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Abstract—We consider the non-coherent single-input multiple-
output (SIMO) multiple access channel with general signaling
under spatially correlated Rayleigh block fading. We propose a
novel soft-output multi-user detector that computes an approx-
imate marginal posterior of each transmitted signal using only
the knowledge about the channel distribution. Our detector is
based on expectation propagation (EP) approximate inference
and has polynomial complexity in the number of users, number
of receive antennas and channel coherence time. We also propose
two simplifications of this detector with reduced complexity.
With Grassmannian signaling, the proposed detectors outperform
a state-of-the-art non-coherent detector with projection-based
interference mitigation. With pilot-assisted signaling, the EP
detector outperforms, in terms of symbol error rate, some
conventional coherent pilot-based detectors, including a sphere
decoder and a joint channel estimation–data detection scheme.
Our EP-based detectors produce accurate approximates of the
true posterior leading to high achievable sum-rates. The gains
of these detectors are further observed in terms of the bit error
rate when using their soft outputs for a turbo channel decoder.

Index Terms—non-coherent communications, multiple access,
detection, expectation propagation, Grassmannian constellations

I. INTRODUCTION

In wireless communications, multi-antenna based multiple-
input multiple-output (MIMO) technology is capable of im-
proving significantly both the system spectral efficiency and
reliability due to its multiplexing and diversity gains [2],
[3]. MIMO is at the heart of current cellular systems, and
large-scale (massive) MIMO [4] is considered as one of
the fundamental technologies for the fifth-generation (5G)
wireless communications [5]. In practical MIMO systems, the
transmitted symbols are normally drawn from a finite discrete
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constellation to reduce complexity. Due to propagation effects,
the symbols sent from different transmit antennas interfere, and
the receiver observes a linear superposition of these symbols
corrupted by noise. The task of the receiver is to detect these
symbols (or rather the underlying bits) based on the received
signal and the available knowledge about the channel.

If the instantaneous value of the channel matrix is treated
as known, the detection is said to be coherent and has been
investigated extensively in the literature [6]. In this case, the
data symbols are normally taken from a scalar constellation
such as the quadrature amplitude modulation (QAM). Since
the optimal maximum-likelihood (ML) coherent detection
problem is known to be non-deterministic polynomial-time hard
(NP-hard) [7], many sub-optimal coherent MIMO detection
algorithms have been proposed. These range from linear
schemes, such as the zero forcing (ZF) and minimum mean
square error (MMSE) detectors, to non-linear schemes based
on, for example, interference cancellation, tree search, and
lattice reduction [6].

If only statistical information about the channel is available,
the detection problem is said to be non-coherent. In the block
fading channel where the channel matrix remains constant
for each length-𝑇 coherence block and varies between blocks,
the receiver can estimate (normally imperfectly) the channel
based on the transmitted pilot symbols, then perform coherent
detection based on the channel estimate. Channel estimation
and data detection can also be done iteratively [8], [9],
or jointly based on tree search [10], [11]. These schemes
requires pilot transmission for an initial channel estimate or
to guarantee the identifiability of the data symbols. Another
approach not involving pilot transmission is unitary space time
modulation, in which the matrix of symbols in the space-
time domain is orthonormal and isotropically distributed [12].
There, information is carried by the signal matrix subspace
position, which is invariant to multiplication by the channel
matrix. Therefore, a constellation over matrix-valued symbols
can be designed as a collection of subspaces in C𝑇 . Such
constellations belong to the Grassmann manifold 𝐺 (C𝑇 , 𝐾),
which is the space of 𝐾-dimensional subspaces in C𝑇 , where
𝐾 is the number of transmit antennas. For the independent and
identically distributed (i.i.d.) Rayleigh block fading channel,
when the signal-to-noise-ratio (SNR) is large, Grassmannian
signaling was shown to achieve a rate within a vanishing gap
from the capacity if 𝑇 ≥ 𝑁 + min{𝐾, 𝑁} [13], and within a
constant gap if 2𝐾 ≤ 𝑇 ≤ 𝑁+𝐾 [14], where 𝑁 is the number of
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receive antennas. Like with coherent detection, the optimal ML
non-coherent detection problem under Grassmannian signaling
is NP-hard. Thus, low-complexity sub-optimal detectors have
been proposed for constellations with additional structure,
e.g., [15], [16], [17].

In this paper, we focus on the non-coherent detection problem
in the Rayleigh flat and block fading single-input multiple-
output (SIMO) multiple-access channel (MAC) with coherence
time 𝑇 . There, the communication signals are independently
transmitted from 𝐾 single-antenna users. If the users could
cooperate, the high-SNR optimal joint signaling scheme would
be a Grassmannian signaling on 𝐺 (C𝑇 , 𝐾) [13]. However,
we assume uncoordinated users, for which the optimal non-
coherent transmission scheme is not known, although some
approximate optimality design criteria have been proposed
in [18]. In this work, we design the detector without assuming
any specific structure of the signal transmitted over a coherence
block. We consider the case where the receiver is interested
not only in the hard detection of the symbols but also in their
posterior marginal probability mass functions (PMFs). This
“soft” information is needed, for example, when computing the
bit-wise log-likelihood ratios (LLRs) required for soft-input
soft-output channel decoding. Computing an exact marginal
PMF would require enumerating all possible combinations of
other-user signals, which is infeasible with many users, many
antennas, or large constellations. Thus, we seek sub-optimal
schemes with practical complexity.

In contrast to probabilistic coherent MIMO detection, for
which many schemes have been proposed (e.g., [19], [20],
[21]), the probabilistic non-coherent MIMO detection under
general signaling, and Grassmannian signaling in particular,
has not been well investigated. The detection scheme proposed
in [22] is sub-optimal and compatible only with the specific
constellation structure considered therein. The list-based soft
demapper in [23] reduces the number of terms considered in
posterior marginalization by including only those symbols at
a certain distance from a reference point. However, it was
designed for the single-user case only and has no obvious
generalization to the MAC. The semi-blind approaches [8],
[9], [10], [11] for the MIMO point-to-point channel can be
extended to the MAC. However, these schemes are restricted
to transmitted signals with pilots.

In this work, we propose message-passing algorithms for
posterior marginal inference of non-coherent multi-user MIMO
transmissions over spatially correlated Rayleigh block fading
channels. Our algorithms are based on expectation propaga-
tion (EP) approximate inference [24], [25]. EP provides an
iterative framework for approximating posterior beliefs by
parametric distributions in the exponential family [26, Sec. 1.6].
Although there are many possible ways to apply EP to our non-
coherent multi-user detection problem, we do so by choosing
as variable nodes the indices of the transmitted symbols and
the noiseless received signal from each user. The EP algorithm
passes messages between the corresponding variable nodes
and factor nodes on a bipartite factor graph. In doing so, the
approximate posteriors of these variables are iteratively refined.
We also address numerical implementation issues.

To measure the accuracy of the approximate posterior

generated by the soft detectors, we compute the mismatched
sum-rate of the system that uses the approximate posterior as
the decoding metric. This mismatched sum-rate approaches
the achievable rate of the system as the approximate posterior
gets close to the true posterior. We also evaluate the symbol
error rate when using the proposed schemes for hard detection,
and the bit error rate when using these schemes for turbo
equalization with a standard turbo code.

The contributions of this work are summarized as follows:
1) We propose soft and hard multi-user detectors for the non-

coherent SIMO MAC using EP approximate inference, and
methods to stabilize the EP updates. The proposed detectors
work for general vector-valued transmitted symbols within
each channel coherence block, i.e., it is general enough
to include both the pilot-assisted and pilot-free signaling
cases.

2) We propose two simplifications of the EP detector with
reduced complexity. The first one, so-called EPAK, is based
on approximating the EP messages with Kronecker products.
The second one can be interpreted as soft MMSE estimation
and successive interference approximation (SIA).

3) We analyze the complexity and numerically evaluate the
convergence, running time, and performance of the proposed
EP, EPAK, and MMSE-SIA detectors, the optimal ML
detector, a genie-aided detector, the state-of-the-art detector
from [22], and some conventional coherent pilot-based
schemes. Our results suggest that the proposed detectors
offer significantly improved mismatched sum-rate, symbol
error rate, and coded bit error rate with respect to (w.r.t.)
some existing sub-optimal schemes, while having lower
complexity than the ML detector.

To the best of our knowledge, our proposed approach is the first
message-passing scheme for non-coherent multi-user MIMO
detection with general constellations.

The remainder of this paper is organized as follows. The
system model is presented in Section II. A brief review of
EP is presented in Section III, and the EP approach to non-
coherent detection is presented in Section IV. In Section V,
two simplifications (MMSE-SIA and EPAK) of the EP detector
are presented. Implementation aspects of EP, MMSE-SIA, and
EPAK are discussed in Section VI. Numerical results and
conclusions are presented in Section VII and Section VIII,
respectively. The mathematical preliminaries and proofs are
provided in the appendices.

Notations: Random quantities are denoted with non-italic
letters with sans-serif fonts, e.g., a scalar x, a vector vvv, and a
matrix MMM. Deterministic quantities are denoted with italic letters,
e.g., a scalar 𝑥, a vector 𝑣𝑣𝑣, and a matrix 𝑀𝑀𝑀 . The Euclidean norm
is denoted by ‖

⃗⃗
‖ and the Frobenius norm ‖𝑀𝑀𝑀 ‖𝐹 . The conjugate,

transpose, conjugate transpose, trace, and vectorization of 𝑀𝑀𝑀
are denoted by 𝑀𝑀𝑀∗, 𝑀𝑀𝑀T, 𝑀𝑀𝑀H, tr{𝑀𝑀𝑀}, and vec(𝑀𝑀𝑀), respectively.∏

denotes the conventional or Cartesian product, depending
on the factors. ⊗ denotes the Kronecker product. 1{𝐴} denotes
the indicator function whose value is 1 if 𝐴 is true and 0
otherwise. [𝑛] := {1, 2, . . . , 𝑛}. ∝ means “proportional to”. The
Grassmann manifold 𝐺 (C𝑇 , 𝐾) is the space of 𝐾-dimensional
subspaces in C𝑇 . In particular, 𝐺 (C𝑇 , 1) is the Grassmannian
of lines. The Kullback-Leibler divergence of a distribution



3

𝑝 from another distribution 𝑞 of a random vector xxx with
domain X is defined by 𝐷 (𝑞‖𝑝) :=

∫
X 𝑞(𝑥𝑥𝑥) log 𝑞 (𝑥𝑥𝑥)

𝑝 (𝑥𝑥𝑥) d𝑥𝑥𝑥 if X is
continuous and 𝐷 (𝑞‖𝑝) :=

∑
𝑥𝑥𝑥∈X 𝑞(𝑥𝑥𝑥) log 𝑞 (𝑥𝑥𝑥)

𝑝 (𝑥𝑥𝑥) if X is discrete.
N(`̀̀ ,ΣΣΣ) denotes the complex Gaussian vector distribution with
mean `̀̀, covariance matrix ΣΣΣ, and thus probability density
function (PDF)

N(𝑥𝑥𝑥; `̀̀ ,ΣΣΣ) :=
exp

(
− (𝑥𝑥𝑥 − `̀̀)HΣΣΣ−1 (𝑥𝑥𝑥 − `̀̀)

)
𝜋𝑛det(ΣΣΣ) , 𝑥𝑥𝑥 ∈ C𝑛.

II. SYSTEM MODEL

A. Channel Model

We consider a SIMO MAC in which 𝐾 single-antenna users
transmit to an 𝑁-antenna receiver. We assume that the channel
is flat and block fading with an equal-length and synchronous
(across the users) coherence interval of 𝑇 channel uses. That
is, the channel vectors hhh𝑘 ∈ C𝑁×1, which contain the fading
coefficients between the transmit antenna of user 𝑘 ∈ [𝐾] and
the 𝑁 receive antennas, remain constant within each coherence
block of 𝑇 channel uses and change independently between
blocks. Furthermore, the distribution of hhh𝑘 is assumed to be
known to the receiver, but its realizations are unknown to
both ends of the channel. Since the users are not co-located,
we assume that the hhh𝑘 are independent across users. We
consider Rayleigh fading with receiver-side correlation, i.e.,
hhh𝑘 ∼ N(0,ΞΞΞ𝑘 ), where ΞΞΞ𝑘 ∈ C𝑁×𝑁 is the spatial correlation
matrix. We assume that 1

𝑁
tr {ΞΞΞ𝑘 } =: b𝑘 where b𝑘 is the large-

scale average channel gain from one of the receive antennas
to user 𝑘 . We assume that 𝑇 > 𝐾 and 𝑁 ≥ 𝐾 .

Within a coherence block, each transmitter 𝑘 sends a signal
vector sss𝑘 ∈ C𝑇 , and the receiver receives a realization 𝑌𝑌𝑌 of
the random matrix

YYY =

𝐾∑︁
𝑘=1

sss𝑘hhhT
𝑘 +WWW = SSSHHHT +WWW, (1)

where SSS = [sss1 . . . sss𝐾 ] ∈ C𝑇 ×𝐾 and HHH = [hhh1 . . . hhh𝐾 ] ∈
C𝑁×𝐾 concatenate the transmitted signals and channel vec-
tors, respectively, WWW ∈ C𝑇 ×𝑁 is the Gaussian noise with
i.i.d. N(0, 𝜎2) entries independent of HHH, and the block index
is omitted for simplicity.

We assume that the transmitted signals have average unit
norm, i.e., E

[
‖sss𝑘 ‖2

]
= 1, 𝑘 ∈ [𝐾]. Under this normalization,

the signal-to-noise ratio (SNR) of the transmitted signal
from user 𝑘 at each receive antenna is SNR𝑘 = b𝑘/(𝑇𝜎2).
We assume that the transmitted signals belong to disjoint
finite discrete individual constellations with vector-valued
symbols. That is, sss𝑘 ∈ S𝑘 := {𝑠𝑠𝑠 (1)

𝑘
, . . . , 𝑠𝑠𝑠

( |S𝑘 |)
𝑘

}, 𝑘 ∈ [𝐾] .
In particular, S𝑘 can be a Grassmannian constellation on
𝐺 (C𝑇 , 1), i.e., each constellation symbol 𝑠𝑠𝑠 (𝑖)

𝑘
is a unit-norm

vector representative of a point in 𝐺 (C𝑇 , 1). Another example
is when the constellation symbols contain pilots and scalar
data symbols.1 Each symbol in S𝑘 is labeled with a binary
sequence of length 𝐵𝑘 := log2 |S𝑘 |.

1In this case, the constellations are disjoint thanks to the fact that pilot
sequences are user-specific.

B. Multi-User Detection Problem

Given SSS = 𝑆𝑆𝑆 = [𝑠𝑠𝑠1, 𝑠𝑠𝑠2, . . . , 𝑠𝑠𝑠𝐾 ], the conditional probability
density 𝑝YYY |SSS, also known as likelihood function, is derived
similar to [27, Eq.(9)] as

𝑝YYY |SSS (𝑌𝑌𝑌 |𝑆𝑆𝑆) =
exp

(
− vec(𝑌𝑌𝑌 T)H

(
𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑𝐾
𝑘=1 𝑠𝑠𝑠𝑘𝑠𝑠𝑠

H
𝑘
⊗ ΞΞΞ𝑘

)−1vec(𝑌𝑌𝑌 T)
)

𝜋𝑁𝑇 det(𝜎2𝐼𝐼𝐼𝑁𝑇 +
∑𝐾
𝑘=1 𝑠𝑠𝑠𝑘𝑠𝑠𝑠

H
𝑘
⊗ ΞΞΞ𝑘 )

.

Given the received signal YYY = 𝑌𝑌𝑌 , the joint multi-user ML
symbol decoder is then

�̂�𝑆𝑆 = arg min
𝑆𝑆𝑆∈∏𝐾

𝑘=1 S𝑘

(
vec(𝑌𝑌𝑌 T)H

(
𝜎2𝐼𝐼𝐼𝑁𝑇 +

𝐾∑︁
𝑘=1

𝑠𝑠𝑠𝑘𝑠𝑠𝑠
H
𝑘 ⊗ ΞΞΞ𝑘

)−1
vec(𝑌𝑌𝑌 T)

+ log det
(
𝜎2𝐼𝐼𝐼𝑁𝑇 +

𝐾∑︁
𝑘=1

𝑠𝑠𝑠𝑘𝑠𝑠𝑠
H
𝑘 ⊗ ΞΞΞ𝑘

))
. (2)

Since the ML decoding metric depends on 𝑆𝑆𝑆 only through∑𝐾
𝑘=1 𝑠𝑠𝑠𝑘𝑠𝑠𝑠

H
𝑘
⊗ΞΞΞ𝑘 , for identifiability, it must hold that

∑𝐾
𝑘=1 𝑠𝑠𝑠𝑘𝑠𝑠𝑠

H
𝑘
⊗

ΞΞΞ𝑘 ≠
∑𝐾
𝑘=1 𝑠𝑠𝑠

′
𝑘
𝑠𝑠𝑠′
𝑘

H ⊗ ΞΞΞ𝑘 for any pair of distinct joint symbols
𝑆𝑆𝑆 = [𝑠𝑠𝑠1, . . . , 𝑠𝑠𝑠𝐾 ] and 𝑆𝑆𝑆′ = [𝑠𝑠𝑠′1, . . . , 𝑠𝑠𝑠

′
𝐾
] in

∏𝐾
𝑘=1 S𝑘 .

When a channel code is used, most channel decoders require
the LLRs of the bits. The LLR of the 𝑗-th bit of user 𝑘 , denoted
by b𝑘, 𝑗 , given the observation YYY = 𝑌𝑌𝑌 is defined as

LLR𝑘, 𝑗 (𝑌𝑌𝑌 ) := log
𝑝YYY |b𝑘, 𝑗 (𝑌𝑌𝑌 |1)
𝑝YYY |b𝑘, 𝑗 (𝑌𝑌𝑌 |0)

= log

∑
𝛼𝛼𝛼∈S (1)

𝑘, 𝑗

𝑝YYY |sss𝑘 (𝑌𝑌𝑌 |𝛼𝛼𝛼)∑
𝛽𝛽𝛽∈S (0)

𝑘, 𝑗

𝑝YYY |sss𝑘 (𝑌𝑌𝑌 |𝛽𝛽𝛽)

= log

∑
𝛼𝛼𝛼∈S (1)

𝑘, 𝑗

𝑝sss𝑘 |YYY (𝛼𝛼𝛼 |𝑌𝑌𝑌 )∑
𝛽𝛽𝛽∈S (0)

𝑘, 𝑗

𝑝sss𝑘 |YYY (𝛽𝛽𝛽 |𝑌𝑌𝑌 )
(3)

where S (𝑏)
𝑘, 𝑗

denotes the set of all possible symbols in S𝑘 with
the 𝑗-th bit being equal to 𝑏 for 𝑗 ∈ [𝐵𝑘 ] and 𝑏 ∈ {0, 1}. To
compute (3), the posteriors 𝑝sss𝑘 |YYY, 𝑘 ∈ [𝐾], are marginalized
from

𝑝SSS |YYY (𝑆𝑆𝑆 |𝑌𝑌𝑌 ) =
𝑝YYY |SSS (𝑌𝑌𝑌 |𝑆𝑆𝑆)𝑝SSS (𝑆𝑆𝑆)

𝑝YYY (𝑌𝑌𝑌 )
∝ 𝑝YYY |SSS (𝑌𝑌𝑌 |𝑆𝑆𝑆)𝑝SSS (𝑆𝑆𝑆).

Assuming that the transmitted signals are independent
and uniformly distributed over the respective constella-
tions, the prior 𝑝SSS factorizes as Pr(SSS = [𝑠𝑠𝑠1, . . . , 𝑠𝑠𝑠𝐾 ]) =∏𝐾
𝑘=1

1
|S𝑘 |1{𝑠𝑠𝑠𝑘 ∈ S𝑘 }. On the other hand, the likelihood

function 𝑝YYY |SSS (𝑌𝑌𝑌 | [𝑠𝑠𝑠1, . . . , 𝑠𝑠𝑠𝐾 ]) involves all 𝑠𝑠𝑠1, . . . , 𝑠𝑠𝑠𝐾 in such
a manner that it does not straightforwardly factorize. Exact
marginalization of 𝑝SSS |YYY requires computing

𝑝sss𝑘 |YYY (𝑠𝑠𝑠𝑘 |𝑌𝑌𝑌 ) =
∑︁

𝑠𝑠𝑠𝑙 ∈S𝑙 ,∀𝑙≠𝑘
𝑝SSS |YYY ( [𝑠𝑠𝑠1, . . . , 𝑠𝑠𝑠𝐾 ] |𝑌𝑌𝑌 ), 𝑘 ∈ [𝐾] .

(4)

That is, it requires computing 𝑝YYY |SSS (𝑌𝑌𝑌 |𝑆𝑆𝑆) (which requires the
inversion of an 𝑁𝑇 × 𝑁𝑇 matrix) for all 𝑆𝑆𝑆 ∈ ∏𝐾

𝑘=1 S𝑘 . Thus,
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the total complexity of exact marginalization is 𝑂 (𝐾62𝐾𝐵).2
This is formidable for many users or large constellations. Thus,
we seek alternative approaches to estimate

𝑝SSS |YYY ( [𝑠𝑠𝑠1, . . . , 𝑠𝑠𝑠𝐾 ] |𝑌𝑌𝑌 ) ≈ 𝑝SSS |YYY ( [𝑠𝑠𝑠1, . . . , 𝑠𝑠𝑠𝐾 ] |𝑌𝑌𝑌 )

=

𝐾∏
𝑘=1

𝑝sss𝑘 |YYY (𝑠𝑠𝑠𝑘 |𝑌𝑌𝑌 ). (5)

C. Achievable Rate

According to [28, Sec. II], the highest sum-rate reliably
achievable with a given decoding metric 𝑝SSS |YYY, so-called the
mismatched sum-rate, is lower bounded by the generalized
mutual information (GMI) given by

𝑅GMI

=
1
𝑇

sup
𝑠≥0
E

[
log2

𝑝SSS |YYY (SSS|YYY)𝑠∑
𝑆𝑆𝑆′∈∏𝐾

𝑘=1 S𝑘
Pr(SSS = 𝑆𝑆𝑆′)𝑝SSS |YYY (𝑆𝑆𝑆′ |YYY)𝑠

]
=

1
𝑇

sup
𝑠≥0
E

[ 𝐾∑︁
𝑘=1

𝐵𝑘 − log2

∑
𝑆𝑆𝑆′∈∏𝐾

𝑘=1 S𝑘
𝑝SSS |YYY (𝑆𝑆𝑆′ |𝑌𝑌𝑌 )𝑠

𝑝SSS |YYY (SSS|YYY)𝑠
]

(6)

=
1
𝑇

𝐾∑︁
𝑘=1

𝐵𝑘 −
1
𝑇

inf
𝑠≥0
E

[ 𝐾∑︁
𝑘=1

log2

∑
𝑠𝑠𝑠′
𝑘
∈S𝑘 𝑝sss𝑘 |YYY (𝑠𝑠𝑠′𝑘 |YYY)

𝑠

𝑝sss𝑘 |YYY (sss𝑘 |YYY)
𝑠

]
(7)

bits/channel use, where the expectation is over the joint
distribution of SSS and YYY, i.e., 𝑝YYY |SSS𝑝SSS, (6) holds because the
transmitted symbols are independent and have uniform prior
distribution, and (7) follows from the factorization of 𝑝SSS |YYY in
(5). The generalized mutual information 𝑅GMI is upper bounded
by the sum-rate achieved with the optimal decoding metric
𝑝SSS |YYY given by

𝑅 =
1
𝑇
𝐼 (SSS;YYY)

=
1
𝑇
ℎ(SSS) − 1

𝑇
ℎ(SSS|YYY)

=
1
𝑇

𝐾∑︁
𝑘=1

𝐵𝑘 −
1
𝑇
E

[
log2

1
𝑝SSS |YYY (SSS|YYY)

]
=

1
𝑇

𝐾∑︁
𝑘=1

𝐵𝑘 −
1
𝑇
E

[
log2

∑
𝑆𝑆𝑆′∈∏𝐾

𝑘=1 S𝑘
𝑝YYY |SSS (YYY|𝑆𝑆𝑆′)

𝑝YYY |SSS (YYY|SSS)

]
(8)

bits/channel use, where (8) follows from the Bayes’ law and
the uniformity of the prior distribution. 𝑅GMI approaches 𝑅 as
𝑝SSS |YYY gets close to 𝑝SSS |YYY. Note that if we fix 𝑠 = 1 in place of
the infimum in (7), it holds that

𝑅 − 𝑅GMI (𝑠 = 1) = 1
𝑇
E

[
log2

𝑝SSS |YYY (SSS|YYY)
𝑝SSS |YYY (SSS|YYY)

]
=

1
𝑇
EYYY

[
𝐷 (𝑝SSS |YYY‖𝑝SSS |YYY)

]
,

which converges to zero when the KL divergence between
𝑝SSS |YYY and 𝑝SSS |YYY vanishes.

2Throughout the paper, as far as the complexity analysis is concerned, we
assume for notational simplicity that 𝑇 = 𝑂 (𝐾 ) , 𝑁 = 𝑂 (𝐾 ) , and |S𝑘 | =
𝑂 (2𝐵) , ∀𝑘 ∈ [𝐾 ]. If the channels are uncorrelated (ΞΞΞ𝑘 = 𝐼𝐼𝐼𝑁 ), the likelihood

function can be simplified as 𝑝YYY|SSS (𝑌𝑌𝑌 |𝑆𝑆𝑆) =
exp

(
−tr

{
𝑌𝑌𝑌H (𝜎2𝐼𝐼𝐼𝑇 +𝑆𝑆𝑆𝑆𝑆𝑆H )−1𝑌𝑌𝑌

})
𝜋𝑁𝑇 det𝑁 (𝜎2𝐼𝐼𝐼𝑇 +𝑆𝑆𝑆𝑆𝑆𝑆H )

. Thus,

the complexity of exact marginalization is reduced to 𝑂 (𝐾 32𝐾𝐵) .

The expectations in (7) and (8) cannot be derived in closed
form in general. Alternatively, we can evaluate 𝑅 and 𝑅GMI
(and also EYYY [𝐷 (𝑝SSS |YYY

𝑝SSS |YYY)]) numerically with the Monte
Carlo method. Note that when 𝐾 or 𝐵𝑘 is large, even a
numerical evaluation of 𝑅 and EYYY [𝐷 (𝑝SSS |YYY

𝑝SSS |YYY)] is not
possible. Therefore, we choose to use the mismatched sum-
rate lower bound 𝑅GMI as an information-theoretic metric to
evaluate how close 𝑝SSS |YYY is to 𝑝SSS |YYY.

In what follows, we design a posterior marginal estimation
scheme based on EP. We start by providing a brief review of
EP in the next section.

III. EXPECTATION PROPAGATION

The EP algorithm was first proposed in [24] and summarized
in, e.g., [25] for approximate inference in probabilistic graphical
models. EP is an iterative framework for approximating
posterior beliefs by parametric distributions in the exponential
family [26, Sec. 1.6]. Let us consider a set of unknown variables
represented by a random vector xxx with posterior of the form

𝑝xxx (𝑥𝑥𝑥) ∝
∏
𝛼

𝜓𝛼 (𝑥𝑥𝑥𝛼), (9)

where 𝑥𝑥𝑥𝛼 is the subset of variables involved in the factor 𝜓𝛼
corresponding to a partition {xxx𝛼} of xxx. Furthermore, let us
partition the components of xxx into some sets {xxx𝛽}, where no xxx𝛽
is split across factors (i.e., ∀𝛼, 𝛽 either xxx𝛽 ⊂ xxx𝛼 or xxx𝛽∩xxx𝛼 = ∅).
The partition {xxx𝛼} represents the local dependency of the
variables given by the intrinsic factorization (9), while the
partition {xxx𝛽} groups the variables that always occur together
in a factor. We are interested in the posterior marginals w.r.t.
the partition {xxx𝛽}. In the following, we omit xxx in the subscripts
since it is obvious.

EP approximates the true posterior 𝑝 from (9) by a distri-
bution 𝑝 that can be expressed in two ways. First, it can be
expressed w.r.t. the “target” partition {xxx𝛽} as

𝑝(𝑥𝑥𝑥) =
∏
𝛽

𝑝𝛽 (𝑥𝑥𝑥𝛽), (10)

where 𝑝𝛽 are constrained to be in the exponential family [26,
Sec. 1.6], such that (s.t.)

𝑝𝛽 (𝑥𝑥𝑥𝛽) = exp
(
𝛾𝛾𝛾T
𝛽𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽) − 𝐴𝛽 (𝛾𝛾𝛾𝛽)

)
, (11)

for sufficient statistics 𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽), parameters 𝛾𝛾𝛾𝛽 , and log-partition
function 𝐴𝛽 (𝛾𝛾𝛾) := ln

∫
𝑒𝛾𝛾𝛾

T𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽) d𝑥𝑥𝑥𝛽 . Second, 𝑝 can also be
expressed w.r.t. the partition {xxx𝛼} as

𝑝(𝑥𝑥𝑥) ∝
∏
𝛼

𝑚𝛼 (𝑥𝑥𝑥𝛼), (12)

in accordance with (9). For (10) and (12) to be consistent, the
terms 𝑚𝛼 should also factorize over 𝛽, i.e., there exist factors
𝑚𝛼,𝛽 of the form 𝑚𝛼,𝛽 (𝑥𝑥𝑥𝛽) = exp

(
𝛾𝛾𝛾T
𝛼,𝛽
𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽)

)
s.t.

𝑚𝛼 (𝑥𝑥𝑥𝛼) =
∏
𝛽∈𝔑𝛼

𝑚𝛼,𝛽 (𝑥𝑥𝑥𝛽) = exp
( ∑︁
𝛽∈𝔑𝛼

𝛾𝛾𝛾T
𝛼,𝛽𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽)

)
,

𝑝𝛽 (𝑥𝑥𝑥𝛽) ∝
∏
𝛼∈𝔑𝛽

𝑚𝛼,𝛽 (𝑥𝑥𝑥𝛽) = exp
( ∑︁
𝛼∈𝔑𝛽

𝛾𝛾𝛾T
𝛼,𝛽𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽)

)
, (13)
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where 𝔑𝛼 collects the indices 𝛽 for which xxx𝛽 ⊂ xxx𝛼, and 𝔑𝛽
collects the indices 𝛼 for which xxx𝛽 ⊂ xxx𝛼. It turns out that
𝑚𝛼,𝛽 can be interpreted as a message from the factor node 𝛼
to the variable node 𝛽 on a bipartite factor graph [29]. In this
case, 𝑝𝛽 (𝑥𝑥𝑥𝛽) is proportional to the product of all messages
impinging on variable node 𝛽.

EP works by first initializing all 𝑚𝛼 (𝑥𝑥𝑥𝛼) and 𝑝𝛽 (𝑥𝑥𝑥𝛽)
(typically by the respective priors, which are assumed to also
belong to the considered exponential family), then iteratively
updating each approximation factor 𝑚𝛼 in turn. Let us fix
a factor index 𝛼. According to [24], the “tilted” distribution
𝑞𝛼 is constructed by swapping the true potential 𝜓𝛼 for its
approximate 𝑚𝛼 in 𝑝(𝑥𝑥𝑥) as 𝑞𝛼 (𝑥𝑥𝑥) =

�̂� (𝑥𝑥𝑥)𝜓𝛼 (𝑥𝑥𝑥𝛼)
𝑚𝛼 (𝑥𝑥𝑥𝛼) , where it

is assumed that
∫
𝑞𝛼 (𝑥𝑥𝑥) d𝑥𝑥𝑥 < ∞. This tilted distribution is

projected back onto the exponential family by minimizing the
KL divergence:

𝑝new
𝛼 (𝑥𝑥𝑥) = arg min

𝑝∈P
𝐷
(
𝑞𝛼 (𝑥𝑥𝑥)

𝑝(𝑥𝑥𝑥)) , (14)

where P is the set of distributions of the form of 𝑝 in (10),
i.e., 𝑝(𝑥𝑥𝑥) = ∏

𝛽 𝑝𝛽
(𝑥𝑥𝑥𝛽) =

∏
𝛽 exp

(
𝛾𝛾𝛾T

𝛽
𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽) − 𝐴𝛽 (𝛾𝛾𝛾𝛽)

)
for

some {𝛾𝛾𝛾
𝛽
}. Following [24], the solution to (14) is as follows.

Proposition 1. The solution to (14) is given by 𝑝new
𝛼 (𝑥𝑥𝑥) =∏

𝛽 𝑝
new
𝛼,𝛽
(𝑥𝑥𝑥𝛽) with 𝑝new

𝛼,𝛽
(𝑥𝑥𝑥𝛽) = 𝑝𝛽 (𝑥𝑥𝑥𝛽), ∀𝛽 ∉ 𝔑𝛼,

and 𝑝new
𝛼,𝛽
(𝑥𝑥𝑥𝛽) = exp

(
γT

𝛽
𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽) − 𝐴𝛽 (γ

𝛽
)
)

with γ
𝛽

s.t.
E �̂�new

𝛼,𝛽
[𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽)] = E𝑞𝛼 [𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽)], ∀𝛽 ∈ 𝔑𝛼, whenever the

expectation E𝑞𝛼 [·] exists.

Proof. The proof is given in Appendix B. �

The factor 𝑚𝛼 is then updated via

𝑚new
𝛼 (𝑥𝑥𝑥𝛼) =

𝑝new
𝛼 (𝑥𝑥𝑥)𝑚𝛼 (𝑥𝑥𝑥𝛼)

𝑝(𝑥𝑥𝑥) (15)

=

[ ∏
𝛽∈𝔑𝛼

𝑚𝛼,𝛽 (𝑥𝑥𝑥𝛽)
] ∏

𝛽∈𝔑𝛼 𝑝
new
𝛼,𝛽
(𝑥𝑥𝑥𝛽)∏

𝛽∈𝔑𝛼 𝑝𝛽 (𝑥𝑥𝑥𝛽)

∝
[ ∏
𝛽∈𝔑𝛼

𝑚𝛼,𝛽 (𝑥𝑥𝑥𝛽)
]

×
∏
𝛽∈𝔑𝛼 𝑝

new
𝛼,𝛽
(𝑥𝑥𝑥𝛽)∏

𝛽∈𝔑𝛼
[
𝑚𝛼,𝛽 (𝑥𝑥𝑥𝛽)

∏
𝛼′∈𝔑𝛽\𝛼 𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)

]
=

∏
𝛽∈𝔑𝛼

𝑚new
𝛼,𝛽 (𝑥𝑥𝑥𝛽), (16)

with

𝑚new
𝛼,𝛽 (𝑥𝑥𝑥𝛽) :=

𝑝new
𝛼,𝛽
(𝑥𝑥𝑥𝛽)∏

𝛼′∈𝔑𝛽\𝛼 𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)
. (17)

Note that, on the right-hand side (RHS) of (15), all terms
dependent on {𝑥𝑥𝑥𝛽}𝛽∉𝔑𝛼 cancel, leaving the dependence only on
{𝑥𝑥𝑥𝛽}𝛽∈𝔑𝛼 . Thus, the update of 𝑚𝛼 only affects the approximate
posterior of nodes 𝛽 in the neighborhood of node 𝛼. After that,
the process is repeated with the next 𝛼.

A message-passing view of Proposition 1 can be seen by
expanding 𝑞𝛼 (𝑥𝑥𝑥) as

𝑞𝛼 (𝑥𝑥𝑥) =
𝜓𝛼 (𝑥𝑥𝑥𝛼)
𝑚𝛼 (𝑥𝑥𝑥𝛼)

[ ∏
𝛽∈𝔑𝛼

∏
𝛼′∈𝔑𝛽

𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)
] [ ∏

𝛽∉𝔑𝛼

𝑝𝛽 (𝑥𝑥𝑥𝛽)
]

= 𝜓𝛼 (𝑥𝑥𝑥𝛼)
[ ∏
𝛽∈𝔑𝛼

∏
𝛼′∈𝔑𝛽\𝛼

𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)
] [ ∏

𝛽∉𝔑𝛼

𝑝𝛽 (𝑥𝑥𝑥𝛽)
]
,

then, using the natural logarithm for the KL divergence, it
follows that

𝐷
(
𝑞𝛼 (𝑥𝑥𝑥)

𝑝(𝑥𝑥𝑥))
=

∫
𝑞𝛼 (𝑥𝑥𝑥) ln

𝑞𝛼 (𝑥𝑥𝑥)
𝑝(𝑥𝑥𝑥) d𝑥𝑥𝑥

=

∫
𝜓𝛼 (𝑥𝑥𝑥𝛼)

[ ∏
𝛽∈𝔑𝛼

∏
𝛼′∈𝔑𝛽\𝛼

𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)
] [ ∏

𝛽∉𝔑𝛼

𝑝𝛽 (𝑥𝑥𝑥𝛽)
]

× ln
(
𝜓𝛼 (𝑥𝑥𝑥𝛼)

∏
𝛽∈𝔑𝛼

∏
𝛼′∈𝔑𝛽\𝛼 𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)∏

𝛽∈𝔑𝛼 𝑝𝛽
(𝑥𝑥𝑥𝛽)

×
∏
𝛽∉𝔑𝛼

𝑝𝛽 (𝑥𝑥𝑥𝛽)∏
𝛽∉𝔑𝛼

𝑝
𝛽
(𝑥𝑥𝑥𝛽)

)
d𝑥𝑥𝑥

=

∫
𝜓𝛼 (𝑥𝑥𝑥𝛼)

[ ∏
𝛽∈𝔑𝛼

∏
𝛼′∈𝔑𝛽\𝛼

𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)
]

× ln
𝜓𝛼 (𝑥𝑥𝑥𝛼)

∏
𝛽∈𝔑𝛼

∏
𝛼′∈𝔑𝛽\𝛼 𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)∏

𝛽∈𝔑𝛼 𝑝𝛽
(𝑥𝑥𝑥𝛽)

d𝑥𝑥𝑥𝛼

+
∑︁
𝛽∉𝔑𝛼

∫
𝑝𝛽 (𝑥𝑥𝑥𝛽) ln

𝑝𝛽 (𝑥𝑥𝑥𝛽)
𝑝
𝛽
(𝑥𝑥𝑥𝛽)

d𝑥𝑥𝑥𝛽

=
∑︁
𝛽∈𝔑𝛼

∫
𝑞𝛼,𝛽 (𝑥𝑥𝑥𝛽) ln

𝑞𝛼,𝛽 (𝑥𝑥𝑥𝛽)
𝑝
𝛽
(𝑥𝑥𝑥𝛽)

d𝑥𝑥𝑥𝛽 +
∑︁
𝛽∉𝔑𝛼

𝐷
(
𝑝𝛽

𝑝
𝛽

)
+ 𝑐0

=
∑︁
𝛽∈𝔑𝛼

𝐷
(
𝑞𝛼,𝛽

𝑝
𝛽

)
+

∑︁
𝛽∉𝔑𝛼

𝐷
(
𝑝𝛽

𝑝
𝛽

)
+ 𝑐0, (18)

where

𝑞𝛼,𝛽 (𝑥𝑥𝑥𝛽) :=
∫

𝜓𝛼 (𝑥𝑥𝑥𝛼)
[ ∏
𝛽∈𝔑𝛼

∏
𝛼′∈𝔑𝛽\𝛼

𝑚𝛼′,𝛽 (𝑥𝑥𝑥𝛽)
]

d𝑥𝑥𝑥𝛼\𝛽(19)

and 𝑐0 represents a constant w.r.t. the distribution 𝑝 (which
we optimize) whose value is irrelevant and may change at
each occurrence. Equation (18) says that, for each 𝛽 in the
neighborhood of node 𝛼, the optimal 𝑝

𝛽
(i.e., 𝑝new

𝛼,𝛽
) is uniquely

identified as the moment match of 𝑞𝛼,𝛽 in the exponential
family with sufficient statistics 𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽), where 𝑞𝛼,𝛽 is formed
by taking the product of the true factor 𝜓𝛼 and all the messages
impinging on that factor, and then integrating out all variables
except 𝑥𝑥𝑥𝛽 . Furthermore, (17) says that the new message 𝑚new

𝛼,𝛽

passed from 𝛼 to 𝛽 ∈ 𝔑𝛼 equals 𝑝new
𝛼,𝛽

divided by the product
of messages {𝑚𝛼′,𝛽}𝛼′∈𝔑𝛽\𝛼, i.e., previous messages to 𝛽 from
all directions except 𝛼. An illustrative example is shown in
Fig. 1.

IV. APPLICATION OF EP TO NON-COHERENT DETECTION

In order to apply EP to the non-coherent detection problem
described in Section II, we express the transmitted signal
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𝜓𝑎

𝜓𝑏

𝜓𝑐

xxx1

xxx2

xxx3

xxx4

𝑚𝑎,1

𝑚𝑎,2

𝑚𝑏,2
𝑚𝑏,3

𝑚
𝑏,4

𝑚𝑐,3

𝑚𝑐,4

Fig. 1. An example of the factor graph representation of EP for 𝛼 ∈ {𝑎, 𝑏, 𝑐 }
and 𝛽 ∈ {1, 2, 3, 4}. For 𝛼 = 𝑏 and 𝛽 = 2, according to (19) and
(17), 𝑞𝑏,2 (xxx2) =

∫
𝜓𝑏 (xxx2, xxx3, xxx4)𝑚𝑎,2 (xxx2)𝑚𝑐,3 (xxx3)𝑚𝑐,4 (xxx4) dxxx3 dxxx4 and

𝑚new
𝑏,2 (xxx2) =

�̂�new
𝑏,2 (xxx2 )
𝑚𝑎,2 (xxx2 )

, respectively.

as sss𝑘 = 𝑠𝑠𝑠
(i𝑘 )
𝑘

, where i1, . . . , i𝐾 are independent random
indices.3 With the assumption that the constellation symbols are
transmitted with equal probability, i𝑘 are uniformly distributed
over [|S𝑘 |], 𝑘 ∈ [𝐾]. We rewrite the received signal (1) in
vector form as

yyy =

𝐾∑︁
𝑘=1

zzz𝑘 +www, (20)

where yyy := vec(YYYT), zzz𝑘 := (𝑠𝑠𝑠 (i𝑘 )
𝑘
⊗ 𝐼𝐼𝐼𝑁 )hhh𝑘 , and www := vec(WWWT) ∼

N (0, 𝜎2𝐼𝐼𝐼𝑁𝑇 ). The problem of estimating 𝑝sss𝑘 |YYY is equivalent
to estimating 𝑝i𝑘 |YYY since they admit the same PMF.

With zzz := [zzzT
1, . . . ,zzz

T
𝐾
]T and iii := [i1, . . . , i𝐾 ]T, we can write

𝑝iii,zzz |yyy (𝑖𝑖𝑖, 𝑧𝑧𝑧 |𝑦𝑦𝑦) ∝ 𝑝iii,zzz,yyy (𝑖𝑖𝑖, 𝑧𝑧𝑧, 𝑦𝑦𝑦)
= 𝑝yyy |zzz (𝑦𝑦𝑦 |𝑧𝑧𝑧)𝑝zzz |iii (𝑧𝑧𝑧 |𝑖𝑖𝑖)𝑝iii (𝑖𝑖𝑖)

= 𝜓0 (𝑧𝑧𝑧1, . . . , 𝑧𝑧𝑧𝐾 )
[ 𝐾∏
𝑘=1

𝜓𝑘1 (𝑧𝑧𝑧𝑘 , 𝑖𝑘 )
] [ 𝐾∏

𝑘=1
𝜓𝑘2 (𝑖𝑘 )

]
,

corresponding to (9), where

𝜓0 (𝑧𝑧𝑧1, . . . , 𝑧𝑧𝑧𝐾 ) := 𝑝yyy |zzz (𝑦𝑦𝑦 |𝑧𝑧𝑧) = N
(
𝑦𝑦𝑦;

𝐾∑︁
𝑘=1

𝑧𝑧𝑧𝑘 , 𝜎
2𝐼𝐼𝐼𝑁𝑇

)
,

𝜓𝑘1 (𝑧𝑧𝑧𝑘 , 𝑖𝑘 ) := 𝑝zzz𝑘 |i𝑘 (𝑧𝑧𝑧𝑘 ) = N
(
𝑧𝑧𝑧𝑘 ; 0, (𝑠𝑠𝑠 (𝑖𝑘 )

𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
) ⊗ ΞΞΞ𝑘

)
,(21)

𝜓𝑘2 (𝑖𝑘 ) := 𝑝i𝑘 (𝑖𝑘 ) =
1
|S𝑘 |

for 𝑖𝑘 ∈ [|S𝑘 |] .

In the following, we consider a realization 𝑦𝑦𝑦 of yyy and use EP
to infer the posterior of the indices {i𝑘 } and, as a by-product,
the posterior of zzz𝑘 , 𝑘 ∈ [𝐾]. To do so, we choose the partition
xxx = {zzz𝑘 , i𝑘 }𝐾𝑘=1 and illustrate the interaction between these
variables and the factors 𝜓0, 𝜓𝑘1, 𝜓𝑘2 on the bipartite factor
graph in Fig. 2. This graph is a tree with a root yyy and 𝐾 leaves
{𝜓𝑘2}𝐾𝑘=1.

We write the EP approximation according to (10) as

𝑝xxx |yyy (𝑥𝑥𝑥 |𝑦𝑦𝑦) = 𝑝iii,zzz |yyy (𝑖𝑖𝑖, 𝑧𝑧𝑧 |𝑦𝑦𝑦) =
𝐾∏
𝑘=1

𝑝zzz𝑘 (𝑧𝑧𝑧𝑘 )𝑝i𝑘 (𝑖𝑘 ), (22)

3The application of EP to non-coherent multi-user detection is non-trivial.
Many choices can be made to model and partition the unknowns, but may
not result in tractable derivation. Our choice is carefully made to enable
closed-form message updates.

𝜓0yyy zzz𝑘
`̀̀𝑘0,𝐶𝐶𝐶𝑘0−−−−−−−→

zzz1

`̀̀ 10
,𝐶𝐶𝐶

10

−−−−
−−→

zzz𝐾

`̀̀
𝐾0 ,𝐶𝐶𝐶

𝐾0

−−−−−−−−→

𝜓11

`̀̀11,𝐶𝐶𝐶11←−−−−−−

𝜓𝑘1

`̀̀𝑘1,𝐶𝐶𝐶𝑘1←−−−−−−−

𝜓𝐾1

`̀̀𝐾1,𝐶𝐶𝐶𝐾1←−−−−−−−−

i1

{𝜋 (𝑖)11 }
|S𝑘 |
𝑖=1−−−−−−−−→

i𝑘

{𝜋 (𝑖)
𝑘1 }
|S𝑘 |
𝑖=1−−−−−−−−→

i𝐾

{𝜋 (𝑖)
𝐾1}

|S𝑘 |
𝑖=1−−−−−−−−→

𝜓12

{𝜋 (𝑖)12 }
|S𝑘 |
𝑖=1←−−−−−−−−

𝜓𝑘2

{𝜋 (𝑖)
𝑘2 }
|S𝑘 |
𝑖=1←−−−−−−−−

𝜓𝐾2

{𝜋 (𝑖)
𝐾2}

|S𝑘 |
𝑖=1←−−−−−−−−

...

...

...

...

...

...

...

...

Fig. 2. A factor graph representation of the non-coherent detection problem.
The messages are depicted with under-arrows showing their direction from a
factor node to a variable node.

where 𝑝zzz𝑘 (𝑧𝑧𝑧𝑘 ) and 𝑝i𝑘 (𝑖𝑘 ) are implicitly conditioned on yyy = 𝑦𝑦𝑦

and constrained to be a Gaussian vector distribution and
a discrete distribution with support [|S|] (both belong to
the exponential family), respectively. Specifically, they are
parameterized as

𝑝zzz𝑘 (𝑧𝑧𝑧𝑘 ) = N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘 ,ΣΣΣ𝑘 ) s.t. ΣΣΣ𝑘 is positive definite, (23)

𝑝i𝑘 (𝑖𝑘 ) = �̂�
(𝑖𝑘 )
𝑘

for 𝑖𝑘 ∈ [|S𝑘 |] s.t.
|S𝑘 |∑︁
𝑖=1

�̂�
(𝑖)
𝑘

= 1. (24)

We also write the EP approximation according to (12) as

𝑝xxx |yyy (𝑥𝑥𝑥 |𝑦𝑦𝑦) = 𝑝iii,zzz |yyy (𝑖𝑖𝑖, 𝑧𝑧𝑧 |𝑦𝑦𝑦)

∝ 𝑚0 (𝑧𝑧𝑧1, . . . , 𝑧𝑧𝑧𝐾 )
[ 𝐾∏
𝑘=1

𝑚𝑘1 (𝑧𝑧𝑧𝑘 , 𝑖𝑘 )
] [ 𝐾∏

𝑘=1
𝑚𝑘2 (𝑖𝑘 )

]
,

where we define

𝑚0 (𝑧𝑧𝑧1, . . . , 𝑧𝑧𝑧𝐾 ) ∝
𝐾∏
𝑘=1
N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0),

𝑚𝑘1 (𝑧𝑧𝑧𝑘 , 𝑖𝑘 ) ∝ N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)𝜋 (𝑖𝑘 )𝑘1 ,

𝑚𝑘2 (𝑖𝑘 ) = 𝜋 (𝑖𝑘 )𝑘2 for 𝑖𝑘 ∈ [|S𝑘 |] .

On the factor graph in Fig. 2, we can interpret (`̀̀𝑘0,𝐶𝐶𝐶𝑘0) as the
message from factor node 𝜓0 to variable node zzz𝑘 , (`̀̀𝑘1,𝐶𝐶𝐶𝑘1)
as the message from factor node 𝜓𝑘1 to variable node zzz𝑘 ,{
𝜋
(i𝑘 )
𝑘1

} |S𝑘 |
i𝑘=1 as the message from factor node 𝜓𝑘1 to variable

node i𝑘 , and
{
𝜋
(i𝑘 )
𝑘2

} |S𝑘 |
i𝑘=1 as the message from factor node 𝜓𝑘2

to variable node i𝑘 .

Remark 1. Our choice of Gaussian distribution (within the
exponential family) in (23) is motivated by the fact that when
the noise and channel are Gaussian, the symbol posterior
takes the form of a Gaussian mixture. It also allows a tractable
derivation (using the Gaussian PDF multiplication rule) and
closed-form update expressions, as will be shown in the next
subsection. If a general (possibly non-Gaussian) channel model
is considered, the factor 𝜓𝑘1 (𝑧𝑧𝑧𝑘 , 𝑖𝑘 ) in (21) may be different,
but the factor graph in Fig. 2 remains unchanged.
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A. The EP Message Updates

In the following, we derive the message updates from each
of the factor nodes 𝜓0, 𝜓𝑘1, and 𝜓𝑘2, 𝑘 ∈ [𝐾], to the corre-
sponding variable nodes. To do so, for each 𝛼 ∈ {𝑘1, 𝑘2, 0}, we
compute the projected density 𝑝new

𝛼 =
∏𝐾
𝑘=1 𝑝

new
𝛼,zzz𝑘 (𝑧𝑧𝑧𝑘 )𝑝

new
𝛼,i𝑘
(𝑖𝑘 )

according to (22) and Proposition 1, and then update the factor
𝑚𝛼 according to (16).

1) Message
{
𝜋
(𝑖𝑘 )
𝑘2

} |S𝑘 |
𝑖𝑘=1 from factor node 𝜓𝑘2 to variable

node i𝑘 : First, we compute 𝑝new
𝑘2,i𝑘

and then the EP message{
𝜋
(𝑖𝑘 )
𝑘2

} |S𝑘 |
𝑖𝑘=1 from node 𝜓𝑘2 to node i𝑘 . From (18) and (24), we

know that 𝑝new
𝑘2,i𝑘

is the discrete distribution with PMF {�̂� (𝑖)
𝑘2 }
|S𝑘 |
𝑖=1

proportional to 𝜓𝑘2 (𝑖𝑘 )𝜋 (𝑖𝑘 )𝑘1 , and so

�̂�
(𝑖𝑘 )
𝑘2 =

𝜓𝑘2 (𝑖𝑘 )𝜋 (𝑖𝑘 )𝑘1∑ |S𝑘 |
𝑖=1 𝜓𝑘2 (𝑖)𝜋 (𝑖)𝑘1

=
𝜋
(𝑖𝑘 )
𝑘1∑ |S𝑘 |

𝑖=1 𝜋
(𝑖)
𝑘1

for 𝑖𝑘 ∈ [|S𝑘 |],

since 𝜓𝑘2 (𝑖𝑘 ) is constant over these 𝑖𝑘 . With 𝑝new
𝑘2,i𝑘

computed,
(16) implies that the message from node 𝜓𝑘2 to node i𝑘 is the
PMF proportional to

𝑝new
𝑘2,i𝑘
(𝑖𝑘 )

𝜋
(𝑖𝑘 )
𝑘1

=
�̂�
(𝑖𝑘 )
𝑘2

𝜋
(𝑖𝑘 )
𝑘1

=
1∑ |S𝑘 |

𝑖=1 𝜋
(𝑖)
𝑘1

= 𝑐0 for 𝑖𝑘 ∈ [|S𝑘 |],

and thus 𝜋 (𝑖𝑘 )
𝑘2 = 1

|S𝑘 | for 𝑖𝑘 ∈ [|S𝑘 |] .
2) Messages from factor node 𝜓𝑘1 to variable nodes zzz𝑘

and i𝑘 : Next, we compute 𝑝new
𝑘1 =

∏𝐾
𝑘=1 𝑝

new
𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 )𝑝

new
𝑘1,i𝑘
(𝑖𝑘 )

and the messages
{
𝜋
(𝑖𝑘 )
𝑘1

} |S𝑘 |
𝑖𝑘=1 and (`̀̀𝑘1,𝐶𝐶𝐶𝑘1) from node 𝜓𝑘1

to nodes i𝑘 and zzz𝑘 , respectively.
Message

{
𝜋
(𝑖𝑘 )
𝑘1

} |S𝑘 |
𝑖𝑘=1 from node 𝜓𝑘1 to node i𝑘 : We first

compute 𝑝new
𝑘1,i𝑘
(𝑖𝑘 ). From (18) and (24), we know that

𝑝new
𝑘1,i𝑘
(𝑖𝑘 ) is the discrete distribution with support [|S𝑘 |] and

PMF �̂�
(𝑖𝑘 )
𝑘1 proportional to∫

𝜓𝑘1 (𝑧𝑧𝑧𝑘 , 𝑖𝑘 )N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0)𝜋 (𝑖𝑘 )𝑘2 d𝑧𝑧𝑧𝑘

=
1
|S𝑘 |

∫
N

(
𝑧𝑧𝑧𝑘 ; 0, (𝑠𝑠𝑠 (𝑖𝑘 )

𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
) ⊗ ΞΞΞ𝑘

)
N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0) d𝑧𝑧𝑧𝑘

=
1
|S𝑘 |

∫
N

(
𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘𝑖𝑘 ,ΣΣΣ𝑘𝑖𝑘

)
× N

(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

)
d𝑧𝑧𝑧𝑘

=
1
|S𝑘 |
N

(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

)
,

where the second equality follows from the Gaussian PDF
multiplication rule in Lemma 1 with

ΣΣΣ𝑘𝑖 =
(
[(𝑠𝑠𝑠 (𝑖)

𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘 ]−1 +𝐶𝐶𝐶−1

𝑘0
)−1

=
[
(𝑠𝑠𝑠 (𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘

] (
(𝑠𝑠𝑠 (𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

)−1
𝐶𝐶𝐶𝑘0, (25)

𝑧𝑧𝑧𝑘𝑖 = ΣΣΣ𝑘𝑖𝐶𝐶𝐶
−1
𝑘0 `̀̀𝑘0

=
[
(𝑠𝑠𝑠 (𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘

] (
(𝑠𝑠𝑠 (𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

)−1
`̀̀𝑘0. (26)

Thus

�̂�
(𝑖𝑘 )
𝑘1 =

N
(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

)∑ |S𝑘 |
𝑖=1 N

(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

) , 𝑖𝑘 ∈ [|S𝑘 |] .
(27)

With 𝑝new
𝑘1,i𝑘
(𝑖𝑘 ) computed, (16) implies that the message 𝜋 (𝑖𝑘 )

𝑘1

from node 𝜓𝑘1 to node i𝑘 is the PMF proportional to
�̂�new
𝑘1,i𝑘
(𝑖𝑘 )

𝜋
(𝑖𝑘 )
𝑘2

=

|S𝑘 |�̂� (𝑖𝑘 )𝑘1 for 𝑖𝑘 ∈ [|S𝑘 |], and thus

𝜋
(𝑖𝑘 )
𝑘1 =

|S𝑘 |�̂� (𝑖𝑘 )𝑘1∑ |S𝑘 |
𝑖=1 |S𝑘 |�̂�

(𝑖)
𝑘1

= �̂�
(𝑖𝑘 )
𝑘1 for 𝑖𝑘 ∈ [|S𝑘 |] . (28)

Message (`̀̀𝑘1,𝐶𝐶𝐶𝑘1) from node 𝜓𝑘1 to nodes zzz𝑘 : We next
compute 𝑝new

𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 ). From (18) and (23), we know that
𝑝new
𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 ) is the Gaussian distribution with mean 𝑧𝑧𝑧𝑘 and

covariance ΣΣΣ𝑘 matched to that of the PDF proportional to

|S𝑘 |∑︁
𝑖𝑘=1

𝜓𝑘1 (𝑧𝑧𝑧𝑘 , 𝑖𝑘 )N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0)𝜋 (𝑖𝑘 )𝑘2

=
1
|S𝑘 |

|S𝑘 |∑︁
𝑖=1
N

(
𝑧𝑧𝑧𝑘 ; 0, (𝑠𝑠𝑠 (𝑖)

𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘

)
N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0)

=
1
|S𝑘 |

|S𝑘 |∑︁
𝑖=1
N

(
𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘𝑖 ,ΣΣΣ𝑘𝑖

)
N

(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

)
∝
|S𝑘 |∑︁
𝑖=1
N

(
𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘𝑖 ,ΣΣΣ𝑘𝑖

)
�̂�
(𝑖)
𝑘1 , (29)

where the second equality follows from the Gaussian PDF
multiplication rule in Lemma 1 with ΣΣΣ𝑘𝑖 and 𝑧𝑧𝑧𝑘𝑖 defined in
(25) and (26), respectively. Thus, from (28), we have

𝑧𝑧𝑧𝑘 =

|S𝑘 |∑︁
𝑖=1

𝜋
(𝑖)
𝑘1 𝑧𝑧𝑧𝑘𝑖 , (30)

ΣΣΣ𝑘 =

|S𝑘 |∑︁
𝑖=1

𝜋
(𝑖)
𝑘1 (𝑧𝑧𝑧𝑘𝑖𝑧𝑧𝑧

H
𝑘𝑖 +ΣΣΣ𝑘𝑖) − 𝑧𝑧𝑧𝑘𝑧𝑧𝑧

H
𝑘 . (31)

With 𝑝new
𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 ) computed, (16) implies that the message from

node 𝜓𝑘1 to node zzz𝑘 is proportional to

𝑝new
𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 )

N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0)
=
N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘 ,ΣΣΣ𝑘 )
N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0)

∝ N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1),(32)

with

𝐶𝐶𝐶𝑘1 =
(
ΣΣΣ−1
𝑘 −𝐶𝐶𝐶

−1
𝑘0
)−1
, (33)

`̀̀𝑘1 = 𝐶𝐶𝐶𝑘1
(
ΣΣΣ−1
𝑘 𝑧𝑧𝑧𝑘 −𝐶𝐶𝐶

−1
𝑘0 `̀̀𝑘0

)
. (34)

Equations (33) and (34) can be verified using N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘 ,ΣΣΣ𝑘 ) ∝
N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0), which follows from (13) and
the Gaussian PDF multiplication rule in Lemma 1.

3) Message (`̀̀𝑘0,𝐶𝐶𝐶𝑘0) from node 𝜓0 to node zzz𝑘 : Finally,
we compute 𝑝new

0,zzz𝑘 and the EP message (`̀̀𝑘0,𝐶𝐶𝐶𝑘0) from node
𝜓0 to node zzz𝑘 for each 𝑘 ∈ [𝐾]. From (18) and (23), we
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know that 𝑝new
0,zzz𝑘 is the Gaussian distribution with mean 𝑧𝑧𝑧𝑘0 and

covariance ΣΣΣ𝑘0 matched to that of the PDF proportional to

N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)
∫

𝜓0 (𝑧𝑧𝑧1, . . . , 𝑧𝑧𝑧𝐾 )
[∏
𝑗≠𝑘

N(𝑧𝑧𝑧 𝑗 ; `̀̀ 𝑗1,𝐶𝐶𝐶 𝑗1) d𝑧𝑧𝑧 𝑗
]

= N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)

×
∫
N

(
𝑦𝑦𝑦; 𝑧𝑧𝑧𝑘 +

∑︁
𝑗≠𝑘

𝑧𝑧𝑧 𝑗 , 𝜎
2𝐼𝐼𝐼𝑁𝑇

) [∏
𝑗≠𝑘

N(𝑧𝑧𝑧 𝑗 ; `̀̀ 𝑗1,𝐶𝐶𝐶 𝑗1) d𝑧𝑧𝑧 𝑗
]

= N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)N
(
𝑧𝑧𝑧𝑘 ; 𝑦𝑦𝑦 −

∑︁
𝑗≠𝑘

`̀̀ 𝑗1, 𝜎
2𝐼𝐼𝐼𝑁𝑇 +

∑︁
𝑗≠𝑘

𝐶𝐶𝐶 𝑗1

)
, (35)

where (35) follows by applying repeatedly Lemma 1. Applying
the Gaussian PDF multiplication rule to (35), we obtain

ΣΣΣ𝑘0 =

(
𝐶𝐶𝐶−1
𝑘1 +

[
𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑︁
𝑗≠𝑘

𝐶𝐶𝐶 𝑗1

]−1)−1
, (36)

𝑧𝑧𝑧𝑘0 = ΣΣΣ𝑘0

(
𝐶𝐶𝐶−1
𝑘1 `̀̀𝑘1 +

[
𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑︁
𝑗≠𝑘

𝐶𝐶𝐶 𝑗1

]−1 [
𝑦𝑦𝑦 −

∑︁
𝑗≠𝑘

`̀̀ 𝑗1

] )
.(37)

Given 𝑝new
0,zzz𝑘 (𝑧𝑧𝑧𝑘 ) = N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘0,ΣΣΣ𝑘0), (16) implies that the

message from node 𝜓0 to node zzz𝑘 is proportional to

𝑝new
0,zzz𝑘 (𝑧𝑧𝑧𝑘 )

N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)
=
N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘0,ΣΣΣ𝑘0)
N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)

∝ N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0),

with 𝐶𝐶𝐶𝑘0 =
(
ΣΣΣ−1
𝑘0 − 𝐶𝐶𝐶

−1
𝑘1
)−1 and `̀̀𝑘0 = 𝐶𝐶𝐶𝑘0

(
ΣΣΣ−1
𝑘0𝑧𝑧𝑧𝑘0 −

𝐶𝐶𝐶−1
𝑘1 `̀̀𝑘1

)
. This is verified using N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘0,ΣΣΣ𝑘0)

∝ N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0), which follows from (13),
and the Gaussian PDF multiplication rule in Lemma 1.
Plugging in the expressions for ΣΣΣ−1

𝑘0 and 𝑧𝑧𝑧𝑘0 from (36) and
(37) yields

𝐶𝐶𝐶𝑘0 = 𝜎2𝐼𝐼𝐼𝑁𝑇 +
∑︁
𝑗≠𝑘

𝐶𝐶𝐶 𝑗1, (38)

`̀̀𝑘0 = 𝑦𝑦𝑦 −
∑︁
𝑗≠𝑘

`̀̀ 𝑗1. (39)

This concludes the derivation of the EP message updates.

B. Initialization of the EP Messages

We initialize the EP messages as follows. First, we choose
the non-informative initialization 𝐶𝐶𝐶−1

𝑘0 = 0 and `̀̀𝑘0 = 0,
so that, from (27), the initial message from node 𝜓𝑘1 to
node i𝑘 coincides with the uniform prior 𝜋 (𝑖𝑘 )

𝑘1 = �̂�
(𝑖𝑘 )
𝑘1 =

1
|S𝑘 | for 𝑖𝑘 ∈ [|S𝑘 |], and, from (25) and (26), the initial
parameters ΣΣΣ𝑘𝑖 = (𝑠𝑠𝑠 (𝑖)𝑘 𝑠𝑠𝑠

(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘 and 𝑧𝑧𝑧𝑘𝑖 = 0, respectively,

for 𝑘 ∈ [𝐾] and 𝑖 ∈ [|S𝑘 |]. This leads to the initial
parameters of 𝑝𝑘 (𝑧𝑧𝑧𝑘 ) from (30) and (31) as 𝑧𝑧𝑧𝑘 = 0 and ΣΣΣ𝑘 =

1
|S𝑘 |

∑ |S𝑘 |
𝑖=1 (𝑠𝑠𝑠

(𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘 , and the initial message from node

𝜓𝑘1 to node zzz𝑘 given in (33) and (34) as 𝐶𝐶𝐶𝑘1 = ΣΣΣ𝑘 =
1
|S𝑘 |

∑ |S𝑘 |
𝑖=1 (𝑠𝑠𝑠

(𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
)⊗ΞΞΞ𝑘 , and `̀̀𝑘1 = 𝑧𝑧𝑧𝑘 = 0. Finally, the initial

messages from node 𝜓0 to node zzz𝑘 follows from (38) and (39)
as 𝐶𝐶𝐶𝑘0 = 𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑
𝑗≠𝑘

1
|S 𝑗 |

∑ |S 𝑗 |
𝑖=1 (𝑠𝑠𝑠

(𝑖)
𝑗
𝑠𝑠𝑠
(𝑖)H
𝑗
) ⊗ΞΞΞ𝑘 , and `̀̀𝑘0 =

𝑦𝑦𝑦.

C. The Algorithm

We summarize the proposed EP scheme for probabilistic
non-coherent detection in Algorithm 1. In the end, according
to (13) and (24), the estimated PMF 𝑝sss𝑘 |YYY (𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
|𝑌𝑌𝑌 ) is given by

𝑝𝑘 (𝑖𝑘 ) = �̂� (𝑖𝑘 )𝑘
∝ 𝜋 (𝑖𝑘 )

𝑘1 𝜋
(𝑖𝑘 )
𝑘2 , that is 𝑝𝑘 (𝑖𝑘 ) = 𝜋 (𝑖𝑘 )𝑘1 since 𝜋 (𝑖𝑘 )

𝑘2
is constant. The algorithm goes through the branches of the
tree graph in Fig. 2 in a round-robin manner. In each branch,
the factor nodes are visited from leaf to root. We note that
other message passing schedules can be implemented.

Algorithm 1: EP for probabilistic non-coherent detec-
tion

Input: the observation 𝑌𝑌𝑌 ; the constellations
S1, . . . ,S𝐾 ;

1 set the maximal number of iterations 𝑡max ;
2 initialize of the messages
{𝜋 (𝑖𝑘 )
𝑘1 }

|S𝑘 |
𝑖𝑘=1, `̀̀𝑘1,𝐶𝐶𝐶𝑘1, `̀̀𝑘0,𝐶𝐶𝐶𝑘0, for 𝑘 ∈ [𝐾] ;

3 𝑡 ←− 0 ;
4 repeat
5 𝑡 ←− 𝑡 + 1 ;
6 for 𝑘 ← 1 to 𝐾 do
7 update

{
𝜋
(𝑖𝑘 )
𝑘1

} |S𝑘 |
𝑖𝑘=1 according to (28) and (27) ;

8 compute {𝑧𝑧𝑧𝑘𝑖} |S𝑘 |𝑖=1 and {ΣΣΣ𝑘𝑖} |S𝑘 |𝑖=1 according to
(26) and (25), respectively ;

9 compute 𝑧𝑧𝑧𝑘 and ΣΣΣ𝑘 according to (30) and (31),
respectively ;

10 update `̀̀𝑘1 and 𝐶𝐶𝐶𝑘1 according to (34) and (33),
respectively ;

11 update
{
`̀̀ 𝑗0

}
𝑗≠𝑘

and
{
𝐶𝐶𝐶 𝑗0

}
𝑗≠𝑘

according to
(39) and (38), respectively ;

12 end
13 until convergence or 𝑡 = 𝑡max;
14 return The PMF

{
𝜋
(𝑖𝑘 )
𝑘1

} |S𝑘 |
𝑖𝑘=1 of 𝑝sss𝑘 |YYY (𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
|𝑌𝑌𝑌 ) for

𝑘 ∈ [𝐾]

In the EP algorithm, the dominant operation is the update of
𝜋
(𝑖𝑘 )
𝑘1 , ΣΣΣ𝑘𝑖 , and 𝑧𝑧𝑧𝑘𝑖 , which involves the inverse of the 𝑁𝑇 ×𝑁𝑇

matrix (𝑠𝑠𝑠 (𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0 (with complexity 𝑂 (𝐾6)) for

all 𝑘 ∈ [𝐾] and 𝑖𝑘 ∈ [|S𝑘 |]. The complexity of computing 𝑧𝑧𝑧𝑘 ,
ΣΣΣ𝑘 , `̀̀𝑘1, 𝐶𝐶𝐶𝑘1,

{
`̀̀ 𝑗0

}
𝑗≠𝑘

, and
{
𝐶𝐶𝐶 𝑗0

}
𝑗≠𝑘

are all of lower order.
Therefore, the complexity per iteration is given by 𝑂 (𝐾72𝐵). In
order to reduce this complexity, we derive two simplifications
of the EP scheme in the next section.

V. SIMPLIFICATIONS OF THE EP DETECTOR

In this section, we attempt to simplify EP by avoiding the
inverse of 𝑁𝑇 × 𝑁𝑇 matrices.

A. EP with Approximate Kronecker Products (EPAK)

We observe that if 𝐶𝐶𝐶𝑘0 could be expressed as a Kronecker
product �̄�𝐶𝐶𝑘0 ⊗ΞΞΞ𝑘 with �̄�𝐶𝐶𝑘0 ∈ C𝑇 ×𝑇 , we could rewrite 𝜋 (𝑖𝑘 )

𝑘1 in
(27) as

𝜋
(𝑖𝑘 )
𝑘1 =

N
(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
+ �̄�𝐶𝐶𝑘0) ⊗ ΞΞΞ𝑘

)∑ |S𝑘 |
𝑖=1 N

(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
+ �̄�𝐶𝐶𝑘0) ⊗ ΞΞΞ𝑘

) . (40)
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Let 𝑀𝑀𝑀𝑘0 ∈ C𝑇 ×𝑁 s.t. `̀̀𝑘0 = vec
(
𝑀𝑀𝑀T
𝑘0
)
, (40) could be computed

efficiently using

N
(
0; `̀̀𝑘0,

(
𝑠𝑠𝑠
(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
+ �̄�𝐶𝐶𝑘0

)
⊗ ΞΞΞ𝑘

)
∝
(
1 + 𝑠𝑠𝑠 (𝑖𝑘 )H

𝑘
�̄�𝐶𝐶
−1
𝑘0𝑠𝑠𝑠
(𝑖𝑘 )
𝑘

)−𝑁
× exp

( tr
{
�̄�𝐶𝐶
−1
𝑘0𝑠𝑠𝑠
(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘

𝑀𝑀𝑀𝑘0 (ΞΞΞ−1
𝑘
)T𝑀𝑀𝑀H

𝑘0
}

1 + 𝑠𝑠𝑠 (𝑖𝑘 )H
𝑘

�̄�𝐶𝐶
−1
𝑘0𝑠𝑠𝑠
(𝑖𝑘 )
𝑘

)
since only the 𝑇 × 𝑇 matrix �̄�𝐶𝐶𝑘0 needs to be inverted (the
inverse of ΞΞΞ𝑘 can be precomputed and stored). In general, 𝐶𝐶𝐶𝑘0
does not have a Kronecker structure. Thus we propose to fit
𝐶𝐶𝐶𝑘0 to the form of a Kronecker product by solving the least
squares problem

min
�̄�𝐶𝐶𝑘0∈C𝑇×𝑇

‖𝐶𝐶𝐶𝑘0 − �̄�𝐶𝐶𝑘0 ⊗ ΞΞΞ‖2𝐹

as formulated in [30, Sec. 4]. Let 𝐶𝐶𝐶𝑘0{𝑖, 𝑗} be the 𝑁 × 𝑁
sub-matrix containing the elements in rows from (𝑖 − 1)𝑁 + 1
to 𝑖𝑁 and columns from ( 𝑗 − 1)𝑁 + 1 to 𝑗𝑁 of 𝐶𝐶𝐶𝑘0. Let 𝑐𝑖 𝑗
be the element in row 𝑖 and column 𝑗 of �̄�𝐶𝐶𝑘0. It follows that

‖𝐶𝐶𝐶𝑘0 − �̄�𝐶𝐶𝑘0 ⊗ ΞΞΞ𝑘 ‖2𝐹

=

𝑇∑︁
𝑖=1

𝑇∑︁
𝑗=1
‖𝐶𝐶𝐶𝑘0{𝑖, 𝑗} − 𝑐𝑖 𝑗ΞΞΞ𝑘 ‖2𝐹

=

𝑇∑︁
𝑖=1

𝑇∑︁
𝑗=1
‖𝐶𝐶𝐶𝑘0{𝑖, 𝑗}‖2𝐹 − 𝑐𝑖 𝑗 tr

{
𝐶𝐶𝐶𝑘0{𝑖, 𝑗}HΞΞΞ𝑘

}
− 𝑐∗𝑖 𝑗 tr {ΞΞΞ𝑘𝐶𝐶𝐶𝑘0{𝑖, 𝑗}} + |𝑐𝑖 𝑗 |2tr

{
ΞΞΞ2
𝑘

}
.

Observe that ‖𝐶𝐶𝐶𝑘0−�̄�𝐶𝐶𝑘0⊗ΞΞΞ𝑘 ‖2𝐹 is the sum of convex quadratic

functions of 𝑐𝑖 𝑗 . Setting the partials 𝜕‖𝐶𝐶𝐶𝑘0−�̄�𝐶𝐶𝑘0⊗ΞΞΞ𝑘 ‖2𝐹
𝜕�̄�𝑖 𝑗

to zeros,
the optimal �̄�𝐶𝐶𝑘0 is given by

𝑐𝑖 𝑗 =
tr {𝐶𝐶𝐶𝑘0{𝑖, 𝑗}ΞΞΞ𝑘 }

tr
{
ΞΞΞ2
𝑘

} .

With the approximation 𝐶𝐶𝐶𝑘0 ≈ �̄�𝐶𝐶𝑘0 ⊗ ΞΞΞ𝑘 , we can approximate
𝜋
(𝑖𝑘 )
𝑘1 by the RHS of (40). Also, it follows from (25) and (26)

that

ΣΣΣ𝑘𝑖 ≈
[
(𝑠𝑠𝑠 (𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
)
(
𝑠𝑠𝑠
(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
+ �̄�𝐶𝐶𝑘0

)−1
�̄�𝐶𝐶𝑘0

]
⊗ ΞΞΞ𝑘 , (41)

𝑧𝑧𝑧𝑘𝑖 ≈ vec
( [
𝑠𝑠𝑠
(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘

(
𝑠𝑠𝑠
(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
+ �̄�𝐶𝐶𝑘0

)−1
𝑀𝑀𝑀𝑘0

]T)
. (42)

To compute 𝐶𝐶𝐶𝑘1 and `̀̀𝑘1 in (34) and (33), the inversion of
𝐶𝐶𝐶𝑘0 can be simplified as 𝐶𝐶𝐶−1

𝑘0 ≈ �̄�𝐶𝐶
−1
𝑘0 ⊗ ΞΞΞ−1

𝑘
, but the inverse of

𝑁𝑇 × 𝑁𝑇 matrices involving ΣΣΣ𝑘 is still required.
To keep an accurate message update at early iterations4,

let us fix a threshold 𝑡0 ∈ [𝑡max] and modify Algorithm 1 as
follows. At iteration 𝑡, if 𝑡 ≤ 𝑡0, the messages are updated as in
lines 7-11; if 𝑡 > 𝑡0, in line 7, (27) is replaced by (40) for the
update of 𝜋 (𝑖𝑘 )

𝑘1 , and in line 8, (26) and (25) are replaced by (42)
and (41) for the update of ΣΣΣ𝑘𝑖 and 𝑧𝑧𝑧𝑘𝑖 , respectively. We refer
to this scheme as EPAK (EP with Approximate Kronecker).

4In the uncorrelated fading case, i.e. ΞΞΞ𝑘 = 𝐼𝐼𝐼𝑁 , the approximation of 𝐶𝐶𝐶𝑘0
with Kronecker products becomes more accurate when �̂�𝑘1 is closer to a
Kronecker-delta distribution, i.e., we have high confidence in one of the
symbols. This is likely the case at high SNR after some EP iterations. At early
iterations, however, the approximation 𝐶𝐶𝐶𝑘0 ≈ �̄�𝐶𝐶𝑘0 ⊗ ΞΞΞ can be inaccurate.

It coincides with EP if 𝑡0 = 𝑡max. At iteration 𝑡 > 𝑡0, the
dominant operations in EPAK are the inverse of 𝑠𝑠𝑠 (𝑖)

𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
+ �̄�𝐶𝐶𝑘0

(with complexity 𝑂 (𝐾3)) in (41) and (42) for each 𝑘 ∈ [𝐾]
and 𝑖 ∈ [|S𝑘 |], and the inverse of 𝑁𝑇 × 𝑁𝑇 matrices (with
complexity 𝑂 (𝐾6)) to compute 𝐶𝐶𝐶𝑘1 and `̀̀𝑘1 for each 𝑘 ∈ [𝐾].
Thus the complexity at iteration 𝑡 of EPAK is 𝑂 (𝐾72𝐵) if
𝑡 ≤ 𝑡0 and 𝑂 (𝐾42𝐵 + 𝐾7) if 𝑡 > 𝑡0.

B. Minimum Mean Square Error - Successive Interference
Approximation (MMSE-SIA)

Another method to simplify EP is as follows. In the EP
scheme, as in (29) and (32), the message N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1)
from node 𝜓𝑘1 to node zzz𝑘 is derived by first projecting
𝑝new
𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 ) ∝

∑ |S𝑘 |
𝑖=1 𝜋

(𝑖)
𝑘1N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘𝑖 ,ΣΣΣ𝑘𝑖) onto the Gaussian fam-

ily, then dividing the projected Gaussian by N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0).
If we skip the projection of 𝑝new

𝑘1 (𝑧𝑧𝑧𝑘 ) onto the Gaussian family,
i.e., we derive N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1) by dividing directly 𝑝new

𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 )
to N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0), then the mean `̀̀𝑘1 and covariance matrix
𝐶𝐶𝐶𝑘1 are matched to that of the PDF proportional to

𝑝new
𝑘1,zzz𝑘 (𝑧𝑧𝑧𝑘 )

N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0)
=

|S𝑘 |∑︁
𝑖=1

𝜋
(𝑖)
𝑘1
N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘𝑖 ,ΣΣΣ𝑘𝑖)
N (𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0)

∝
|S𝑘 |∑︁
𝑖=1

𝜋
(𝑖)
𝑘1N

(
𝑧𝑧𝑧𝑘 ; 0, (𝑠𝑠𝑠 (𝑖)

𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘

)
(43)

= N
(
𝑧𝑧𝑧𝑘 ; 0, 𝑅𝑅𝑅𝑘 ⊗ ΞΞΞ𝑘

)
.

where 𝑅𝑅𝑅𝑘 :=
∑ |S𝑘 |
𝑖=1 𝜋

(𝑖)
𝑘1 𝑠𝑠𝑠
(𝑖)
𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘

. (43) can be verified using
N(𝑧𝑧𝑧𝑘 ; 𝑧𝑧𝑧𝑘𝑖 ,ΣΣΣ𝑘𝑖) ∝ N

(
𝑧𝑧𝑧𝑘 ; 0, (𝑠𝑠𝑠 (𝑖)

𝑘
𝑠𝑠𝑠
(𝑖)H
𝑘
) ⊗ ΞΞΞ𝑘

)
N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0),

which follows from the Gaussian PDF multiplication rule with
𝑧𝑧𝑧𝑘𝑖 and ΣΣΣ𝑘𝑖 given in (26) and (25), respectively. It follows that
`̀̀𝑘1 = 0 and 𝐶𝐶𝐶𝑘1 = 𝑅𝑅𝑅𝑘 ⊗ ΞΞΞ𝑘 . As a consequence (see (39) and
(38)), `̀̀𝑘0 = 𝑦𝑦𝑦 and 𝐶𝐶𝐶𝑘0 = 𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑
𝑙≠𝑘 𝑅𝑅𝑅𝑙 ⊗ ΞΞΞ𝑘 .

This scheme can be alternatively interpreted as follows. We
expand yyy in (20) as

yyy = (sss𝑘 ⊗ 𝐼𝐼𝐼𝑁 )hhh𝑘 +
∑︁
𝑙≠𝑘

(sss𝑙 ⊗ 𝐼𝐼𝐼𝑁 )hhh𝑙 +www.

The second term ttt𝑘 :=
∑
𝑙≠𝑘 (sss𝑙 ⊗ 𝐼𝐼𝐼𝑁 )hhh𝑙 is the interference

from other users while decoding the signal of user 𝑘 . Since
the signals sss𝑙 are independent of the channels hhh𝑙 and the
channels hhh𝑙 have zero mean, we have that E [ttt𝑘 ] = 0.
The covariance matrix of ttt𝑘 is E

[
ttt𝑘tttH

𝑘

]
=

∑
𝑙≠𝑘 E

[
sss𝑙sssH

𝑙

]
⊗

ΞΞΞ𝑘 =
∑
𝑙≠𝑘 𝑅𝑅𝑅𝑙 ⊗ ΞΞΞ𝑘 . If we treat the interference term

ttt𝑘 as a Gaussian vector with the same mean and covari-
ance matrix5, then ttt𝑘 + www ∼ N

(
0,
∑
𝑙≠𝑘 𝑅𝑅𝑅𝑙 ⊗ ΞΞΞ𝑘 + 𝜎2𝐼𝐼𝐼𝑁𝑇

)
.

The single-user likelihood under this approximation is
𝑝yyy |sss𝑘 (𝑦𝑦𝑦 |𝑠𝑠𝑠𝑘 ) = N

(
𝑦𝑦𝑦; 0, 𝑠𝑠𝑠𝑘𝑠𝑠𝑠H

𝑘
⊗ ΞΞΞ𝑘 +

∑
𝑙≠𝑘 𝑅𝑅𝑅𝑙 ⊗ ΞΞΞ𝑙 + 𝜎2𝐼𝐼𝐼𝑁𝑇

)
.

With this and Lemma 1, the update of the approximate
posterior 𝑝sss𝑘 |yyy (𝑠𝑠𝑠𝑘 |𝑦𝑦𝑦) ∝ 𝑝yyy |sss𝑘 (𝑦𝑦𝑦 |𝑠𝑠𝑠𝑘 ) coincides with (27) for
`̀̀𝑘0 = 𝑦𝑦𝑦 and 𝐶𝐶𝐶𝑘0 = 𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑
𝑙≠𝑘 𝑅𝑅𝑅𝑙 ⊗ ΞΞΞ𝑘 . The matrix 𝑅𝑅𝑅𝑘

is then recalculated with the updated value of 𝑝sss𝑘 |yyy (𝑠𝑠𝑠
(𝑖𝑘 )
𝑘
|𝑦𝑦𝑦),

𝑖𝑘 ∈ [|S𝑘 |]. The matrices 𝐶𝐶𝐶𝑙0 are updated accordingly, and
then used to update 𝑝sss𝑙 |yyy (𝑠𝑠𝑠

(𝑖𝑙)
𝑙
|𝑦𝑦𝑦), 𝑖𝑙 ∈ [|S𝑙 |], 𝑙 ≠ 𝑘 .

5Another choice is to treat each sss𝑙 , 𝑙 ≠ 𝑘, as a Gaussian. With this choice,
however, the interference term ttt𝑘 is a product of Gaussians which makes the
approximate single-user likelihood difficult to evaluate.
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In short, the derived simplification of the EP scheme above
iteratively MMSE-estimates the signal zzz𝑘 of one user at a time
while treating the interference as Gaussian. At each iteration,
the Gaussian approximation of the interference for each user
is successively improved using the estimates of the signals
of other users. We refer to this scheme as MMSE-SIA and
summarize it in Algorithm 2. In particular, as for the EP
scheme, we can start with the non-informative initialization
𝑝sss𝑘 |YYY (𝑠𝑠𝑠 |𝑌𝑌𝑌 ) = 1

|S𝑘 |1{𝑠𝑠𝑠 ∈ S𝑘 }.

Algorithm 2: MMSE-SIA for probabilistic non-
coherent detection

Input: the observation 𝑌𝑌𝑌 ; the constellations
S1, . . . ,S𝐾 ;

1 set the maximal number of iterations 𝑡max ;
2 initialize of the posteriors 𝑝sss𝑘 |YYY (𝑠𝑠𝑠𝑘 |𝑌𝑌𝑌 ) for 𝑠𝑠𝑠𝑘 ∈ S𝑘 , and

𝑅𝑅𝑅𝑘 = E �̂�sss𝑘 |YYY
[sss𝑘sssH

𝑘
] for 𝑘 ∈ [𝐾] ;

3 𝑡 ←− 0 ;
4 repeat
5 𝑡 ←− 𝑡 + 1 ;
6 for 𝑘 ← 1 to 𝐾 do
7 compute 𝐶𝐶𝐶𝑘0 = 𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑
𝑙≠𝑘 𝑅𝑅𝑅𝑙 ⊗ ΞΞΞ𝑘 ;

8 update 𝑝sss𝑘 |YYY (𝑠𝑠𝑠𝑘 |𝑌𝑌𝑌 ), 𝑠𝑠𝑠𝑘 ∈ S𝑘 , according to (27)
with `̀̀𝑘0 = 𝑦𝑦𝑦 and 𝐶𝐶𝐶𝑘0 computed ;

9 update 𝑅𝑅𝑅𝑘 = E �̂�sss𝑘 |YYY
[sss𝑘sssH

𝑘
] ;

10 end
11 until convergence or 𝑡 = 𝑡max;
12 return 𝑝sss𝑘 |YYY (𝑠𝑠𝑠𝑘 |𝑌𝑌𝑌 ) for 𝑠𝑠𝑠𝑘 ∈ S𝑘 , 𝑘 ∈ [𝐾]

The complexity order of Algorithm 2 is the same as EP due
to the 𝑁𝑇 ×𝑁𝑇 matrix inversion in (27). However, MMSE-SIA
still has complexity advantage over EP since no other matrix
inversion is required, and there is no need to compute {𝑧𝑧𝑧𝑘𝑖},
{ΣΣΣ𝑘𝑖}, 𝑧𝑧𝑧𝑘 , ΣΣΣ𝑘 , or update `̀̀𝑘1. If the channel is uncorrelated
(ΞΞΞ𝑘 = 𝐼𝐼𝐼𝑁 ), the complexity order of MMSE-SIA can be reduced.
In this case, 𝐶𝐶𝐶𝑘0 is the Kronecker product 𝑄𝑄𝑄𝑘 ⊗ 𝐼𝐼𝐼𝑁 with
𝑄𝑄𝑄𝑘 :=

∑𝐾
𝑙=1,𝑙≠𝑘 𝑅𝑅𝑅𝑙 + 𝜎2𝐼𝐼𝐼𝑇 , and thus in (27),

N
(
0; `̀̀𝑘0, (𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
) ⊗ ΞΞΞ𝑘 +𝐶𝐶𝐶𝑘0

)
= N

(
0;yyy,

(
𝑠𝑠𝑠
(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
+𝑄𝑄𝑄𝑘

)
⊗ 𝐼𝐼𝐼𝑁

)
∝
(
1 + 𝑠𝑠𝑠 (𝑖𝑘 )H

𝑘
𝑄𝑄𝑄−1
𝑘 𝑠𝑠𝑠
(𝑖𝑘 )
𝑘

)−𝑁 exp
( YYYH

𝑄𝑄𝑄−1
𝑘 𝑠𝑠𝑠
(𝑖𝑘 )
𝑘

2

1 + 𝑠𝑠𝑠 (𝑖𝑘 )H
𝑘

𝑄𝑄𝑄−1
𝑘 𝑠𝑠𝑠
(𝑖𝑘 )
𝑘

)
. (44)

Then, only the inverse of 𝑄𝑄𝑄𝑘 is computed, which requires
𝑂 (𝐾3) operations. Given 𝑄𝑄𝑄−1

𝑘 , the complexity of computing
the RHS of (44) is then 𝑂 (𝐾2) for each 𝑖𝑘 ∈ [|S𝑘 |]. Therefore,
the complexity of computing 𝑝sss𝑘 |YYY (𝑠𝑠𝑠𝑘 |𝑌𝑌𝑌 ) is 𝑂 (𝐾3 +𝐾22𝐵) for
𝑘 ∈ [𝐾]. Finally, the complexity per iteration of the MMSE-SIA
algorithm for uncorrelated fading is given by 𝑂 (𝐾4 + 𝐾32𝐵).

VI. IMPLEMENTATION ASPECTS

A. Complexity

We summarize the computational complexity of the consid-
ered schemes in Table I.

TABLE I
COMPLEXITY ORDER OF DIFFERENT NON-COHERENT DETECTORS WITH

𝑇 = 𝑂 (𝐾 ) , 𝑁 = 𝑂 (𝐾 ) , AND |S𝑘 | = 𝑂 (2𝐵) , 𝑘 ∈ [𝐾 ]

Detector Complexity order
Correlated fading Uncorrelated fading ΞΞΞ𝑘 =𝐼𝐼𝐼𝑁 ,∀𝑘

Optimal (exact
marginalization)

𝑂 (𝐾 62𝐵𝐾 ) 𝑂 (𝐾 32𝐵𝐾 )

EP 𝑂 (𝐾 72𝐵𝑡max)
EPAK 𝑂

(
𝐾 72𝐵𝑡0 + (𝐾 42𝐵 + 𝐾 7) (𝑡max − 𝑡0)

)
MMSE-SIA 𝑂 (𝐾 72𝐵𝑡max) 𝑂 (𝐾 4𝑡max + 𝐾 32𝐵𝑡max)

𝑡max denotes the number of iterations. 𝑡0 ∈ [𝑡max ].

B. Stabilization

We discuss some possible numerical problems in the EP
algorithm and our solutions.

1) Singularity of ΣΣΣ𝑘 : First, in (31), since the 𝑁𝑇 × 𝑁𝑇
matrix ΣΣΣ𝑘 is the weighted sum of the terms of rank less than
𝑁𝑇 , it can be close to singular if at a certain iteration, only
few of the weights 𝜋 (𝑖)

𝑘1 are sufficiently larger than zero. The
singularity of ΣΣΣ𝑘 can also arise from the constellation structure.
For example, the constellations proposed in [22] are precoded
versions of a constellation in 𝐺 (C𝑇 −𝐾+1, 1) and the maximal
rank of ΣΣΣ𝑘 is 𝑁 (𝑇 − 𝐾 + 1) ≤ 𝑁𝑇 . To avoid the inverse of ΣΣΣ𝑘 ,
we express 𝐶𝐶𝐶𝑘1 in (33) and `̀̀𝑘1 in (34) respectively as

𝐶𝐶𝐶𝑘1 = −𝐶𝐶𝐶𝑘0
(
ΣΣΣ𝑘 −𝐶𝐶𝐶𝑘0

)−1
ΣΣΣ𝑘 , (45)

`̀̀𝑘1 = 𝐶𝐶𝐶𝑘0
(
ΣΣΣ𝑘 −𝐶𝐶𝐶𝑘0

)−1
(
ΣΣΣ𝑘 −

|S𝑘 |∑︁
𝑖=1

𝜋
(𝑖)
𝑘1ΣΣΣ𝑘𝑖

)
𝐶𝐶𝐶−1
𝑘0 `̀̀𝑘0.

2) “Negative variance”: Another problem is that 𝐶𝐶𝐶𝑘1 is
not guaranteed to be positive definite even if both 𝐶𝐶𝐶𝑘0 and
ΣΣΣ𝑘 are. When 𝐶𝐶𝐶𝑘1 is not positive definite, from (38), 𝐶𝐶𝐶𝑘0 can
have negative eigenvalues, which, through (27), can make �̂� (𝑖𝑘 )

𝑘1
become close to a Kronecker-delta distribution (even at low
SNR) where the position of the mode can be arbitrary, and
the algorithm may diverge. Note that this “negative variance”
problem is common in EP (see, e.g., [24, Sec. 3.2.1], [31,
Sec. 5.3]). There has been no generally accepted solution and
one normally resorts to various heuristics adapted to each
problem. In our problem, to control the eigenvalues of 𝐶𝐶𝐶𝑘1,
we modify (45) by first computing the eigendecomposition
−𝐶𝐶𝐶𝑘0

(
ΣΣΣ𝑘 −𝐶𝐶𝐶𝑘0

)−1
ΣΣΣ𝑘 = 𝑉𝑉𝑉ΛΛΛ𝑉𝑉𝑉

−1, then computing 𝐶𝐶𝐶𝑘1 as 𝐶𝐶𝐶𝑘1 =

𝑉𝑉𝑉 |ΛΛΛ|𝑉𝑉𝑉−1, where |ΛΛΛ| is the element-wise absolute value of ΛΛΛ.
This manipulation of replacing the variance parameters by their
absolute values was also used in [32].

3) Overconfidence at early iterations: Finally, due to the
nature of the message passing between continuous and discrete
distribution, it can happen that all the mass of the PMF
�̂�
(𝑖𝑘 )
𝑘1 is concentrated on a small region of a potentially large

constellation S𝑘 . For example, if 𝜋 (𝑖𝑘 )
𝑘1 is close to a Kronecker-

delta distribution with a single mode at 𝑖0, then (26) and (25)
implies that ΣΣΣ𝑘 is approximately ΣΣΣ𝑘𝑖0 , and then from (33),
𝐶𝐶𝐶𝑘1 ≈ (𝑠𝑠𝑠 (𝑖0)𝑘 𝑠𝑠𝑠

(𝑖0)H
𝑘
) ⊗ΞΞΞ𝑘 . In this case, almost absolute certainty

is placed on the symbol 𝑠𝑠𝑠 (𝑖0)
𝑘

, and the algorithm will not be
able significantly update its belief in the subsequent iterations.
This can be problematic when the mode of 𝜋 (𝑖𝑘 )

𝑘1 is placed on
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the wrong symbol at early iterations. To smooth the updates,
we apply damping on the update of the parameters of the
continuous distributions N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘1,𝐶𝐶𝐶𝑘1) and N(𝑧𝑧𝑧𝑘 ; `̀̀𝑘0,𝐶𝐶𝐶𝑘0).
That is, with a damping factor [ ∈ [0; 1], at iteration 𝑡 and for
each user 𝑘 , we update

𝐶𝐶𝐶𝑘1 (𝑡) = [𝑉𝑉𝑉 (𝑡) |ΛΛΛ(𝑡) |𝑉𝑉𝑉−1 (𝑡) + (1 − [)𝐶𝐶𝐶𝑘1 (𝑡 − 1), (46)

`̀̀𝑘1 (𝑡) = [𝐶𝐶𝐶𝑘0 (𝑡 − 1)
(
ΣΣΣ𝑘 (𝑡) −𝐶𝐶𝐶𝑘0 (𝑡 − 1)

)−1

×
(
ΣΣΣ𝑘 (𝑡) −

|S𝑘 |∑︁
𝑖=1

𝜋
(𝑖)
𝑘1 (𝑡)ΣΣΣ𝑘𝑖 (𝑡)

)
𝐶𝐶𝐶−1
𝑘0 (𝑡−1) `̀̀𝑘0 (𝑡−1)

+ (1 − [) `̀̀𝑘1 (𝑡 − 1), (47)

𝐶𝐶𝐶𝑙0 (𝑡) = [
(
𝜎2𝐼𝐼𝐼𝑁𝑇 +

∑︁
𝑗≠𝑙

𝐶𝐶𝐶 𝑗1 (𝑡)
)
+ (1 − [)𝐶𝐶𝐶𝑙0 (𝑡 − 1),

∀𝑙 ≠ 𝑘, (48)

`̀̀𝑙0 (𝑡) = [
(
𝑦𝑦𝑦 −

∑︁
𝑗≠𝑙

`̀̀ 𝑗1 (𝑡)
)
+ (1 − [) `̀̀𝑙0 (𝑡 − 1), ∀𝑙 ≠ 𝑘.(49)

In short, we stabilize the EP message updates by replacing
(46), (47), (48), and (49) for (33), (34), (38), and (39),
respectively. This technique also applies to EPAK. For MMSE-
SIA, we damp the update of 𝑄𝑄𝑄𝑘 and 𝑅𝑅𝑅𝑘 in a similar manner
as 𝑄𝑄𝑄𝑘 (𝑡) = [

( ∑
𝑙≠𝑘 𝑅𝑅𝑅𝑙 (𝑡 − 1) + 𝜎2𝐼𝐼𝐼𝑇

)
+ (1 − [)𝑄𝑄𝑄𝑘 (𝑡 − 1) and

𝑅𝑅𝑅𝑘 (𝑡) = [
∑ |S𝑘 |
𝑖𝑘=1 𝜋

(𝑖𝑘 )
𝑘1 (𝑡)𝑠𝑠𝑠

(𝑖𝑘 )
𝑘
𝑠𝑠𝑠
(𝑖𝑘 )H
𝑘
+ (1 − [)𝑅𝑅𝑅𝑘 (𝑡 − 1). Note

that damping does not change the complexity order of these
schemes. The approaches described in this subsection were
implemented for the numerical results in the next section.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
schemes for a given set of individual constellations. We
assume that 𝐵1 = . . . 𝐵𝐾 =: 𝐵. We consider the local
scattering model [4, Sec. 2.6] for the correlation matrices
ΞΞΞ𝑘 . Specifically, the (𝑙, 𝑚)-th element of ΞΞΞ𝑘 is generated as
[ΞΞΞ𝑘 ]𝑙,𝑚 = b𝑘E𝛿𝑘 [exp(2𝜋𝑑𝐻 (𝑙−𝑚) sin(𝜑𝑘+𝛿𝑘 ))], where 𝑑𝐻 is
the antenna spacing in the receiver array (measured in number
of wavelengths), 𝜑𝑘 is a deterministic nominal angle, and 𝛿𝑘 is a
random deviation. We consider 𝑑𝐻 = 1

2 , 𝜑𝑘 generated uniformly
in [−𝜋, 𝜋], and 𝛿𝑘 uniformly distributed in [−

√
3𝜎𝜑 ,

√
3𝜎𝜑]

with angular standard deviation 𝜎𝜑 = 10◦. We also consider
b𝑘 = 1,∀𝑘. We set a damping factor [ = 0.9 for EP, EPAK,
and MMSE-SIA.

A. Test Constellations, State-of-the-Art Detectors, and Bench-
marks

1) Precoding-Based Grassmannian Constellations: We con-
sider the constellation design in [22], which imposes a
geometric separation between the individual constellations
through a set of precoders 𝑈𝑈𝑈𝑘 , 𝑘 ∈ [𝐾]. Specifically, starting
with a Grassmannian constellation D =

{
𝑑𝑑𝑑 (1) , . . . , 𝑑𝑑𝑑 (2

𝐵) } in
𝐺 (C𝑇 −𝐾+1, 1), the individual constellation S𝑘 is generated as

𝑠𝑠𝑠
(𝑖)
𝑘

=
𝑈𝑈𝑈𝑘𝑑𝑑𝑑

(𝑖)

‖𝑈𝑈𝑈𝑘𝑑𝑑𝑑 (𝑖) ‖
, 𝑖 ∈ [2𝐵] .

We consider the precoders 𝑈𝑈𝑈𝑘 defined in [22, Eq.(11)] and two
candidates for D:

• A numerically optimized constellation generated by solving
the max-min distance criteria

max
𝑑𝑑𝑑 (𝑖) ∈𝐺 (C𝑇−𝐾+1 ,1) ,𝑖=1,...,2𝐵

min
1≤𝑖< 𝑗≤2𝐵

𝑑 (𝑑𝑑𝑑 (𝑖) , 𝑑𝑑𝑑 ( 𝑗) ), (50)

where 𝑑 (𝑑𝑑𝑑 (𝑖) , 𝑑𝑑𝑑 ( 𝑗) ) :=
√︃

1 − |𝑑𝑑𝑑 (𝑖)H𝑑𝑑𝑑 ( 𝑗) |2 is the chordal dis-
tance between two Grassmannian points represented by 𝑑𝑑𝑑 (𝑖)

and 𝑑𝑑𝑑 ( 𝑗) . A constellation with maximal minimum pairwise
distance leads to low symbol error rate in the absence of
the interference. In our simulation, we approximate (50)
by minD log

∑
1≤𝑖< 𝑗≤2𝐵 exp

( |𝑑𝑑𝑑 (𝑖)H𝑑𝑑𝑑 ( 𝑗) |
𝜖

)
with a small 𝜖 for

smoothness, then solve it using gradient descent on the
Grassmann manifold using the Manopt toolbox [33].

• The cube-split constellation proposed in [34], [17]. This
structured constellation has good distance properties and
allows for low-complexity single-user decoding and a simple
yet effective binary labeling scheme.
Exploiting the precoder structure, [22] introduced a detec-

tor [22, Sec. V-B-3] that iteratively mitigates interference by
projecting the received signal onto the subspace orthogonal to
the interference subspace. We refer to it as POCIS (Projection
onto the Orthogonal Complement of the Interference Subspace).
For each user 𝑘 , POCIS first estimates the row space of the
interference

∑
𝑙≠𝑘 sss𝑙hhhT

𝑙 based on the precoders and projects
the received signal onto the orthogonal complement of this
space. It then performs single-user detections to obtain point
estimates of the transmitted symbols. From these estimates,
POCIS estimates the column space of the interference and
projects the received signal onto its orthogonal complement.
This process is repeated in the next iteration. The complexity
order of POCIS is equivalent to the MMSE-SIA scheme. Note
that only the indices of the estimated symbols are passed in
POCIS, as opposed to the soft information on the symbols as
in EP, MMSE-SIA, and EPAK.

2) Pilot-Based Constellations: We also consider the pilot-
based constellations in which the symbols are generated as
𝑠𝑠𝑠
(𝑖)
𝑘

=

[√︃
𝐾
𝑇
𝑒𝑒𝑒T
𝑘

√︃
𝑇 −𝐾
𝑇 𝑃avg

𝑠𝑠𝑠
(𝑖)T
𝑘

]T

where 𝑒𝑒𝑒𝑘 is the 𝑘-th column

of 𝐼𝐼𝐼𝐾 , 𝑠𝑠𝑠 (𝑖)
𝑘

is a vector of data symbols taken from a scalar
constellation, such as QAM, and 𝑃avg is the average symbol
power of the considered scalar constellation. Note that this
corresponds to the scenario where the 𝐾 users transmit mutually
orthogonal pilot sequences, followed by spatially multiplexed
parallel data transmission. Many MIMO detectors have been
proposed specifically for these constellations. We consider
some representatives as follows.
• The receiver MMSE-estimates the channel based on the

first 𝐾 rows of YYY, then MMSE-equalizes the received data
symbols in the remaining 𝑇 − 𝐾 rows of YYY, and performs a
scalar demapper on the equalized symbols.

• The receiver MMSE-estimates the channel, then decodes the
data symbols using the Schnorr-Euchner sphere decoder [35],
referred to as SESD.

• The receiver performs the semi-blind joint ML channel
estimation and data detection scheme in [9] with repeated
weighted boosting search (RWBS) for channel estimation
and the Schnorr-Euchner sphere decoder for data detection,
referred to as RWBS-SESD.
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We note that the sphere decoder has near optimal performance
given the channel knowledge, but its complexity is non-
deterministic and can be exponential in the channel dimension
if the channel matrix is ill-conditioned.

3) Benchmarks: We consider the optimal ML detector,
whenever it is feasible, as a benchmark. When the optimal
detector is computationally infeasible, we resort to another
benchmark consisting in giving the receiver, while it decodes
the signal sss𝑘 of user 𝑘 , the knowledge of the signals sss𝑙 (but
not the channel hhh𝑙) of all the interfering users 𝑙 ≠ 𝑘 . With
this genie-aided information, optimal ML decoding (2) can
be performed by keeping sss𝑙 fixed for all 𝑙 ≠ 𝑘 and searching
for the best sss𝑘 in S𝑘 , thus reducing the total search space
size from 2𝐵𝐾 to 𝐾2𝐵. The posterior marginals are computed
separately for each user accordingly. This genie-aided detector
gives an upper bound on the performance of EP, MMSE-SIA,
EPAK, and POCIS.

B. Convergence and Running Time

To assess the convergence of the algorithms, we evaluate
the total variation distance between the estimated marginal
posteriors 𝑝sss𝑘 |YYY at each iteration and the exact marginal
posteriors 𝑝sss𝑘 |YYY when exact marginalization (4) is possible. The
total variation distance between two probability measures 𝑃
and 𝑄 on X is defined as TV(𝑃,𝑄) := 1

2
∑
𝑥∈X |𝑃(𝑥) −𝑄(𝑥) |.

At iteration 𝑡 where the estimated posteriors are 𝑝 (𝑡)sss𝑘 |YYY
, 𝑘 ∈ [𝐾],

we evaluate the average total variation distance as

Δ𝑡 =
1
𝐾

𝐾∑︁
𝑘=1
EYYY [TV(𝑝 (𝑡)sss𝑘 |YYY

, 𝑝sss𝑘 |YYY)] .

We consider the precoding-based Grassmannian constella-
tions. Fig. 3 shows the empirical average total variation Δ𝑡 for
𝑇 = 6, 𝐾 = 3, 𝑁 = 4, and 𝐵 = 4 at SNR = 8 dB. As can be
seen, at convergence, EP provides the most accurate estimates
of the marginal posteriors although it is less stable than other
schemes. EP converges after 6 iterations while MMSE-SIA
converges after 5 iterations. For uncorrelated fading, EPAK with
𝑡0 = 2 can be eventually better than MMSE-SIA, but converges
slower. For correlated fading, EPAK totally fails because of
the inaccuracy of the approximation with Kronecker products.
POCIS converges very quickly after 2 iterations but achieves
a relatively low accuracy of the posterior estimation.

Fig. 4 depicts the average running time (on a local server) of
exact marginalization compared with 6 iterations of EP, EPAK,
MMSE-SIA, and POCIS at SNR = 8 dB. These schemes have
significantly lower computation time than exact marginalization.
The running time saving of EPAK w.r.t. EP is not significant,
even with 𝑡0 = 0. For uncorrelated fading, MMSE-SIA has
much shorter running time than all other schemes.

From these convergence behaviors, hereafter, we fix the
number of iterations of EP, MMSE-SIA, and EPAK as 6 and
of POCIS as 3. Furthermore, we consider EPAK only for
uncorrelated fading. For correlated fading, we generate the
correlation matrices once and fix them over the simulation.
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(a) Uncorrelated fading ΞΞΞ𝑘 = 𝐼𝐼𝐼𝑁

0 1 2 3 4 5 6 7 8 9 10

Iteration index t

10
-3

10
-2

10
-1

10
0

A
v
er
a
g
e
to
ta
l
v
a
ri
a
ti
o
n
∆

t
EP

EPAK, t0 = 0

EPAK, t0 = 2

MMSE-SIA

POCIS

(b) Correlated Fading

Fig. 3. The empirical average total variation Δ𝑡 over 1000 realizations of
the transmitted signal, channel, and noise versus iteration for different non-
coherent soft detection schemes for 𝑇 = 6, 𝐾 = 3, 𝐵 = 4, and 𝑁 = 4 at SNR =

8 dB. The error bars show the standard error, which is the standard deviation
normalized by the square root of the number of samples. For correlated
fading, these figures are further averaged over 10 realizations of the correlation
matrices.

C. Achievable Rate

We first plot the achievable mismatched sum-rate 𝑅GMI of
the system calculated as in (7) for 𝑇 = 6, 𝐾 = 3, 𝑁 = 4
and 𝐵 ∈ {4, 8} in Fig. 5. We consider the precoding-based
Grassmannian constellations. For D, we use the numerically
optimized constellation if 𝐵 = 4 and the cube-split constellation
if 𝐵 = 8. For uncorrelated fading (Fig. 5(a), the rates achieved
with EP and MMSE-SIA detectors are very close to the
achievable rate of the system (with the optimal detector) and
not far from that of the genie-aided detector. EPAK (with
𝑡0 = 2) achieves a very low rate, especially in the low SNR
regime where the Kronecker approximation is not accurate.
For correlated fading, (Fig. 5(b)), the rates achieved with EP
and MMSE-SIA are only marginally lower than that of the
optimal detector and genie-aided detector. In both cases, the
rate achieved with POCIS is lower than that of EP and MMSE-
SIA in the lower SNR regime and converges slowly with SNR
to the limit 𝐵𝐾

𝑇
bits/channel use.
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Fig. 4. The average running time over 1000 realizations of the transmitted signal, channel, and noise of exact marginalization vs. 6 iterations of the considered
detection schemes for 𝑇 = 6, 𝐾 = 3, 𝐵 = 4, and 𝑁 = 4 at SNR = 8 dB. The error bars show the standard deviation. For correlated fading, the running time is
further averaged over 10 realizations of the correlation matrices.

D. Symbol Error Rates of Hard Detection

Next, we use the outputs of EP, EPAK, MMSE-SIA and
POCIS for a maximum-a-posteriori (MAP) hard detection. We
evaluate the performance in terms of symbol error rate (SER).

In Fig. 6, we consider the precoding-based constellations
with 𝑇 = 6, 𝐾 = 3, 𝑁 ∈ {4, 8}, and 𝐵 = 4, for which the optimal
ML detector (2) is computationally feasible. We observe that
the SER of the EP and MMSE-SIA detectors are not much
higher than that of the optimal detector, especially in the lower
SNR regime. The SER of EPAK is significantly higher than
that of EP and MMSE-SIA for 𝑡0 = 0. This is greatly improved
by setting 𝑡0 = 2, i.e., keeping the first two iterations of EP. The
gain of EP w.r.t. EPAK and MMSE-SIA is more pronounced
when the SNR increases. For correlated fading, EP performs
almost as good as the optimal detector, whose SER performance
is closely approximated by the genie-aided detector.

In Fig. 7, we consider 𝑇 = 6, 𝐾 = 3, 𝑁 = 8, and
𝐵 = 9 and use the genie-aided detector as a benchmark.
In Fig. 7(a), we consider uncorrelated fading and use the
pilot-based constellations with 8-QAM data symbols. The
performance of EP is very close to that of the genie-aided
detector. The performance of MMSE-SIA is close to EP in
the low SNR regime (SNR ≤ 8 dB). We also depict the SER
of the three pilot-based detectors in Section VII-A2, namely,
1) MMSE channel estimation, MMSE equalizer, and QAM
demapper, 2) SESD, and 3) RWBS-SESD. These three schemes
are outperformed by the EP detectors. In Fig. 7(b), we consider
correlated fading and use the precoding-based Grassmannian
constellations with D numerically optimized. We observe again
that EP achieves almost the same SER performance as the
genie-aided detector.

E. Bit Error Rates with a Channel Code

In this subsection, we use the output of the soft detectors for
channel decoding. We consider the precoding-based Grassman-
nian constellations with the cube-split constellation for D since
it admits an effective and simple binary labeling [17]. We take

the binary labels of the symbols in D for the corresponding
symbols in S𝑘 . We integrate a standard symmetric parallel
concatenated rate-1/3 turbo code [36]. The turbo encoder
accepts packets of 1008 bits; the turbo decoder computes the
bit-wise LLR from the soft outputs of the detection scheme as
in (3) and performs 10 decoding iterations for each packet.

In Fig. 8, we show the bit error rate (BER) with this turbo
code using 𝐵 = 8 bits/symbol and different values of 𝑇 and
𝐾 = 𝑁 . EP achieves the closest performance to the genie-aided
detector and the optimal detector (4). The BER of MMSE-SIA
vanishes slower with the SNR than the other schemes, and
becomes better than POCIS as 𝐾 and 𝑁 increase. The BER
of EPAK with 𝑡0 = 2 is higher than all other schemes. Under
uncorrelated fading, for 𝑇 = 7 and 𝐾 = 𝑁 = 4, the power
gain of EP w.r.t. MMSE-SIA, POCIS, and EPAK for the same
BER of 10−3 is about 3 dB, 4 dB, and 8 dB, respectively. We
also observe that the genie-aided detector gives very optimistic
BER performance results compared to the optimal detector.

Finally, in Fig. 9, we consider 𝑇 = 6, 𝐾 = 3, 𝑁 = 4, and
compare the BER with the same turbo code for different 𝐵.
For 𝐵 = 5, both EP and MMSE-SIA have performance close to
the optimal detector. Under uncorrelated fading, MMSE-SIA
can be slightly better than EP. This is due to the residual effect
(after damping) of the phenomenon that all the mass of 𝜋 (𝑖𝑘 )

𝑘1
is concentrated on a possibly wrong symbol at early iterations,
and EP may not be able to refine significantly the PMF in
the subsequent iterations if the constellation is sparse. This
situation is not observed for 𝐵 = 8, i.e., larger constellations.
Also, as compared to the case 𝑇 = 6, 𝐾 = 3, 𝐵 = 8 in Fig. 8,
the performance of MMSE-SIA is significantly improved as
the number of receive antennas increases from 𝑁 = 3 to 𝑁 = 4.
As in the previous case, EPAK does not perform well.

VIII. CONCLUSION

We proposed an expectation propagation (EP) based scheme
and two simplifications (EPAK and MMSE-SIA) of this scheme
for multi-user detection in non-coherent SIMO multiple access
channel with spatially correlated Rayleigh fading. EP and
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Fig. 5. The mismatched rate of the system with EP, EPAK (with 𝑡0 = 2),
MMSE-SIA, and POCIS detectors in comparison with the optimal detector
and/or the genie-aided detector for 𝑇 = 6, 𝐾 = 3, 𝑁 = 4, and 𝐵 ∈ {4, 8}.

MMSE-SIA are shown to achieve good performance in terms
of mismatched sum-rate, symbol error rate when they are used
for hard detection, and bit error rate when they are used for
soft-input soft-output channel decoding. EPAK has acceptable
performance with uncorrelated fading. It performs well for hard
symbol detection but inadequately for soft-output detection.
While MMSE-SIA and EPAK have lower complexity than EP,
the performance gain of EP with respect to MMSE-SIA and
EPAK is more significant when the number of users and/or
the constellation size increase. Possible extensions of this
work include considering more complicated fading models
and analyzing theoretically the performance of EP for non-
coherent reception.
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Fig. 6. The symbol error rate of the system with EP, EPAK (with 𝑡0 ∈ {0, 2}),
MMSE-SIA, and POCIS detectors in comparison with the optimal detector
and the genie-aided detector for 𝑇 = 6, 𝐾 = 3, 𝑁 ∈ {4, 8} and 𝐵 = 4.

APPENDIX

A. Properties of the Gaussian PDF

Lemma 1. Let xxx be an 𝑛-dimensional complex Gaussian vector.
It holds that

1) N(𝑥𝑥𝑥; `̀̀ ,ΣΣΣ) = N(𝑥𝑥𝑥 + 𝑦𝑦𝑦; `̀̀ − 𝑦𝑦𝑦,ΣΣΣ) for 𝑦𝑦𝑦 ∈ C𝑛;
2) Gaussian PDF multiplication rule:
N(𝑥𝑥𝑥; `̀̀1,ΣΣΣ1)N (𝑥𝑥𝑥; `̀̀2,ΣΣΣ2) = N(𝑥𝑥𝑥; `̀̀new,ΣΣΣnew)N (0; `̀̀1 −
`̀̀2,ΣΣΣ1 + ΣΣΣ2), where ΣΣΣnew :=

(
ΣΣΣ−1

1 + ΣΣΣ−1
2
)−1 and

`̀̀new := ΣΣΣnew
(
ΣΣΣ−1

1 `̀̀1 +ΣΣΣ−1
2 `̀̀2

)
.

Proof. The first part follows readily from the definition of
N(𝑥𝑥𝑥; `̀̀ ,ΣΣΣ). The complex Gaussian PDF multiplication rule is
a straightforward generalization of the real counterpart [37].

�
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Fig. 7. The symbol error rate of the system with EP, EPAK (𝑡0 ∈ {0, 2}),
MMSE-SIA, POCIS vs. the genie-aided detector for 𝑇 = 6, 𝐾 = 3, 𝑁 = 8,
and 𝐵 = 9. For uncorrelated fading, these schemes are compared with three
pilot-based detectors using respectively MMSE equalizer, sphere decoding [35],
and joint channel estimation–data detection [9].

B. Proof of Proposition 1
Using the natural logarithm for the KL divergence, we derive

𝐷
(
𝑞𝛼 (𝑥𝑥𝑥)

𝑝(𝑥𝑥𝑥)) = ∫
𝑞𝛼 (𝑥𝑥𝑥) ln

𝑞𝛼 (𝑥𝑥𝑥)∏
𝛽 𝑝𝛽
(𝑥𝑥𝑥𝛽)

d𝑥𝑥𝑥

=
∑︁
𝛽

∫
𝑞𝛼 (𝑥𝑥𝑥) ln

1
𝑝
𝛽
(𝑥𝑥𝑥𝛽)
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𝛽
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1
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𝛽
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d𝑥𝑥𝑥
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∫
𝑝𝛽 (𝑥𝑥𝑥𝛽) ln

1
𝑝
𝛽
(𝑥𝑥𝑥𝛽)

d𝑥𝑥𝑥𝛽 + 𝑐0 (51)
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Fig. 8. The bit error rate with turbo codes of EP, EPAK (with 𝑡0 = 2), MMSE-
SIA, POCIS, and the optimal/genie-aided detector for 𝐵 = 8 bits/symbol and
𝐾 = 𝑁 .

= −
∑︁
𝛽∈𝔑𝛼

∫
𝑞𝛼 (𝑥𝑥𝑥)

[
𝛾𝛾𝛾T

𝛽
𝜙𝜙𝜙(𝑥𝑥𝑥𝛽)−𝐴𝛽 (𝛾𝛾𝛾

𝛽
)
]

d𝑥𝑥𝑥 +
∑︁
𝛽∉𝔑𝛼

𝐷
(
𝑝𝛽

𝑝
𝛽

)
+ 𝑐0 (52)

=
∑︁
𝛽∈𝔑𝛼

[
𝐴𝛽 (𝛾𝛾𝛾

𝛽
) − 𝛾𝛾𝛾T

𝛽
E𝑞𝛼

[
𝜙𝜙𝜙(𝑥𝑥𝑥𝛽)

] ]
+

∑︁
𝛽∉𝔑𝛼

𝐷
(
𝑝𝛽

𝑝
𝛽

)
+ 𝑐0,

(53)

where (51) follows from 𝑞𝛼 (𝑥𝑥𝑥) =
𝜓𝛼 (𝑥𝑥𝑥𝛼)
𝑚𝛼 (𝑥𝑥𝑥𝛼)

[∏
𝛽∈𝔑𝛼 𝑝𝛽 (𝑥𝑥𝑥𝛽)

] [∏
𝛽∉𝔑𝛼

𝑝𝛽 (𝑥𝑥𝑥𝛽)
]
, and (52) follows

from (11). From (53), we can see that the optimization (14)
of 𝑝 decouples over 𝑝

𝛽
, and the optimal distribution can

be expressed as 𝑝new
𝛼 (𝑥𝑥𝑥) =

∏
𝛽 𝑝

new
𝛼,𝛽
(𝑥𝑥𝑥𝛽). For 𝛽 ∉ 𝔑𝛼, the

minimum of 𝐷
(
𝑝𝛽

𝑝
𝛽

)
is simply 0 and achieved with

𝑝new
𝛼,𝛽
(𝑥𝑥𝑥𝛽) = 𝑝𝛽 (𝑥𝑥𝑥𝛽). For 𝛽 ∈ 𝔑𝛼, since the log-partition

function 𝐴𝛽 (𝛾𝛾𝛾
𝛽
) is convex in 𝛾𝛾𝛾

𝛽
(see, e.g., [38, Lemma 1]),

the minimum of 𝐴𝛽 (𝛾𝛾𝛾
𝛽
) − 𝛾𝛾𝛾T

𝛽
E𝑞𝛼

[
𝜙𝜙𝜙(𝑥𝑥𝑥𝛽)

]
is achieved at the

value of 𝜸𝜸𝜸
𝛽

where its gradient is zero. Using the well-known
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Fig. 9. The bit error rate with turbo codes of EP, EPAK (with 𝑡0 = 2),
MMSE-SIA, POCIS, and the optimal/genie-aided detector for 𝑇 = 6, 𝐾 = 3,
and 𝑁 = 4.

property of the log-partition function, ∇𝛾𝛾𝛾𝐴𝛽 (𝛾𝛾𝛾) = E �̂�𝛽 [𝜙𝜙𝜙𝛽 (𝛾𝛾𝛾)],
we get that the zero-gradient equation is equivalent to the
moment matching criterion E �̂�new

𝛼,𝛽
[𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽) = E𝑞𝛼 [𝜙𝜙𝜙𝛽 (𝑥𝑥𝑥𝛽)].
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