renewable production curtailments.
Target of the present paper is to use a model-based optimal
control approach for managing the power flow in a sub-area of
a transmission network by the utilisation of storage devices and
partial curtailment of the renewable power. Model Predictive
Control (MPC) framework is used to include power constraints
validation from the design stage. A series of hypothesis are anal-
ysed and the principles of congestions management functioning
are illustrated through simulations.

Keywords: Power transmission network, MPC, energy stor-
age, partial power curtailment.

I. INTRODUCTION

Nowadays, the utilisation of renewable power is increas-
ing fast due to its competitive cost, positive environmental
impact, and incredible efficiency. However, its introduction
complicates power systems operation and management, as it
affects stability, as small fluctuations in distributed genera-
tion may impact power systems’ performance. Consequently,
Transmission System Operators (TSOs) as the French RTE
deal with a growing number of difficulties related to power
congestion on transmission lines [1]. One of the possible
solutions under consideration is to use optimization-based
approaches to manage sub-transmission areas (zones) by the
use of storage devices and renewable power curtailments if
needed. In order to build a resilient and decentralized system
composed by zones, only a local description of each zone
is considered for control purposes: the connection with the
remaining network is defined as a perturbation acting on the
zone. In [2], the authors provide a dynamical model based on
Power Transfer Distribution Factor (PTDF) (see [3], [4]) that
extends previous modeling for zones that only allowed on/off
decision on power curtailment [5], [6]. The proposed model
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targets the possible use of model-based optimal control to
manage the subtransmission area congestion situation.

The main challenge in controlling an isolated zone is to
operate local control actions with respect to the global power
flow taking place at the boundaries of the zone. This local
information translates at the mathematical model in terms of
uncertainty, and subsequently affects the decision making.
The goal of the present paper is to validate the utilisation of a
real-time control strategy as Model Predictive Control (MPC)
[7] to operate the storage devices and partially curtail power
from renewables whenever the constraints on the operation
of power lines are violated [8], [9]. A simplified not-delayed
version of the model in [2] is used to describe the dynamical
system model proposed for model-based control, and the
simulation tool MATPOWER [10] with the full French grid
data [11] is set to simulate the power transmission line
under various scenarios, using real data for renewable power
generation. While the main contribution is the mathematical
description of the design framework, an industrial case study
on the control of a zone will be considered for the illustra-
tion of the main congestion management features. Figure 1
represents a geographical region close to Dijon, France. It is
composed by six nodes with loads, generators and a battery.
Target of the MPC tuning is to appropriately model and
control the generated power on the nodes and their influence
on the branches of the electrical transmission model. The
following notations will be used along the developments:

• ZN is the set of nodes in the considered zone; nN

is its cardinality. PTn is the power generated in the
transmission network flowing from the external network
to the node n ∈ ZN of the zone of interest.

• ZC ⊂ ZN is the set of nodes where the curtailment
of the generated power is allowed; nC is its cardinality.
PGn is the generated power, while PCn is the curtailed
one at node n ∈ ZC . PAn is the available renewable
power that can be generated each sampling time.

• ZB ⊂ ZN is the set of nodes with a battery; nB is its
cardinality. PBn is the power injected from the battery
on node n ∈ ZC , while EBn describes the battery energy
at the same node.

• ZL ⊂ {(i, j) ∈ {1, ..., nN} × {1, ..., nN}} is the set
of power lines in the zone; nL is its cardinality. Fij
represents the power flow on the line ij.

The paper is organized as follows. Section II introduces
the considered control-oriented modeling and Section III
describes the MPC setting. Simulations validating the control
approach are carried out in Section IV, while concluding



Fig. 1. The considered zone (blue nodes) and its connection to the entire
power network (red nodes). The power flow interaction among the blue
nodes and the red nodes is described as an uncontrolled generated/absorbed
power and thus assimilated as disturbances in the decision making process.

remarks are outlined in Section V.
Notation: The operator diag describes a diagonal matrix
composed by the considered elements. The operator col
assigns a single column vector by the aggregation of matrix
columns, i.e.. given m vectors si ∈ Rn, i = 1, ...,m, the
resulting vector s = col[si], i = 1, 2, . . . ,m, will be:

s = col[si] = [ sT1 sT2 ... sTm ]T ∈ Rnm. (1)

II. MODELING

We revisit the linear model based on Direct Current
(DC) approximation described in [2] and, for facilitating the
presentation, present the delay-free case. In view of trans-
mission network modeling, the following working hypothesis
are considered:

1) each generator produces the maximum available re-
newable power or the maximum allowed one;

2) only a higher level controller can decrease the power
curtailment set-points. For this reason, the proposed
controller deals only with curtailment increase;

3) the State of Charge (SOC) of the battery is updated
each second by a SCADA system. Together with the
considered high voltage, these short time intervals with
respect to longer ones taken here into account for
control purposes, both sampling and prediction hori-
zon, allow to neglect losses due to the battery system
(conversion, cooling and transformers). A different
control level is supposed to manage the SOC with
respect to longer time horizons [12];

4) the loads are constant.
The state variables of the energy transmission are: the

power flows on the lines Fij , the generated power PGn ,
the curtailed power PCn and the battery power output PBn ,
respectively, and the energy of the batteries EBn . The control

inputs are the power variations ∆PBn and ∆PCn . Finally,
the power variation ∆PGn of the generated power PGn is
a filtered disturbance acting on the system. It is known
at instant k based on the state, control input and context
information within the zone (available power). Indeed, the
actually available power PAn is not part of the state vector.
We suppose it is communicated to the TSO at each sampling
time, together with the power variation ∆PAn . Consequently,
the value of ∆PGn is implicitly defined with respect to the
communicated values of PAn , ∆PAn , and the stored value of
PGn with respect to PCn . The disturbance ∆PTn is unknown
as it involves the information outside the operated zone.

The dynamical model is:

Fij(k + 1) = Fij(k) +
∑
n∈ZB bnij∆P

B
n (k)

+
∑
n∈ZC bnij

[
∆PGn (k)−∆PCn (k)

]
+
∑
n∈ZN bnij∆P

T
n (k), ∀ (ij) ∈ ZL

PCn (k + 1) = PCn (k) + ∆PCn (k), ∀ n ∈ ZC

PBn (k + 1) = PBn (k) + ∆PBn (k), ∀ n ∈ ZB

EBn (k + 1) = EBn (k)− TcBn [PBn (k) + ∆PBn (k)],

∀ n ∈ ZB

PGn (k + 1) = PGn (k) + ∆PGn (k)−∆PCn (k),

∀ n ∈ ZC
(2)

where bnij are constant parameters given by PTDF compu-
tation, and cBn are constant power reduction factors for the
batteries. In particular, the term ∆PGn (k), is defined as

∆PGn (k) = min
(
fGn (k), gGn (k)

)
, (3)

fGn (k) = PAn (k) + ∆PAn (k)− PGn (k) + ∆P̂Cn (k), (4)

gGn (k) = P
G

n − PCn (k)− PGn (k). (5)

where P
G

n > 0 is the maximum installed capacity of the
power that can be generated by the n renewable power
plant, with n ∈ ZC , and the value of ∆P̂Cn (k) is defined
in the following. According to this, the proposed modeling
allows for the possibility to pre-compute the term ∆PGn (k),
based on values of PAn (k), PGn (k), PCn (k), ∆PAn (k) and
∆PCn (k), while maintaining the system linear via the offline
computation of the min(.) and consequently reducing the
computational effort of dedicated model-based predictive
control laws. The main drawback is related to the term
∆P̂Cn (k). Whenever this is an independent variable at the
pre-computation time of sampling instant k, i.e. whenever
∆P̂Cn (k) = ∆PCn (k), then model (2) is implicitly nonlinear.

To avoid this implicit dependence in (2), a prediction-
correction mechanism can be used, in particular for control
design. Indeed, one can purposely consider a predicted value,
e.g. ∆P̂Cn (k) = 0, in (4) and dissociate it from the actual
selection of ∆PCn (k), which is the control input to be fixed
at time k. The linearity of the prediction model is preserved
and its evolution can be corrected once ∆PCn (k) is chosen.
This mechanism implies a model mismatch in between the
prediction and the correction phase, whenever ∆PCn (k) 6=
∆P̂Cn (k).



To describe the model in a compact form, we define:

F = col[Fij ], ∀ (i, j) ∈ ZL; (6a)

PC = col[PCn ], ∆PC = col[∆PCn ], ∀ n ∈ ZC ; (6b)

PB = col[PBn ], ∀ n ∈ ZB ; (6c)

EB = col[EBn ], ∆PB = col[∆PBn ], ∀ n ∈ ZB ; (6d)

∆PT = col[∆PTn ], ∀ n ∈ ZN ; (6e)

PG = col[PGn ], ∆PG = col[∆PGn ], ∀ n ∈ ZC . (6f)

According to (6a)-(6f), the resulting linear system is
described as

x(k + 1) =Ax(k) +BCuC(k) +BBuB(k)

+Dww(k) +Dζζ(k) (7)

where

x(k) = [F (k) PC(k) PB(k) EB(k) PG(k)]T , (8)

uC(k) = ∆PC(k), uB(k) = ∆PB(k), (9)

w(k) = ∆PG(k), ζ(k) = ∆PT (k), (10)

A =


1nL×nL 0nL×nC 0nL×nB 0nL×nB 0nL×nC

0nC×nL 1nC×nC 0nC×nB 0nC×nB 0nC×nC

0nB×nL 0nB×nC 1nB×nB 0nB×nB 0nB×nC

0nB×nL 0nB×nC −Ab 1nB×nB 0nB×nC

0nC×nL 0nC×nC 0nC×nB 0nC×nB 1nC×nC


BC =

(
−Mc 1nC×nC 0nB×nC 0nB×nC −1nC×nC

)T
BB =

(
Mb 0nC×nB 1nB×nB −Ab 0nC×nB

)T
Dw =

(
Mc 0nC×nC 0nB×nC 0nB×nC 1nC×nC

)T
Dζ =

(
Mt 0nC×nN 0nB×nN 0nB×nN 0nC×nN

)T
with Ab = diag[TcBn ], ∀ n ∈ ZB , and Mc, Mb and
Mt that are composed by the elements bnij obtained by the
PTDF computation described in (2). The kth line in these
matrices corresponds to the PTDF of the kth line of Fij at
nodes where generation can be curtailed, at nodes where a
battery is installed or at nodes where the injections may vary,
respectively.

We remark that reactive voltage aspects are not consid-
ered in this work. This modeling is adapted to identify
in real-time the need for acting on curtailment or storage
charge/discharge. Alternate Current (AC) feasibility is a
consequence of online updates of cos(φ) from active power
and current real-time measurements, where cos(φ) is the
usual power/current ratio at each bus.

III. CLOSED-LOOP OPTIMIZATION-BASED CONTROL

The congestion management builds the operational strat-
egy by acting on the available levers (control inputs):
• storage in the batteries uB(k);
• power curtailment uC(k);
• topological modifications - modelled by time-varying

transition matrix A in (7) (not considered here).
The mathematical model described in Section II is instrumen-
tal in the choice of the control inputs based on a optimization

criterion. At the same time, the operational constraints related
to the congestion need to be considered in the optimization
problem from the design stage. Adding to this picture the
restricted information available with respect to the pro-
duced/consumed power ahead of time (w(k+ i), i > 0) or at
the interconnection with the considered zone (ζ(k + i)), we
obtain the complete design framework.

A. Feedback control strategy description

The congestion management has to answer in real-time to
the potential violation of the physical constraints by correc-
tive actions on the level of the storage and the production
limitations. The fundamental relationship (balance) between
the power generation and consumption induces variations
on the power flows transitioning the power network. These
dynamical evaluations are subject to uncertainties and they
need to be monitored (measurements, estimations, predic-
tions) in order to extract the information needed for the
control synthesis.

The essential information available or commutable based
on direct processing at each sampling instant k is:
• The power flows on the lines Fij(k) can be measured

or estimated;
• The power curtailment PCn (k) is known, as it based on

past congestion management decisions and the maximal
production in each node of the considered zone.

• The battery power PBn (k) is measured, and is operated
based on the battery storage control signals. It can be
translated in terms of the energy stored in the battery;

• The generated/consumed power in each of the nodes is
the sensitive quantity in terms of information handling.
As discussed in the previous section, it builds on power
available (measured in the past but not available at
time instant k), the maximal power on the nodes and
decisions on power curtailment.

This discussion on the available information triggers a
more elaborated discussion on the uncertainty and its prop-
agation along the predictions. At the current time instant
k, the uncertainty is concentrated on the evolution of the
generated power PGn for each node and can be resumed by
the interdependence:

∆PGn (k) = ∆PGn (∆PAn (k),∆PCn (k)). (11)

Clearly, the decision on the power curtailment is subject
to uncertainty as long as it is not possible to exploit the
aposteriori information. Thus ∆PGn (k) is unknown in:

∆PCn (k) = ∆PCn (∆PGn (k)).

In these conditions one needs to rely on the predictions:

∆PCn (k) = ∆PCn (∆P̂Gn (k))

which can be further developed as:

∆PCn (k) = ∆PCn (∆P̂An (k),∆P̂Cn (k)). (12)

where ∆P̂An (k) and ∆P̂Cn (k) are the predicted/estimated
values for ∆PAn (k) and ∆PCn (k), respectively. At the time



instant k, if the information on ∆PAn (k) is not available
close to real-time, this uncertainty can be handled based on
extrapolations1. With respect to ∆P̂Cn (k), its impact can be
handled based on a prediction-correction mechanism. More
important, if the uncertainty is already present at time instant
k, its impact will be reiterated along the predictions as
long as the same ingredients will have to be manipulated
without prior information on ∆PAn and ∆P̂Cn . Despite the
jeopardizing effect of the uncertainty on the prediction, it
has to be noticed that the control lever offered by the power
curtailment is able to mitigate the uncertainty impact if the
physical constraints are under threat as long as there always
exist a curtailment able to retrieve a level of power generation
satisfying the constraints.

B. Mathematical formation of the real-time optimization
Let us define the (constant) upper and lower bounds of each
variable using the following notation: Lij > 0, P

G

n > 0,
P
B

n > 0, PBn < 0, E
B

n > 0, EBn > 0. Then,

L = col[Lij ],∀ (i, j) ∈ ZL; (13a)

PB = col[PBn ], P
B

= col[P
B

n ], ∀ n ∈ ZB ; (13b)

EB = col[EBn ], E
B

= col[E
B

n ], ∀ n ∈ ZB ; (13c)

P
G

= col[P
G

n ], ∀ n ∈ ZC . (13d)

Consequently, supposing the disturbances to be bounded, the
constraints are:

− L ≤ F (k) ≤ L, 0nC×1 ≤ PC(k) ≤ PG, (14a)

PB ≤ PB(k) ≤ PB , EB ≤ EB(k) ≤ EB , (14b)

0nC×1 ≤ PG(k) ≤ PG, 0nC×1 ≤ ∆PC(k) ≤ PG,
(14c)

PB − PB ≤ ∆PB(k) ≤ PB − PB . (14d)

The cost function aims to select a unique solution within
the feasible domain. At each prediction step it involves the
weighted sum of quadratic terms involving:
• setpoint tracking: seldom used (thus having the lowest

weighting), mainly to maintain the battery storage in
the neighborhood of a safety pre-defined level.

• penalty on the control action related to the power
curtailment.

• penalty on the control action related to the battery
storage.

Let us consider the semidefinite positive matrices Q, RG
and RB to be the weight matrices with respect to x, uC and
uB , respectively. Over a N step prediction window, the cost
function is defined as:

J(k) =

N∑
i=1

||x(k + i)− xr||2Q +

N−1∑
i=0

||uC(k + i)||2RG

+

N−1∑
i=0

||uB(k + i)||2RB
(15)

1The simplest alternatives for estimation would be to use a value
∆P̂A

n (k), where ∆P̂A
n (k) = ∆PA

n (k − 1) or ∆P̂A
n (k) = 0
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Fig. 2. The available power for generators. A) node 1000; B) node 2076;
C) node 2745; D) node 4720.

Based on the cost function, the constraints related to the
dynamics and the physical constraints, the receding-horizon
optimization is:

O(k) = arg min
uG(k),uB(k),...,uG(k+N−1),uB(k+N−1)

J(k)

s.t. (7), (14) for k, k + 1, . . . k +N (16)

Before analysing the potential of the methodology by
means of numerical results, few design details can be un-
derlined. The control strategy targets the use of the power
flexibility provided by the storage device acting as a buffer,
and to (partially) curtail power generation only if needed.
This aspect can be tuned by adjusting the weightings RB
and RG in (15). From the structure point of view, the
prediction model is linear, but this comes at the price of a
model mismatch in the evaluation (estimation) of the power
increments in (3) before the resolution of (16). An alternative
with an improved fidelity of prediction but a slightly more
complex prediction model involving integer variables has
been discussed in [2]. Finally, given the uncertainty of the
estimation for the power generation, the use of long predic-
tion horizons without anticipatory information is detrimental
and can lead to cautious control, which is deleterious for the
global use of the transmission network.

IV. SIMULATIONS

The considered zone include six nodes, seven branches,
four generators among nodes, and one battery. Then nL = 7,
nC = 4 and nB = 1. Maximum power flow on each
branch is 45MW (seasonal thermal rating). The considered
four power generators have maximum installed power of 78
MW, 66 MW, 54 MW, and 10 MW respectively, while the
battery is a 10 MW one. We consider the battery power
output not to impact on the stored energy. Figure 2 depicts
the scenario of available power at the generators side over
the considered simulation time. The power flow solution
available in MATPOWER (runpf ) is used to simulate the AC
power flow on the more than 6000 buses of the whole French
network [2], while the control algorithms are implemented in
MATLAB and YALMIP [13]. The function runpf does not
simulate a dynamical system, and its utilisation generates a
succession of steady states. For the considered application,
it is possible to compare them to a time domain simulation.
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Fig. 3. The power flow on the branches in the open-loop simulation: A)
between buses 2745 and 1445; C) between buses 2135 and 2076; B) The
maximum power value 45; D) The minimum power value -45.
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Fig. 4. The power variables in the power generator at node 2745 from
the MPC result with prediction horizon N=3. A) PG

n (k); B) PA
n (k); C)

P
G
n − PC

n (k).

Simulation time is 600 s, and the sampling time is 5 s.
For control purposes, the value of ∆PGn (k) is considered
constant for each sampling k in the prediction horizon (as
pointed out by Figure 8). Moreover, the choice ∆P̂An (k) =
∆PAn (k − 1) is made for the estimation in (12), in order
to comply with the "information available". A comparison
between the open loop and closed loop system is provided,
according to the available power in Figure 2. The open loop
system violates the power constraints on two branches (see
Figure 3), then requiring to operate on the storage devices
and/or on the power curtailment. The power flow on the
branch between buses 2745 and 1445 as well as the one
between buses 2135 and 2076 trespass the maximum and
minimum values. It happens in the time interval after 500
s and up to the end of the simulation for both, while also
around 150 s for the branch between buses 2745 and 1445.

The closed loop simulation considers a prediction horizon
of 3 steps (i.e. 15 s) and operates on both control levers, as
depicted by Figures 4 and 5. The yellow line in Figure 4
describes P

G

n −PCn (k), while the red one represents PAn (k),
and the dotted blue one is PGn (k).

Figure 5 describes the battery power output and its varia-
tions. To maintain the maximal branch values below the lim-
itation, the battery power increases from the initial 0 value,
to reach the maximum value at 550 s. For the same goal,
renewable power curtailment takes place. Figure 6 shows that

0   100 200 300 400 500 600 
Time [s]

-3

-2

-1

0

P
o

w
e

r 
[M

W
]

(a)

0   100 200 300 400 500 600 
Time [s]

-10

-5

0

P
o

w
e

r 
[M

W
]

(b)

Fig. 5. (a): ∆PB
n . (b): PB

n . The prediction horizon is N=3.
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Fig. 6. ∆PC
n at the generators. The prediction horizon is N=3. A) node

10000; B) node 2076; C) node 2745; D) node 4720.

curtailment correctly occurs later than the battery utilisation,
as targeted by the MPC strategy by assigning higher priority
to the storage control lever. Indeed, curtailment starts at
t = 450 s, and increases its value according to the battery
power output being saturated. Once the maximum allowed
power is reduced such to ensure no power threshold violation
on the branches, no curtailment is needed anymore, i.e. after
t = 550 s. Then, according to the first critical situation
depicted in Figure 3 for the branch between buses 2745 and
1445 around t = 150 s, it is possible to state that the control
action successfully considered only the control degree of
freedom given by the battery.

Figure 8 depicts the predictions and computed control
actions by MPC on the power flow on the two considered
branches. We remark that no hard constraints violation takes
place with respect to the predictions (+/ − 45MW ), and
no feasibility issues for the real-time solvers appear. On the
other hand, these predictions are subject to the uncertainty
in the estimation (noticeable for example in Figure (7))
of the power generation. Consequently, they can activate
the constraints with anticipation with respect to the real
scenario. The choice of the length of the prediction scenario
is important in this respect, as it can trigger the control levers
in advance. Moreover, a consequence of the model mismatch
is the slight difference of the real flow with respect to the
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Fig. 7. A) real ∆PG
n at the node 2745; B) estimated ∆PG

n at the node
2745.

Fig. 8. The power flow on the branches in the closed-loop simulation: (a)
between buses 2745 and 1445; (b) between buses 2135 and 2076. A) Power
Flow in runpf. B) MPC predicting the first step ahead. C) MPC predicting
the second step ahead. D) MPC predicting the third step ahead.

predicted one based on PTDF coefficients and subject to
uncertainty. This leads to a blue curve which trespass the
limitations at several time instants with negligible values.
It is interesting to observe the automatic activation of the
control action in such situations.

Control with longer prediction horizon: in order to analyse
the impact on the proposed approach, we consider a MPC
strategy with a longer prediction horizon equal to N =
10. The resulting renewable power curtailment is shown in
Figure 9. While the constraints satisfaction is validated on
the same arguments as in the previous case N = 3, the
distribution of the power curtailment increments is different
and shows a more cautious decision making as a result of
the uncertainty propagation. Such prediction windows need
to be considered whenever delays in the control actions need
to be handled. These studies are subject to current works and
will be considered for publication in the near future.

V. CONCLUSIONS

A model-based control approach for optimal management
of the power flow in a sub-area of a transmission network
by the utilisation of storage devices and partial curtailment
of the renewable power was presented in this paper. The
approach converts the congestion management in a feasibility
problem for a feedback control, and has been formulated
in terms of a receding horizon optimization. The main
contributions are the linear prediction model (with obvious
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Fig. 9. Control actions for curtailment when prediction horizon N=10. A)
node 10000; B) node 2076; C) node 2745; D) node 4720.

computational advantages) for the evolution of the power
as well as the uncertainty handling for the satisfaction of
the constraints on power lines. Simulation results confirm
the MPC to be an adequate control technique for zonal
transmission networks.

REFERENCES

[1] B. Meyer, J. Astic, P. Meyer, F. Sardou, C. Poumarede, N. Couturier,
M. Fontaine, C. Lemaitre, J. Maeght, and C. Straub, “Power Trans-
mission Technologies and Solutions: The Latest Advances at RTE,
the French Transmission System Operator,” IEEE Power and Energy
Magazine, vol. 18, no. 2, pp. 43–52, 2020.

[2] A. Iovine, T. Hoang, S. Olaru, J. Maeght, and P. Panciatici, “Modeling
the partial renewable power curtailment for transmission network
management,” in IEEE PowerTech Conference, 2021.

[3] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Generation,
Operation, and Control, 3rd Edition. Wiley, 2013.

[4] Xu Cheng and T. J. Overbye, “PTDF-based power system equivalents,”
IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1868–1876,
2005.

[5] C. Straub, S. Olaru, J. Maeght, and P. Panciatici, “Robust MPC for
temperature management on electrical transmission lines,” vol. 51,
pp. 355 – 360, 2018. 17th IFAC Workshop on Control Applications
of Optimization CAO 2018.

[6] C. Straub, S. Olaru, J. Maeght, and P. Panciatici, “Zonal congestion
management mixing large battery storage systems and generation
curtailment,” in 2018 IEEE Conference on Control Technology and
Applications (CCTA), pp. 988–995, 2018.

[7] E. F. Camacho and C. Bordons, Model predictive control. Springer,
2007.

[8] B. Otomega, A. Marinakis, M. Glavic, and T. Van Cutsem, “Emer-
gency alleviation of thermal overloads using model predictive control,”
in 2007 IEEE Lausanne Power Tech, pp. 201–206, 2007.

[9] R. Gupta, F. Sossan, and M. Paolone, “Performance assessment of
linearized opf-based distributed real-time predictive control,” in 2019
IEEE Milan PowerTech, pp. 1–6, 2019.

[10] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on Power Sys-
tems, vol. 26, no. 1, pp. 12–19, 2011.

[11] C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “AC Power Flow
Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and
PEGASE,” 2016. https://arxiv.org/abs/1603.01533.

[12] C. Straub, J. Maeght, C. Pache, P. Panciatici, and R. Rajagopal,
“Congestion management within a multi-service scheduling coordi-
nation scheme for large battery storage systems,” in 2019 IEEE Milan
PowerTech, pp. 1–6, 2019.

[13] J. Löfberg, “Yalmip : A toolbox for modeling and optimization
in matlab,” in In Proceedings of the CACSD Conference, (Taipei,
Taiwan), 2004.


	Introduction
	Modeling
	Closed-loop optimization-based control
	Feedback control strategy description
	Mathematical formation of the real-time optimization

	Simulations
	Conclusions
	References

