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Abstract—We extend the study of the joint constellation design
problem for noncoherent multiple-input multiple-output multiple-
access channels in Rayleigh block fading. First, we derive the
pairwise error probability (PEP) exponent of the noncoherent
maximum-likelihood detector to within a multiplicative factor of
two. In particular, the lower bound of this exponent is obtained
from a Chernoff upper bound of the error probability. Then, we
show that the PEP exponent scales linearly with the Riemannian
distance between the shifted Gram matrices of the symbols. This
gives a geometric interpretation for our proposed metrics: a
pair of joint symbols achieves a low PEP if the corresponding
shifted Gram matrices are well separated, i.e., joined by a long
geodesic, in the manifold of Hermitian positive definite matrices.
Finally, we run numerical results to show that our metrics
are meaningful for joint constellation design and evaluation,
and result in constellations that outperform the constellations
optimized with existing metrics and a pilot-based scheme.

I. INTRODUCTION

In noncoherent wireless communications, the channel state
information (CSI) is assumed to be unknown a priori [1], [2].
This is a reasonable assumption since the wireless channel
varies dynamically over time, especially in highly mobile
environment. This paper considers the noncoherent multiple-
input multiple-output (MIMO) multiple-access channel (MAC)
with Rayleigh block fading. Within a coherence block, the
matrix-valued signal transmitted by each user is taken from a
finite discrete constellation. We study the design of the joint
constellation so as to minimize the maximum-likelihood (ML)
detection error.

In the single-user case, a noncoherent approach, so-called
unitary space-time modulation (USTM), consists in transmitting
isotropically distributed and truncated unitary signal matrices
within a coherence block [3]. Information is carried by the
position of the signal matrix subspace in the Grassmann
manifold. This approach was shown to be close to capacity-
achieving in the high signal-to-noise-ratio (SNR) regime, which
motivates the design of the constellation as a set of points on
the Grassmann manifold [4]. A common design criterion for
the so-called Grassmannian constellation is to maximize the
minimum pairwise chordal distance between the symbols [5],
[6]. This is equivalent to maximizing the sum of the squared
sines of the principle angles between the subspaces represented
by the symbols. Another criterion consisting in maximizing
the product of those squared sines was proposed in [7]. These
criteria have been shown to be effective, and inspire various

designs of Grassmannian constellations for the point-to-point
channel, e.g., [8]–[10].

In the multi-user case, however, the joint constellation
design problem has not been as well investigated. A baseline
approach is to regard the MAC as a MIMO point-to-to-point
channel and thus treat the joint constellation as a Grassmannian
constellation (although the joint symbols are not guaranteed to
be truncated unitary). Following this approach, one can adopt
the aforementioned criteria. In [11], a new design criterion
consisting in maximizing the expected pairwise log-likelihood
ratio (PLLR) between the symbols was proposed, followed
by a simplified version of this criterion. These criteria were
shown to be more effective than the baseline and a pilot-
based strategy. The design metrics therein are obtained from
asymptotic approximations of the worst-case pairwise error
probability (PEP) of the joint ML detector.

In this paper, we extend our study of the noncoherent joint
constellation design in [11]. We derive new design criteria based
on nonasymptotic bounds of the worst-case PEP exponent.
Specifically, we first lower bound the PEP exponent using the
Chernoff bound. We further upper bound the PEP exponent
and obtain a metric which is within a multiplicative factor
of 2 from the exponent. We show that this metric, and hence
the PEP exponent, for two symbols XXX and XXX ′ scale linearly
with the Riemannian distance between the respective shifted
Gram matrices III + XXXXXXH and III + XXX ′XXX ′

H
. This provides a

geometric interpretation: a pair of joint symbols XXX and XXX ′ are
less likely to be misdetected for each other if III +XXXXXXH and
III +XXX ′XXX ′

H
are well separated in the manifold of Hermitian

positive definite matrices. That is, the geodesic joining III+XXXXXXH

and III +XXX ′XXX ′
H

in the manifold should have a great length.
Finally, we use the proposed metric to numerically optimize the
joint constellation. Numerical results show that our metric is
effective and meaningful for constellation design and evaluation
in both the single-user and multi-user cases.

Notation: Random quantities are denoted with non-italic
letters with sans-serif fonts, e.g., a scalar x, a vector vvv, and a
matrix MMM. Deterministic quantities are denoted with italic letters,
e.g., a scalar x, a vector vvv, and a matrix MMM . The Euclidean
norm is denoted by ‖ · ‖ and the Frobenius norm by ‖ · ‖F. The
trace, transpose, and conjugate transpose of MMM are respectively
tr (MMM), MMM T, and MMMH. We denote [n] := {1, 2, . . . , n}.



II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MIMO MAC consisting of a receiver equipped
with N antennas and K ≥ 1 users, where user k has Mk

antennas, k∈ [K]. The channel is assumed to be flat and block
fading with equal-length and synchronous (across the users)
coherence intervals of length T ≥ 2. That is, the channel
matrix HHHk ∈ CN×Mk of user k remains constant within each
coherence block of T channel uses and changes between blocks.
Furthermore, the distribution of HHHk is assumed to be known, but
its realizations are unknown to both the users and the receiver.
We consider independent and identically distributed (i.i.d.)
Rayleigh fading, namely, the rows of HHH:=[HHH1 HHH2 . . . HHHK ]
are independent and follow CN

(
0, IIIMtot

)
where Mtot :=∑K

k=1Mk. Within a coherence block, each user k sends a
signal matrix symbol XXXk ∈ CT×Mk , and the receiver observes

YYY =

K∑
k=1

XXXkHHH
T

k +ZZZ,

where the additive noise ZZZ ∈ CT×N has i.i.d. CN (0, 1) entries
independent of {HHHk}.

We assume that XXXk takes value from a finite constellation
Xk of fixed size |Xk| = 2Bk with equally likely symbols,
where Bk is the number of bits per symbol for user k.
Let Pk := 1

T |Xk|
∑
XXXk∈Xk ‖XXXk‖2F be the average normalized

symbol power of user k. We consider the power constraint
maxk{Pk} = P , where P is referred to as the SNR. Let us
rewrite the channel output as

YYY = [XXX1 XXX2 . . . XXXK ][HHH1 HHH2 . . . HHHK ]T +ZZZ = XXXHHHT +ZZZ,

where the concatenated signal matrix XXX := [XXX1 XXX2 . . . XXXK ]
takes value from the joint constellation X :={

[XXX1 XXX2 . . .XXXK ] : XXXk ∈ Xk
}

=
∏K
k=1 Xk. Our goal

is to derive the desirable properties of the set tuple
(X1, . . . ,XK) for a given rate tuple (R1, . . . , RK) to achieve
low symbol detection error probability, i.e.,

X ∗ = arg max
X

Pe(X ).

where Pe(X ) := P (Ξ(YYY) 6= XXX) with Ξ(YYY) denoting the output
of the maximum-likelihood (ML) detector. Specifically, Ξ(YYY) =
arg maxXXX∈X pYYY |XXX(YYY |XXX) with

pYYY|XXX(YYY |XXX) =
exp(−tr(YYY H(IIIT +XXXXXXH)−1YYY ))

πNTdetN (IIIT +XXXXXXH)
. (1)

Since pYYY|XXX(YYY |XXX) depends on XXX only through XXXXXXH, the
following proposition is straightforward.

Proposition 1 (Identifiability condition). For the joint ML
detection error probability Pe(X ) to vanish at high SNR, the
joint constellation X must satisfy XXXXXXH 6= XXX ′XXX ′

H
for any pair

of distinct symbols XXX and XXX ′ in X .

Remark 1. The analysis in this paper holds for the single-user
case (i.e., the MIMO point-to-point channel) by letting K = 1.
Hereafter, for notational simplicity, we drop the user’s index k
whenever the single-user case is considered.

State of the Art: In the single-user case (K = 1),
following USTM, the constellation symbols are (scaled)
truncated unitary matrix representative of points on the
Grassman manifold. A common design criterion is X ∗ =
arg minX maxXXX 6=XXX′∈X tr(XXXHXXX ′XXX ′

H
XXX), which coincides with

maximizing the pairwise chordal distance [5], [6], [10].
Another criterion derived based on an asymptotic anal-
ysis of the pairwise ML error probability is X ∗ =

arg minX ln
∑
XXX 6=XXX′∈X det−N

(
III −

(
M
PT

)2
XXXHXXX ′XXX ′

H
XXX
)

[7].
Note that the former criterion is equivalent to maximizing
the sum of the squared sines of the principle angles between
the subspaces represented by the symbols, while the latter
criterion aims to maximize the product of those squared sines.
When K ≥ 2, XXX is not guaranteed to be truncated unitary. One
can choose to treat the joint constellation as a constellation
of an Mtot ×N MIMO point-to-point channel and adopt the
aforementioned criteria, i.e.,

(Min-mi) : X ∗ = arg min
X

mi(X ), i ∈ {1, 2},

where m1(X ) := maxXXX 6=XXX′∈X tr
(
XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
and

m2(X ) := ln
∑
XXX 6=XXX′∈X det−N

(
III−M2

tot
XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
.

In [11], a design criterion consisting in maximizing the
minimal expected pairwise log-likelihood ratio (PLLR) between
the joint symbols was proposed. Specifically, the criterion is

(Max-emin) : X ∗ = arg max
X

emin(X ),

where emin(X ) := 1
N min
XXX 6=XXX′∈X

E
[

ln
pYYY|XXX(YYY|XXX)

pYYY|XXX(YYY|XXX ′)

]
. A simpli-

fied and approximative version of this criteria was also provided

(Max-dmin) : X ∗ = arg max
X

dmin(X ),

where dmin(X ) := minXXX 6=XXX′∈X tr
(
(IIIT + XXX ′XXX ′

H
)−1XXXXXXH

)
.

The criteria Max-emin and Max-dmin were shown to be more
effective than Min-m1 and Min-m2 when K > 1.

In this paper, we propose new design criteria based on new
bounds of the ML error probability, and give a geometric
interpretation with the Riemannian distance. We first provide
some preliminaries on this distance in the next section.

III. PRELIMINARIES ON THE RIEMANNIAN DISTANCE

Let PT be the set of T × T Hermitian and positive
definite matrices. This set is a differential manifold. At a
point AAA of PT , define the differential ‖AAA−

1
2 dAAAAAA−

1
2 ‖F =[

tr
(
AAA−1 dAAA

)2 ] 1
2 . This differential is used to compute the

length of a piecewise differential path in PT . Specifically,
the length of a path γ : [a, b] → PT is given by L(γ) =∫ b
a
‖γ− 1

2 (t)γ′(t)γ−
1
2 (t)‖F dt [12, Chapter 6]. Define a dis-

tance between any two points AAA and BBB in PT as

δR(AAA,BBB) := inf{L(γ) : γ is a path from AAA to BBB}. (2)

That is, δR(AAA,BBB) is the minimum length of a path between
AAA and BBB. According to [12, Chapter 6], the infimum in (2) is



achieved by a unique path joining AAA and BBB, which is called a
geodesic from AAA to BBB. This geodesic has a parameterization

γ(t) = AAA
1
2
(
AAA−

1
2BBBAAA−

1
2
)t
AAA

1
2 , 0 ≤ t ≤ 1.

Furthermore, δR(AAA,BBB) is explicitly given by

δR(AAA,BBB) = ‖ ln(AAA−
1
2BBBAAA−

1
2 )‖F =

( T∑
i=1

ln2 σi(AAA
−1BBB)

) 1
2

where {σi(MMM)}i denote the eigenvalues of a matrix MMM . The
distance δR(AAA,BBB) is called the Riemannian distance on the
manifold PT . The readers are referred to [12, Chapter 6] for
a further description of this distance and its relation to the
geometry of the manifold PT .

IV. CONSTELLATION DESIGN CRITERIA

We denote the pairwise error event as {XXX → XXX ′} :=
{pYYY|XXX(YYY|XXX) ≤ pYYY|XXX(YYY|XXX ′)|XXX = XXX}. As shown in [11,
Sec. III], for a given constellation size |X |, Pe(X ) vanishes if
and only if the worst-case PEP, max

XXX 6=XXX′∈X
P(XXX→XXX ′), vanishes.

Therefore, our goal is to minimize the worst-case PEP, or
equivalently, maximize the worst-case PEP exponent:

X ∗ = arg max
X

min
XXX 6=XXX′∈X

(
− 1

N
lnP(XXX→XXX ′)

)
.

A. Pairwise Error Exponent Analysis

Following [13], the PEP can be computed in closed form
(see [14, Appendix B]). However, the closed-form expression
is rather involved and cannot be directly used to optimize
the constellations. Therefore, one needs to resort to tractable
bounds. To this end, we analyze the PEP and propose some
bounds in the following. Let us first rewrite the PEP as

P(XXX→XXX ′) = P
(

ln
pYYY|XXX(YYY|XXX)

pYYY|XXX(YYY|XXX ′)
≤ 0
)

= P
(
L(XXX→XXX ′) ≤ 0

)
with the PLLR L(XXX →XXX ′) := ln

pYYY|XXX(YYY|XXX)

pYYY|XXX(YYY|XXX′)
. Using (1), we

obtain

L(XXX→XXX ′) = N ln
det
(
IIIT +XXX ′XXX ′

H)
det
(
IIIT +XXXXXXH

)
− tr

((
(IIIT +XXXXXXH)−1 − (IIIT +XXX ′XXX ′

H
)−1
)
YYYYYYH

)
. (3)

Hereafter, we denote by {λi}Ti=1 the eigenvalues of the matrix
ΓΓΓ := (IIIT +XXXXXXH)(IIIT +XXX ′XXX ′

H
)−1. Note that λi≥0, ∀i∈ [T ].

Lemma 1. The PEP can be expressed as

P(XXX→XXX ′) = P

(
T∑
i=1

(λi − 1)gi ≤ N
T∑
i=1

lnλi

)
,

where {gi}Ti=1 are independent Gamma random variables with
shape N and scale 1.

Proof. See Appendix A.

A Chernoff lower bound on the PEP exponent is given in
the following proposition.

Proposition 2. The PEP exponent is lower-bounded as
− 1
N lnP(XXX→XXX ′) ≥ Js(XXX,XXX ′) ∀s ∈ [0, 1], where

Js(XXX,XXX
′)

:= ln det(s(IIIT +XXX ′XXX ′
H
)−1 + (1− s)(IIIT +XXXXXXH)−1)

−
[
s ln det((IIIT +XXX ′XXX ′

H
)−1)+(1−s) ln det((IIIT +XXXXXXH)−1)

]
.

Proof. See Appendix B.

In particular, with s= 1
2 , after some manipulations, we obtain

J1/2(XXX,XXX ′) =
1

2
ln det

(
2IIIT + (IIIT +XXX ′XXX ′H)−1(IIIT +XXXXXXH)

+ (IIIT +XXXXXXH)−1(IIIT +XXX ′XXX ′H)
)

− T ln 2. (4)

The bounds of the PEP exponent can be tightened with an
upper bound as follows.

Proposition 3. The PEP exponent is upper and lower-bounded
as

β(XXX,XXX ′) + T ≥ − 1

N
lnP(XXX→XXX ′) ≥ 1

2
β(XXX,XXX ′)− T ln 2.

(5)
where β(XXX,XXX ′) is defined through {λi} as β(XXX,XXX ′) :=∑T
i=1 | lnλi|.

Proof. See Appendix C

Proposition 3 states that the PEP exponent scales linearly
with β(XXX,XXX ′) where the multiplicative factor is tightly
bounded between 1

2 and 1. Note that the lower limit factor 1
2 can

be improved by optimizing the parameter s in Proposition 2. For
the purpose of this paper, however, we neglect the multiplicative
and additive factors and focus on the key part β(XXX,XXX ′) in
both upper and lower bounds.

B. Proposed Criteria and Its Relation to the Riemannian
Distance

Define βmin(X ) := min
XXX 6=XXX′∈X

β(XXX,XXX ′). It follows from

Proposition 3 that the worst-case PEP exponent is sandwiched
between βmin(X ) + T and 1

2βmin(X )− T ln 2. Motivated by
this, we propose the following design criterion

(Max-βmin) : X ∗ = arg max
X

βmin(X ).

Furthermore, since the metric βmin(X ) provides tight bounds
on the PEP exponent, it can also be used to evaluate the error
performance of a given joint constellation. The higher the value
of βmin(X ), the lower the joint ML detection error is expected
to be. Computing βmin(X ) is more efficient than evaluating
the empirical joint ML symbol error rate.

We now present a relation between our β-metric and the
Riemannian distance. Since the matrices IIIT +XXXXXXH and IIIT +
XXX ′XXX ′

H
are Hermitian and positive definite, we can define the

Riemannian distance between them as δR(IIIT +XXXXXXH, IIIT +

XXX ′XXX ′
H
) =

(∑T
i=1 ln2 λi

) 1
2 .



Proposition 4. The metric β(XXX,XXX ′) is bounded in terms of
the Riemannian distance δR(IIIT +XXXXXXH, IIIT +XXX ′XXX ′

H
) as

√
TδR(IIIT +XXXXXXH, IIIT +XXX ′XXX ′

H
) ≥ β(XXX,XXX ′)

≥ δR(IIIT +XXXXXXH, IIIT +XXX ′XXX ′
H
).

Proof. The lower bound follows from β(XXX,XXX ′) =∑T
i=1 | lnλi| =

√(∑T
i=1 | lnλi|

)2 ≥ √∑T
i=1 ln2 λi =

δR(IIIT + XXXXXXH, IIIT + XXX ′XXX ′
H
), where the inequality holds

because the terms | lnλi| are nonnegative. The upper bound
follows directly from the Cauchy-Schwarz inequality.

This proposition says that the metric β(XXX,XXX ′) is within a
multiplicative factor from the Riemannian distance δR(IIIT +
XXXXXXH, IIIT +XXX ′XXX ′

H
), where the factor is between 1 and

√
T .

Therefore, β(XXX,XXX ′) is large if and only if δR(IIIT +XXXXXXH, IIIT +
XXX ′XXX ′

H
) is large. It follows that a pair of joint symbols XXX

for XXX ′ are less likely to be misdetected for each other if
the geodesic joining IIIT +XXXXXXH and IIIT +XXX ′XXX ′

H
in PT is

longer. If XXXXXX = XXX ′XXX ′
H
, this geodesic has length zero, thus

β(XXX,XXX ′) = 0 and the PEP exponent is upper bounded by a
constant. Note that this agrees with the identifiability condition
in Proposition 1.

In numerical optimization using the proposed metric, one
has to compute the gradient of β(XXX,XXX ′) with respect to the
symbols. This can be challenging since β(XXX,XXX ′) involves the
eigenvalues of ΓΓΓ. In this regard, it can be more convenient to
maximize the bound Js(XXX,XXX

′) given in Proposition 2:

(Max-Js,min) : X ∗ = arg max
X

Js,min(X )

for some s ∈ [0, 1], where Js,min(X ) := min
XXX 6=XXX′∈X

Js(XXX,XXX
′).

In the single-user SIMO case, let s = 1
2 and consider

Grassmannian signaling ‖xxx‖ = PT, ∀xxx ∈ X , then Max-Js,min

is equivalent to the max-min chordal distance criterion

X ∗ = arg max
X

min
xxx 6=xxx′∈X

√
1− 1

P 2T 2
|xxxHxxx′|2.

V. NUMERICAL RESULTS

We generate the constellation according to the proposed
criterion and compare it with the constellations optimized with
existing criteria. We assume that Mk = M , Bk = B, k ∈ [K]
and consider USTM, i.e., XXXH

kXXXk = PT
M IIIM , ∀XXXk ∈ Xk, k ∈

[K]. We solve the constellation optimization at P = 30 dB
although the performance of the resulting constellations is
benchmarked at other SNR values. We employ the Manopt
toolbox [15], and the optimization technique is similar to that
described in [14, Sec. VI-A]. We compare the constellation
optimized with Max-J1/2,min and that with Min-m1, Min-m2,
Max-emin, and Max-dmin in terms of joint-ML symbol error
rate (SER) and the metric βmin(X ).

A. The Single-User Case

We first consider the single-user case, i.e., K = 1, with
coherent interval T = 4, B ∈ {5, 6} bits/symbol, M = 2
transmit antennas, and N = 2 receive antennas. In Fig. 1,
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Fig. 1. The SER of the constellations optimized with different criteria for
K = 1 user, coherent interval T = 4, B ∈ {5, 6} bits/symbol, M = 2
transmit antennas, and N = 2 receive antennas.

we show the SER as a function of the SNR P for the
constellations obtained by optimizing different metrics. We
see that the constellations optimized with the proposed criteria
Max-J1/2,min is on par with that with Min-m2, and outperforms
the constellations optimized with the other metrics. Note that
although the metric m2(X ) results from a bound on the PEP
as for our metric, it relies on the truncated unitary structure
of the symbols. The constellation obtained with Max-emin and
Max-dmin are slightly better than that with Min-m1.

B. The Two-User Case

Next, we consider the two-user case, i.e., K = 2, with
coherent interval T = 5, B = 4 bits/symbol, M = 2 transmit
antennas, and N = 4 receive antennas. In Fig. 2, we plot the
joint SER of the joint constellation optimized with different
criteria. We also consider a pilot-based scheme corresponding to
the scenario where K users transmit orthogonal pilots, followed
by spatially multiplexed QAM symbols. Note that this pilot-
based scheme does not follow USTM. We observe again that
optimizing the joint constellation according to Min-J1/2,min

results in the best performance. Our previous criteria Max-
dmin and Max-emin are also effective and results in joint SER
that are only slightly higher than that of Min-J1/2,min. On the
other hand, the joint SER of the joint constellations optimized
with the Min-m1 and Min-m2 criteria are significantly higher
and go down more slowly with the SNR. This confirms that
these baseline criteria become ineffective for the multi-user
case, where the truncated unitary structure of the joint symbols
is not guaranteed. The pilot-based scheme outperforms these
baselines, but entails about 2 dB power loss to achieve the
same joint SER with respect to our Min-J1/2,min criteria.

Finally, considering the same setting, we depict the values
of the metrics J1/2,min(X ) and βmin(X ) evaluated for the
considered constellations in Fig. 3. As can be seen, the
constellations with lower joint SER have a larger value of
these metrics. In other words, the order of the metric values
reveals the order of the SER performance. This confirms that
our proposed metrics are meaningful for constellation design
and evaluation.
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Fig. 2. The SER of the constellations optimized with different criteria for
K = 2 users, coherent interval T = 5, B = 4 bits/symbol, M = 2 transmit
antennas, and N = 4 receive antennas.
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Fig. 3. The value of the design metrics J1/2,min(X ) and βmin(X ) for the
considered constellations for the same setting as in Fig. 2.

VI. CONCLUSION

We investigate the joint constellation design for noncoherent
MIMO MAC in Rayleigh block fading. By analyzing the
exponent of the worst-case pairwise joint-ML detection error,
we have derived closed-form metrics which are effective for
designing joint constellations that achieve a low error rate. We
provided a geometric interpretation of our metric using the
Riemannian distance.

APPENDIX A
PROOF OF LEMMA 1

It suffices to show that the PLLR can be written as
−N

∑T
i=1 lnλi+

∑T
i=1(λi−1)gi. Let YYY0 := (IIIT+XXXXXXH)−1/2YYY

be a “whitened” version of YYY, then YYY0 is a Gaussian matrix
with T independent rows following CN (0, IIIN ). From (3), the

PLLR L(XXX→XXX ′) can be expressed as

L(XXX→XXX ′) = −N ln det (ΓΓΓ)

+ tr
((

(IIIT +XXXXXXH)
1
2

(
IIIT +XXX ′XXX ′

H)−1
(IIIT +XXXXXXH)

1
2 − IIIT

)
×YYY0YYY

H

0

)
.

Since ΓΓΓ and (IIIT + XXXXXXH)
1
2

(
IIIT + XXX ′XXX ′

H)−1
(IIIT + XXXXXXH)

1
2

share the same eigenvalues {λi}Ti=1, we can decompose
(IIIT + XXXXXXH)

1
2

(
IIIT + XXX ′XXX ′

H)−1
(IIIT + XXXXXXH)

1
2 − IIIT =

ŪUUdiag (λ1 − 1, λ2 − 1, . . . , λT − 1) ŪUU
H where ŪUU is a T × T

unitary matrix. We further expand the PLLR as

L(XXX→XXX ′)

= −N ln det (ΓΓΓ) + tr
(

diag (λ1−1, . . . , λT−1) ŪUU
H
YYY0YYY

H

0ŪUU
)

= −N
T∑
i=1

lnλi +

T∑
i=1

(λi − 1)gi

where gi := ‖ȳyy0,i‖2 with ȳyy0,i being the i-th row of ŪUUH
YYY0. Since

ŪUU is unitary and deterministic, ŪUUH
YYY0 has the same distribution

as YYY0, i.e., ȳyy0,i are independent and follow CN (0, IIIN ).
Therefore, {gi}Ti=1 are independent Gamma random variables
with shape N and scale 1. This completes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

In this proof, for convenience, we denote GGGAAA := (III +
AAAAAAH)−1 for a matrix AAA. We need to show that P(XXX→XXX ′) =
P
(
L(XXX→XXX ′) ≤ 0

)
≤ exp(−NJs(XXX,XXX ′)). By applying the

Chernoff bound [16, Th. 6.2.7], we obtain for every s > 0 that

P(XXX→XXX ′)

≤ EYYY |XXX
[
exp

(
−sL(XXX→XXX ′)

)]
= EYYY |XXX

[(
pYYY|XXX(YYY|XXX ′)
pYYY|XXX(YYY|XXX)

)s]
=

∫
CT×N

[pYYY|XXX(YYY |XXX ′)]s[pYYY|XXX(YYY |XXX)]1−s dYYY

=

∫
CT×N

[
exp(−tr(YYY HGGGXXX′YYY ))

πNTdet−NGGGXXX′

]s[
exp(−tr(YYY HGGGXXXYYY ))

πNTdet−NGGGXXX

]1−s
dYYY

(6)

=

[
dets(GGGXXX′)det1−s(GGGXXX)

det (sGGGXXX′ + (1− s)GGGXXX)

]N
×
∫
CT×N

exp(−tr(YYY H(sGGGXXX′ + (1− s)GGGXXX)YYY ))

πNTdet−N (sGGGXXX′ + (1− s)GGGXXX)
dYYY (7)

where (6) follows from (1), and (7) follows after some simple
manipulations. With s ∈ [0, 1], (sGGGXXX′ + (1−s)GGGXXX)−1 is a
covariance matrix. Therefore, the integral in (7) is an integral
of a Gaussian density over the whole support, and thus equals
1. As a consequence, P(XXX→XXX ′) is upper-bounded by the first
term in (7), which equals exp(−NJs(XXX,XXX ′)).



APPENDIX C
PROOF OF PROPOSITION 3

The lower bound in (5) follows by taking s = 1
2 in

Proposition 2 and by bounding J1/2(XXX,XXX ′) in (4) as

J1/2(XXX,XXX ′) =
1

2

T∑
i=1

ln
(

2 + λi +
1

λi

)
− T ln 2

≥ 1

2

T∑
i=1

ln max
{
λi,

1

λi

}
− T ln 2

=
1

2

T∑
i=1

| lnλi| − T ln 2.

To show the upper bound, we first write the Gamma random
variables gi as gi =

∑N
j=1 ei,j , i ∈ [T ], where {ei,j}i∈[T ],j∈[N ]

are independent exponential random variables with parameter 1.
From this and Lemma 1, we can bound the PEP as

P(XXX →XXX ′) = P
( T∑
i=1

N∑
j=1

(λi − 1)ei,j ≤ N
T∑
i=1

lnλi

)
≥ P ((λi − 1)ei,j ≤ lnλi,∀i ∈ [T ], j ∈ [N ])

=

T∏
i=1

N∏
j=1

P ((λi − 1)ei,j ≤ lnλi)

= exp

(
−N

T∑
i=1

f(λi)

)
(8)

where f(λ) :=−lnP ((λ−1)e ≤ lnλ) with e being an expo-
nential random variable with parameter 1. We shall show that

f(λ) ≤ | lnλ|+ 1, ∀λ ≥ 0. (9)

• If λ = 1, (9) obviously holds with equality.
• If λ<1, we have that P ((λ−1)e ≤ lnλ) = P

(
e ≥ − lnλ

1−λ
)

=

exp
(
lnλ
1−λ

)
. Thus f(λ) = − lnλ

1−λ = − lnλ+ lnλ−1

λ−1−1 < | lnλ|+
1 since lnλ−1 < λ−1 − 1 for all λ−1 > 1.

• If λ > 1, we have that P ((λ− 1)e ≤ lnλ) =

P
(
e ≤ lnλ

λ−1

)
= 1 − exp

(
− lnλ
λ−1

)
≥ 1−e−1

λ . To verify the

inequality, notice that the function λ
(

1− exp
(
− lnλ
λ−1

))
=

λ− λ−
1

λ−1+1 is increasing for λ > 1, and converges from
above to 1− e−1 as λ approaches 1 from above. We deduce
that f(λ) ≤ ln( λ

1−e−1 ) = lnλ− ln(1− e−1) < | lnλ|+ 1.
Introducing (9) into (8), we upper bound the PEP exponent as

− 1

N
lnP

(
XXX →XXX ′

)
≤

T∑
i=1

f(λi) ≤
T∑
i=1

| lnλi|+ T.

This completes the proof.
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