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Abstract—We propose a class of parametric channel models
that we call generalized Gaussian model (GGM). In particular,
given the input, the output is Gaussian with both mean and
covariance depending on the input. More general than the conven-
tional linear model, the GGM can capture nonlinearities and self-
interference present in more and more wireless communication
systems. We focus on three key problems. First, we propose a
data-driven model identification algorithm that uses training data
to fit the underlying channel with a GGM. This is a generalization
of the conventional channel estimation procedure. Second, for an
identified GGM, we investigate the receiver design problem and
propose several decoding metrics. Third, we are interested in
the capacity bounds of the GGM. Both the mismatched lower
bound and duality upper bound are proposed. Finally, we apply
the GGM to fit the multiple-input multiple-output phase-noise
channel. Numerical results show the near optimality of the model
identification and decoding algorithms.

I. INTRODUCTION

In wireless communications, a widely accepted channel
model is yyy = HHHxxx+zzz, where the output yyy is a linear combination
of the input xxx corrupted by additive Gaussian noise zzz. The
linear combination coefficients, represented by the channel
matrix HHH , are assumed to be known, or at least can be
estimated to reasonable accuracy, at the receiver. Here, the
vectors can span over time/frequency/space (antenna) according
to the communication system and the encoding scheme. We
refer to this model as the linear model or the Gaussian
model. Capturing the broadcast and superposition nature of
the wireless medium, this model has been adequate in most
common scenarios. More importantly, it is analytically tractable,
with both known capacity and known capacity achieving
communication schemes [1], [2].

Nevertheless, it becomes evident that the Gaussian model
does not suffice for emerging communication systems where
non-linearities and multiplicative noises are non-negligible.
Examples include phase noises due to higher carrier frequencies,
hardware impairments in transceivers with large antenna arrays,
channel uncertainties due to estimation or quantization noises,
etc [3]. Fitting such channels with the conventional linear model
is still possible but can be, unsurprisingly, highly suboptimal.

In this paper, we propose to generalize the Gaussian model
in such a way that, conditional on the input, the output is
still Gaussian, but both the mean µµµ and covariance QQQ of the
output can depend on the input. We call this the generalized
Gaussian model (GGM). The Gaussian model is thus a special
case where the mean is a linear function of the input and
the covariance is constant. The GGM can capture both non-
linearities and the self-interference caused by multiplicative

noises, while remaining Gaussian for tractability. We focus on
three key problems.

• Model identification (channel estimation). We consider a
class of parametric models (µµµθ,QQQθ)θ. The parameter θ is
estimated using training data with the maximum likelihood
criterion. The proposed algorithm starts with a least-square
initialization and pursues with gradient methods.

• Receiver design. For an identified model, we investigate
both linear and non-linear detection algorithms. In par-
ticular, we consider the linear minimum mean-square
estimator (LMMSE), the non-linear zero-forcing (ZF), and
an algorithm called self-interference whitening (SIW) [4]
based on successive nearest-neighbour decoding.

• Capacity analysis. While the exact capacity is hard
to obtain even for the simplest GGM, we can derive
upper and lower bounds. In particular, we consider the
mismatched capacity lower bound [5], [6] for a given input
distribution and the proposed decoding metrics. We also
propose an upper bound using the duality approach [7].

Finally, we consider an example in which we apply the
proposed GGM to fit a multiple-input multiple-output (MIMO)
phase noise channel. Numerical results show that the identified
model captures accurately the statistical characteristic of this
channel. Furthermore, under the identified model, the SIW
decoding scheme performs almost optimally in terms of both
signal detection error and achievable data rate for QAM inputs.
In general, the GGM approximation provides an achievable
rate of the underlying channel through the mismatched capacity
formulation. The goodness of the approximation can thus be
evaluated using the mismatched rate.

Notation: We use lowercase letters with boldface, e.g., vvv,
to denote vectors, and uppercase letters with boldface, e.g.,
MMM , to denote matrices. The Euclidean norm is denoted by
‖ · ‖. The trace, transpose, and Moore–Penrose pseudo-inverse
of MMM are respectively tr (MMM), MMM T, and MMM†. We use vec(MMM)
to denote the vectorization of MMM by stacking the columns;
[n] := {1, 2, . . . , n}. The set of N ×N positive definite (semi-
definite) matrices is denoted by SN++ (SN+ ). For any N × N
symmetric matrix GGG, we use (GGG)+ to denote the projection
to SN+ . (Replacing all negative eigenvalues by 0 provides a
L2 (least-square) projection.) For QQQ,QQQ′ ∈ SN+ , QQQ �QQQ′ means
QQQ−QQQ′ ∈ SN+ . The Kronecker product of AAA and BBB is AAA⊗BBB.
Logarithms are in base 2.



II. GENERALIZED GAUSSIAN MODEL

We consider a point-to-point memoryless vector channel such
that pθ(yyy1, . . . , yyyn |xxx1, . . . ,xxxn) =

∏n
i=1 pθ(yyyi |xxxi), where the

output at time i, yyyi ∈ RN , depends only on the input at
time i, xxxi ∈ RM , for i ∈ [n]. The conditional probability
density function (pdf) characterizing the channel, pθ(yyy |xxx), is
parameterized by some θ whose value is a priori unknown.
Here, we assume that pθ(yyy |xxx) is Gaussian with mean µµµθ(xxx)
and covariance matrix QQQθ(xxx), i.e., for yyy ∈ RN

pθ(yyy |xxx) =
e−

1
2 tr(QQQ−1

θ (xxx)(yyy−µµµθ(xxx))(yyy−µµµθ(xxx))T)√
det(2πQQQθ(xxx))

. (1)

Both the mean µµµθ : RM → RN and the covariance matrix
QQQθ : RM → SN++ depend on θ. In particular, we assume that
µµµθ(000) = 000, QQQθ(0) = ΞΞΞθ where ΞΞΞθ ∈ SN++ is the covariance of
the measurement noise present irrespective of the input, and
QQQθ(xxx) � QQQθ(000), ∀xxx. It is thus without loss of generality to
assume that QQQθ(xxx) = ΞΞΞθ +WWWθ(xxx)WWWθ(xxx)T where WWWθ(xxx) : xxx→
RN×N ′ with some N ′ ≥ N and WWWθ(000) = 000. Equivalently,

yyy = µµµθ(xxx) +WWWθ(xxx)z̃zz +BBBθzzz, (2)

where z̃zz, zzz are independent and identically distributed (i.i.d.)
as N (0, IIIN ); BBBθ ∈ RN×N is such that BBBθBBB

T

θ = ΞΞΞθ. We call
this model the generalized Gaussian model (GGM).
Remark 1. Note that for a given QQQθ, the matrices (BBBθ,WWWθ)
are underdetermined. A practical advantage of using (BBBθ,WWWθ)
instead is that the positive (semi-)definite constraints are gone.

If we let µµµθ(xxx) = HHHxxx and WWWθ(xxx) = 000, then the GGM is
the conventional Gaussian channel. The non-coherent Rician
channel yyy = (ĤHH + H̃HH)xxx + zzz where H̃HH has i.i.d. N (0, σ2)
entries is also a GGM, if we let µµµθ(xxx) = ĤHHxxx and QQQθ(xxx) =
(1 + σ2‖xxx‖2)III. It turns out that the phase noise channel, with
moderate phase noise, can also be approximated with a GGM
as shown in [4].

We are particularly interested in the following model defined
by a class of linear functions.
Definition 1 (Linear self intereference). When µµµθ(xxx) and
WWWθ(xxx) are both linear functions of xxx such that

µµµθ(xxx) = AAAθxxx with AAAθ ∈ RN×M , (3)

WWWθ(xxx) = (IIIN ⊗ xxxT)CCCθ with CCCθ ∈ RMN×N ′ , (4)

the GGM is called a linear self interference model. This model
depends on the parameter θ through the matrices AAAθ, BBBθ, and
CCCθ. If the matrices can be arbitrary, we drop the subscript θ
and the model parameter becomes the triple (AAA,BBB,CCC).

Remark 2. The covariance matrix of the GGM corresponding
to the aforementioned Rician model is a quadratic function of
the input. It can be represented by a linear self interference
model. In the 2×2 case, we can set N ′ = N = 2, andWWWθ(xxx) =
[ x1 x2
−x2 x1

]. In the 3× 3 case, N ′ = N = 3 is not enough.1 We

can however set N ′ = 4, and WWWθ(xxx) =
[ x1 −x2 −x3 0
x2 x1 0 −x3
x3 0 x1 x2

]
.

1Indeed, in general, a linear self interference model with N ′ = N is not
enough to represent a GGM with quadratic covariance function.

III. MODEL IDENTIFICATION

The first problem is how to fit the underlying channel with
a GGM, i.e., estimating the channel by identifying the model
parameter θ. As in the conventional channel estimation process,
the transmitter sends a known training sequence of T input
vectors {xxxi}Ti=1 and the receiver estimates the channel using
the corresponding output vectors {yyyi}Ti=1. For simplicity,2 we
use the maximum likelihood (ML) estimation, namely,

θ∗ = arg max
θ

T∏
i=1

pθ(yyyi |xxxi) (5)

= arg min
θ
L(θ), (6)

where the objective function L(θ) is defined as

L(θ) :=
1

T

T∑
i=1

f(yyyi −µµµθ(xxxi),QQQθ(xxxi)), (7)

with f(MMM,QQQ) := log det(QQQ) + tr
(
QQQ−1MMMMMM T

)
. (8)

Let the samples {xxxi} be drawn from some alphabet X that
is finite (|X | ≤ T ) for the training phase. We further assume
that θ = (θ1, θ2) and that µµµθ and QQQθ depend on θ1 and θ2,
respectively. Then, L(θ) can be rewritten as

L(θ) =
∑
xxx∈X

πxxxf
(
YYYxxx −µµµθ1(xxx)111T,QQQθ2(xxx)

)
, (9)

where YYYxxx := [yyyi : i ∈ [T ],xxxi = xxx] and the sampling ratio.

πxxx :=
1

T
|{i ∈ [T ] : xxxi = xxx}|. (10)

We also define the sample covariance

S̄SSθ1(xxx) :=
1

Tπxxx

(
YYYxxx −µµµθ1(xxx)111T

) (
YYYxxx −µµµθ1(xxx)111T

)T
. (11)

While the optimization problem is non-convex in general, we
propose to find a local optimum in two steps.

1) Step 1: Initialization with least-square: First, we find θ1

such that µµµθ1(xxx) best fits the sample mean

ȳyyxxx :=
1

Tπxxx

∑
i∈[T ] : xxxi=xxx

yyyi (12)

in the least-square sense, i.e.,

θ
(0)
1 = arg min

θ1

∑
xxx∈X

πxxx‖ȳyyxxx −µµµθ1(xxx)‖2. (13)

Then, we find θ2 such that QQQθ2(xxx) best fits the sample
covariance matrix S̄SS

θ
(0)
1

(xxx) given according to (11), i.e.,

θ
(0)
2 = arg min

θ2

∑
xxx∈X

πxxx‖QQQθ2(xxxi)− S̄SSθ(0)1
(xxx)‖2. (14)

The initialization step is important since if the initial guess is
close to a global optimum, the second step can lead right to it.
Note that the choice of the least-square criterion is mainly due

2Prior information such as the sparsity, when available, can be added to
improve the estimation.



to the fact that it can be solved efficiently. In particular, for the
linear self interference model, where θ1 = AAA and θ2 = (BBB,CCC),
we propose the following closed-form initialization.

Proposition 1. The least-square initialization of AAA is given by

AAA(0) =

(∑
xxx∈X

πxxxȳyyxxxxxx
T

)(∑
xxx∈X

πxxxxxxxxx
T

)−1

. (15)

An approximate least-square initialization of BBB and CCC is the
Cholesky decomposition of (ΞΞΞ)+ and (GGG)+, respectively, where[

ΞΞΞ
GGG

]
= perm−1(RRR†VVV ) with

RRR :=

[
1

∑
xxx∈X πxxxxxx

T ⊗ xxxT∑
xxx∈X πxxxxxx⊗ xxx

∑
xxx∈X πxxxxxxxxx

T ⊗ xxxxxxT

]
, (16)

VVV := perm

(∑
xxx∈X

πxxxQ̂QQxxx,
∑
xxx∈X

πxxxDDD
T

xxxQ̂QQxxxDDDxxx

)
, (17)

and

Q̂QQxxx :=
1

Tπxxx

∑
i∈[T ] : xxxi=xxx

(yyyi −AAA
(0)xxx)(yyyi −AAA

(0)xxx)T, (18)

DDDxxx := IIIN ⊗ xxxT, and the mapping perm(·, ·) is defined in
Appendix A.

Proof. See Appendix A.

Note that the proposed initial value of (BBB,CCC) is not the
exact solution of (14) in general, unless ΞΞΞ and GGG happen to
be positive semi-definite (they are both symmetric though).
Nevertheless, it provides a simple and reasonable initialization
for the original ML problem.

2) Step 2: Gradient Descent: In this step, we apply gradient
decent starting from the initialized values obtained Step 1. The
first-order differential of L(θ) is given by

dL =
∑
xxx∈X

πxxxd
(
f
(
YYYxxx −µµµθ1(xxx)111T,QQQθ2(xxx)

))
. (19)

Applying the matrix differential [8]

df(MMM,QQQ) = 2tr(MMM TQQQ−1dMMM)

+tr((QQQ−1 −QQQ−1MMMMMM TQQQ−1)dQQQ), (20)

and the chain rule, we have

dL = −2
∑
xxx∈X

πxxx(ȳyyxxx − xxx)TQQQ−1
θ2

(xxx)dµµµθ1(xxx)

+2
∑
xxx∈X

πxxxtr

(
BBBT

θ2(QQQ−1
θ2

(xxx)(QQQθ2(xxx)− S̄SSθ1(xxx))QQQ−1
θ2

(xxx))dBBBθ2

+WWWθ2(xxx)TQQQ−1
θ2

(xxx)(QQQθ2(xxx)− S̄SSθ1(xxx))QQQ−1
θ2

(xxx)dWWWθ2(xxx)

)
. (21)

We propose to optimize θ1 and θ2 in an iterative manner as
follows. Each iteration i, i = 1, 2, . . . , contains two steps. In
the first step, we fix θ2 = θ

(i−1)
2 and minimizing (9) over θ1. It

can be shown that this is a least-square problem. In particular,
when µµµθ1 is linear in θ1, it is a linear least-square problem, and
the solution is in closed form. For instance, if µµµθ1(xxx) = AAAxxx

with θ1 = AAA as in the linear self interference model, then the
optimal AAA for a given θ2 is such that

vec(AAA) =

(∑
xxx∈X

(xxxxxxT)⊗QQQ−1
θ2

(xxx)

)†
(22)

× vec

(∑
xxx∈X

πxxxQQQ
−1
θ2

(xxx)ȳyyxxxxxx
T

)
. (23)

In the second step, we optimize θ2 while fixing θ1 = θ
(i)
1

found in the previous step. This can be done using the gradient
direction that can be obtained from (21) or Newton-like (e.g.,
Hessian, diagonal Hessian) descent directions, together with a
simple line search. In particular, in the linear self interference
model (θ(i)

2 = (BBB(i),CCC(i))), we propose to first optimize over
BBB for a given CCC = CCC(i−1), then optimize over CCC for the given
BBB(i). The iteration goes on until convergence or time limit.

IV. RECEIVER DESIGN

The second problem is how to decode the information in a
given GGM. In this section, we consider the detection problem,
i.e., find a x̂xx ∈ X from the output vector yyy, such that x̂xx =
arg minxxx∈X d(xxx,yyy) for some metric d. We assume that the
input xxx is uniformly distributed over X .

The optimal detector in this case is the ML detector, i.e.,
x̂xxML = arg maxxxx∈X pθ(yyy |xxx) = arg minxxx∈X dML(xxx,yyy) where
the metric is defined, through the function f in (8), as

dML(xxx,yyy) = f(yyy −µµµθ(xxx),QQQθ(xxx)). (24)

In the conventional Gaussian channel where QQQθ(xxx) = QQQ and
µµµθ(xxx) = HHHxxx, the metric is equivalent to ‖QQQ−

1
2 (yyy −HHHxxx)‖2,

and the problem can be solved with nearest-neighbour decod-
ing (NND) for which efficient implementations such as the
sphere decoder [9] and lattice-reduction based approaches exist
(see, e.g., [10]). In general, though, the metric dML depends
on xxx in a complex and non-convex way.

One possible simplification is to relax the discrete con-
straint and search for the optimal solution xxx∗(yyy) =
arg minxxx∈RM dML(xxx,yyy). The solution xxx∗ is then projected onto
the discrete alphabet X . We call this method the non-linear
zero-forcing (NLZF) due to its similarity to the zero-forcing
scheme in the convention model. Equivalently, the metric is

dNLZF(xxx,yyy) = ‖xxx− xxx∗(yyy)‖2. (25)

Note that finding the optimal xxx∗(yyy) is hard since dML is not
convex in xxx in general. So a practical implementation of the
NLZF is to use gradient methods.3

Another detection method is inspired by the previous
observation that fixing the covariance matrix QQQθ(xxx) = QQQ,
the objective function becomes f(yyy −µµµθ(xxx),QQQ) which can be
solved with NND. Specifically, we first use a low-complexity
method to obtain a rough estimate xxx0(yyy), then we search
for xxx that minimizes f(yyy −µµµθ(xxx),QQQθ(xxx0(yyy))). This two-step
procedure is called self-interference whitening. It was first

3The gradient can be derived from (20) and the chain rule of derivatives.



proposed for the discrete-time MIMO phase noise channel
in [4]. Equivalently, the decoding metric is

dSIW(xxx,yyy) = f(yyy −µµµθ(xxx),QQQθ(xxx0(yyy))). (26)

One can improve the performance of SIW with iterations.
Indeed, xxx0 can be updated each time we find an estimate with
SIW. Then, we repeat the SIW with the new xxx0. If the solution
of the SIW gives a lower value of dML, then it is retained and
we continue with a new iteration.

Finally, we can perform a simple linear minimum mean
square error (LMMSE) estimator, namely, xxxLMMSE =FFFyyy where

FFF := E [xxxyyyT]E [yyyyyyT]
−1 (27)

= E [xxxµµµθ(xxx)T]E [µµµθ(xxx)µµµθ(xxx)T +QQQθ(xxx)]
−1
. (28)

The decoding metric is

dLMMSE(xxx,yyy) = ‖xxx−FFFyyy‖2. (29)

V. CAPACITY ANALYSIS

The capacity of a discrete-time memoryless channel with
input xxx and output yyy is C = supPX I(xxx;yyy) where the
supremum is subject to any input constraint. Finding a closed-
form expression of the channel capacity remains an open
problem for most channels. We are interested in finding
numerically evaluable capacity upper and lower bounds under
the average power constraint E

[
‖xxx‖2

]
≤ P .

For a given input distribution PX over an alphabet X , the
mutual information is

I(xxx;yyy) = E
[
log

pθ(yyy |xxx)

Exxx′∼PX [pθ(yyy |xxx′)]

]
, (30)

which can be evaluated numerically. The mutual information is
an achievable rate with an i.i.d. codebook and optimal decoding.
With the same codebook but an arbitrary decoding metric
d(xxx,yyy), the generalized mutual information (GMI), defined as

IGMI(xxx;yyy) = sup
s>0

E
[
log

e−sd(xxx,yyy)

Exxx′∼PX [e−sd(xxx′,yyy)]

]
, (31)

is achievable as a lower bound of the mismatched rate (see,
e.g., [6]). Here, d(xxx,yyy) can be any of the metrics proposed in
the previous section. Note that IGMI(xxx;yyy) ≤ I(xxx;yyy) and the
equality is achieved when d(xxx,yyy) = dML(xxx,yyy). In general, we
can evaluate the GMI numerically, since a suboptimal choice
of s still provides a lower bound.

For the upper bound, we focus on the linear self interference
model with BBB = III for simplicity. In particular, we follow the
techniques from [7], with the so-called duality bound using
the regularized Gamma distribution.

Proposition 2. The capacity of the linear self interference
model (see Definition 1) with BBBθ = III is upper-bounded by

1

2
sup
xxx0∈RM
‖xxx0‖=1

r∑
i=1

log max

N, λmax

(
AAATAAA+

∑N
i=1CCCiCCC

T

i

)
λi (WWW (xxx0)WWW (xxx0)T)



+
N − r

2
log

(
N + Pλmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))

+ inf
α>0

(
α log

(
N + Pλmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))

+ αψ(N/2) log(e) + log Γ(α)− α logα

)
− log Γ(N/2)− N

2
log(2e), (32)

where r := minxxx∈RM ,‖xxx‖=1 rank (WWW (xxx)), the matrices CCCi ∈
RM×N ′ , i ∈ [N ], are submatrices of CCC such that CCC =
[CCCT

1 CCCT

2 . . . CCCT

N ]T, ψ(·) denotes Euler’s psi function, and
λi(MMM) and λmax(MMM) denote the i-th eigenvalue in decreasing
order and the largest eigenvalue, respectively, of a matrix MMM .

Proof. See Appendix B.

VI. APPLICATION: MIMO PHASE-NOISE CHANNEL

We apply the linear self interference model to a 4×4 MIMO
channel corrupted by phase noise (PN) at the receiver side.
We follow the line-of-sight (LoS) model proposed in [11] with
transmission distance 10 km, carrier frequency 15 GHz. The
antenna spacing is set to the optimal value dopt derived in [12],
or only a fraction of dopt due to practical constraints. Note
that by reducing the antenna spacing, the condition number of
the channel matrix increases.

We assume that the inputs xxx are drawn from Mq-QAM
constellations. The training sequence for model identification
contains 1000 replicas of 100 different 64-QAM input vectors
and the corresponding output vectors. And let the identified
parameter be θ∗.

In Fig. 1, we consider 256-QAM and show the vector error
rate (an error is counted if the vector xxx is detected wrongly) of
the detection schemes presented in Sec. IV under the identified
model pθ∗(yyy |xxx). We also show the performance of the SIW
detector under a tight approximation of the true model [4,
Proposition 1], and a simulation-based lower bound of the
vector error rate of the exact ML detector [4, Sec. V-A]. As
can be seen, the vector error rate of the SIW detector under the
identified model is only slightly higher than that under the tight
approximate model, and is not far from the ML performance.
For baseline, we also consider two detectors that ignore the PN:
a mismatched ML that applies the NND with the estimated
channel matrix HHH , i.e., x̂xx = arg minxxx∈X ‖yyy −HHHxxx‖2; and a
mismatched ZF consisting in a QAM demapper ofHHH†yyy. We see
that LMMSE is on par with mismatched ZF, while non-linear
ZF outperforms both baselines.

Finally, in Fig. 2, we consider 16-QAM and plot the
achievable rate with various detection schemes given by the
GMI defined in (31) for the considered 4× 4 LoS PN channel
with antenna spacing 0.33dopt and 0.7dopt. It is observed that
the achievable rate with the SIW detector under the identified
model is only marginally lower than that with ML under the
identified or exact model for the whole range of of SNR. Note
that the rate achieved with ML under exact model is also
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Fig. 1: The vector error rate of different detection schemes for a 4×4
LoS PN channel with 256-QAM input. Here, the standard deviation
of the phase variations is 2◦.

the mutual information with the given input distribution. The
achievable rate with mismatched ZF converges slower as the
SNR increases, especially for small antenna spacing. This is
because mismatched ZF involves a channel inversion which
becomes unstable when the channel is ill-conditioned. For both
mismatched ZF and mismatched ML, when the antenna spacing
is small, the achievable rate saturates at a value lower than the
limit Mqnt bits/s/Hz because of a high error floor.

Fig. 2: The achievable rate, given by the GMI, of different detection
schemes for a 4× 4 LoS PN channel with 16-QAM input. Here, the
standard deviation of the phase variation is 4◦.

VII. CONCLUSION

We have proposed the generalized Gaussian model, a class
of parametric models that can capture both non-linearities
and self-interference due to multiplicative noises in wireless
communications. Under this model, we investigated three key
problems, namely, model identification, receiver design, and
capacity analysis. We showed that this model fits closely a
MIMO phase-noise channel, and the proposed signal detection
algorithms perform near optimally. It would be interesting to
use the GGM to address other interesting channels, e.g., with
nonlinear power amplifier [13] and quantization noise [14].

Future work also includes refining and evaluating the capacity
upper bound.

APPENDIX A
PROOF OF PROPOSITION 1

Let us define KKKp,q as the permutation matrix such that
KKKp,qvec(AAA) = vec(AAAT) for any AAA ∈ Rp×q. Let matm,n(AAA)
be a matrix whose i-th column contains ((i − 1)m + 1)-th
to im-th elements of vec(AAA), i ∈ [n]. We define a mapping
perm(·, ·) : RM×M × RMN×MN → R(1+N2)×M2

as

perm(ΞΞΞ,GGG) :=

[
vec(XXX)T

matN2,M2

(
KKKMN2,NmatMN2,M (GGG)

)] , (33)

which can be implemented by simple index permutation.
Substituting (3) into (13), after a simple manipulation, we get

that the initialization of AAA is such that ‖ȲYY∆∆∆1/2−AAAXXX∆∆∆1/2‖2 is
minimized, where XXX contains the distinct elements of {xxxi}Ti=1,
∆∆∆ contain the corresponding sample ratios in the diagonal,
and ȲYY contains the corresponding sample means. Then, (15)
follows readily since the solution to this least-square problem
is well known in closed form.

Once we have AAA(0), we can obtain an estimate of the
covariance matrix QQQ(xxx) for each xxx given by Q̂QQxxx in (18).
Denote DDDxxx :=(IIIN ⊗ xxxT) and GGG :=CCCCCCT. Substituting QQQ(xxx) =
ΞΞΞ +WWW (xxx)WWW (xxx)T = ΞΞΞ +DDDxxxGGGDDD

T

xxx into (14), we get that the
least-square estimates of ΞΞΞ and GGG are the minimizer of∑

xxx∈X
πxxx‖ΞΞΞ +DDDxxxGGGDDD

T

xxx − Q̂QQxxx‖2

=
∑
xxx∈X

πxxx‖vec(ΞΞΞ) + (DDDxxx ⊗DDDxxx)vec(GGG)− vec(Q̂QQxxx)‖2.

After some manipulations, the minimizer is such that[
TIIIM2

∑T
i=1DDDxxxi ⊗DDDxxxi∑T

i=1DDD
T

xxxi ⊗DDD
T
xxxi

∑T
i=1DDD

T

xxxiDDDxxxi ⊗DDD
T

xxxiDDDxxxi

] [
vec(ΞΞΞ)
vec(GGG)

]

=

[
vec(

∑T
i=1 Q̂QQxxxi)

vec(
∑T
i=1DDD

T

xxxiQ̂QQxxxiDDDxxxi)

]
. (34)

Instead of solving the above linear system directly, which
requires inverting a large matrix of size M2N2, we can show
that it is equivalent to solving the following system of size N2[

T
∑T
i=1 xxx

T
i ⊗ xxxT

i∑T
i=1 xxxi ⊗ xxxi

∑T
i=1 xxxixxx

T
i ⊗ xxxixxxT

i

]
perm(ΞΞΞ,GGG)

= perm
(∑T

i=1 Q̂QQxxxi ,
∑T
i=1DDD

T

xxxiQ̂QQxxxiDDDxxxi

)
, (35)

or, equivalently, RRR · perm(ΞΞΞ,GGG) = VVV with RRR and VVV given
in (16) and (17), respectively. Therefore, we can obtain the

estimates of ΞΞΞ and GGG from
[
ΞΞΞ
GGG

]
= perm−1

(
RRR†VVV

)
.

APPENDIX B
PROOF OF PROPOSITION 2

In this appendix, let {λi(MMM)}mi=1 denote the eigenvalues of
an m×m matrix MMM sorted in decreasing order, and λmax(MMM)



denote the largest eigenvalue of MMM , i.e., λmax(MMM) = λ1(MMM).
Recall that the linear self interference model is equivalent to

yyy = µµµ(xxx) +WWW (xxx)z̃zz +BBBzzz (36)

where z̃zz, zzz are i.i.d. as N (0, IIIN ),BBB ∈ RN×N , µµµ(xxx) = AAAxxx with
AAA ∈ RN×M , andWWW (xxx) = (IIIN⊗xxxT)CCC withCCC ∈ RMN×N ′ . Let
us assume that BBB = III. (Otherwise, one can whiten yyy to obtain
BBB−1yyy.) We would like to upper-bound C = supPX I(xxx;yyy). To
this end, we follow the duality approach [7] and proceed as

I(xxx;yyy) = h(yyy)− h(yyy |xxx) (37)
= E [− log p(yyy)]− h(yyy |xxx) (38)
= E [− log q(yyy)]−D(p‖q)− h(yyy |xxx) (39)
≤ E [− log q(yyy)]− h(yyy |xxx), (40)

due to the non-negativity of the KL divergence D(p‖q). Here,
p(yyy) is the true pdf of yyy induced by the model and q(yyy) is
an arbitrary pdf in RN . By choosing q(yyy) as the regularized
Gamma distribution [7, Eq.(23)], we can show the following
upper-bound

I(xxx;yyy) ≤ log πN/2 − log Γ(N/2) + log Γ(α)− α logα

+
(N

2
− α

)
E
[
log ‖yyy‖2

]
− h(yyy |xxx)

+α(1 + logE
[
‖yyy‖2

]
), α > 0. (41)

(This bound can be obtained by taking A = III in [7, Eq.(27)].)
Given xxx, the output yyy follows the Gaussian distribution with
mean µµµ(xxx) and covariance matrix III +WWW (xxx)WWW (xxx)T. Thus, the
conditional entropy h(yyy |xxx) can be easily computed as

h(yyy |xxx) =
N

2
log(2πe)

+
1

2
E [log det(III +WWW (xxx)WWW (xxx)T)] , (42)

Let us define

r := min
xxx∈RM ,‖xxx‖=1

rank (WWW (xxx)) . (43)

Note that r ≤ N . We expand the right-hand side of (41) as

I(xxx;yyy)

≤ 1

2
Exxx
[
rEzzz,z̃zz[log ‖yyy‖2]− log det(III +WWW (xxx)WWW (xxx)T)

]
︸ ︷︷ ︸

c1

+
N − r

2
E
[
log ‖yyy‖2

]
︸ ︷︷ ︸

c2

+ α
(
logE

[
‖yyy‖2

]
−E

[
log ‖yyy‖2

]
+1
)
+log Γ(α)−α logα︸ ︷︷ ︸

c3

− log Γ(N/2)− N

2
log(2e). (44)

We proceed to bound the terms c1, c2, and c3.
First, by using Jensen’s inequality, we have that

Ezzz,z̃zz[log ‖yyy‖2]

≤ logEzzz,z̃zz[‖yyy‖2] (45)

= log
(
xxxTAAATAAAxxx+ tr (WWW (xxx)WWW (xxx)T) + tr (III)

)
(46)

= log

(
N + xxxT

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

)
xxx

)
(47)

≤ log

(
N + ‖xxx‖2λmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))
. (48)

Here, in (47), we denote CCC = [CCCT

1 CCC
T

2 . . . CCCT

N ]T and use that
tr (WWW (xxx)WWW (xxx)T) = xxxT

(∑N
i=1CCCiCCC

T

i

)
xxx since

WWW (xxx) = (IIIN ⊗ xxxT)CCC =


xxxTCCC1

xxxTCCC2

...
xxxTCCCN

 ;

(48) follows from [15, Th. 4.2.2-c]. By using (48) and replacing
the expectation over xxx by the supremum, the term c1 is upper-
bounded as

c1

≤ 1

2
sup
xxx∈RM

[
log

(
N+‖xxx‖2λmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))r

− log det(III +WWW (xxx)WWW (xxx)T)

]
(49)

=
1

2
sup
xxx∈RM

[
log

(
N+‖xxx‖2λmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))r

−
N∑
i=1

log λi(III +WWW (xxx)WWW (xxx)T)

]
(50)

≤ 1

2
sup
xxx∈RM

[
log

(
N+‖xxx‖2λmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))r

−
r∑
i=1

log

(
1+‖xxx‖2λi

(
WWW

(
xxx

‖xxx‖

)
WWW

(
xxx

‖xxx‖

)T))]
(51)

=
1

2
sup
xxx∈RM

r∑
i=1

log
N+‖xxx‖2λmax

(
AAATAAA+

∑N
i=1CCCiCCC

T

i

)
1 + ‖xxx‖2λi

(
WWW
(
xxx
‖xxx‖
)
WWW
(
xxx
‖xxx‖
)T) (52)

≤ 1

2
sup
xxx
‖xxx‖

r∑
i=1

log sup
‖xxx‖

N+‖xxx‖2λmax

(
AAATAAA+

∑N
i=1CCCiCCC

T

i

)
1 + ‖xxx‖2λi

(
WWW
(
xxx
‖xxx‖
)
WWW
(
xxx
‖xxx‖
)T) .

(53)

Note that for any xxx0 ∈ RM , ‖xxx0‖ = 1, it holds that

λi (WWW (xxx0)WWW (xxx0)T) ≤ tr (WWW (xxx0)WWW (xxx0)T) (54)

= xxxT

0

(
N∑
i=1

CCCiCCC
T

i

)
xxx0 (55)

≤ ‖xxx0‖2λmax

(
N∑
i=1

CCCiCCC
T

i

)
(56)



≤ λmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

)
. (57)

Thus, the terms inside the log in (53) have the form
supx≥0

N+ax
1+bx with a ≥ b. It can be shown easily that

supx≥0
N+ax
1+bx = max{N, a/b}, where the supremum is

achieved at x = 0 if N ≥ a/b and x = ∞ if N < a/b.
Therefore, the upper-bound of c1 in (53) can be expressed as

c1 ≤
1

2
sup
xxx0∈RM
‖xxx0‖=1

r∑
i=1

log max

N, λmax

(
AAATAAA+

∑N
i=1CCCiCCC

T

i

)
λi (WWW (xxx0)WWW (xxx0)T)

.
(58)

The right-hand side can be numerically evaluated since the
domain of the supremum is bounded.

The term c2 can be bounded using Jensen’s inequality as in
(48) as

c2 ≤
N − r

2
logE

[
‖yyy‖2

]
(59)

≤ N − r
2

log

(
N + E

[
‖xxx‖2

]
λmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))
(60)

≤ N − r
2

log

(
N + Pλmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))
.

(61)

Finally, the term c3 is bounded as

c3 ≤ α
(
logE

[
‖yyy‖2

]
−E

[
log ‖zzz‖2

]
+1
)
+log Γ(α)−α logα

(62)

≤ α log

(
N + Pλmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))
+ αψ(N/2) log(e) + log Γ(α)− α logα, (63)

where the last inequality holds because E
[
log ‖zzz‖2

]
=

ψ(N/2) log(e) + 1 with ψ(·) being Euler’s psi function.
From the bounds of c1, c2, and c3, we deduce that

I(xxx;yyy)

≤ 1

2
sup
xxx0∈RM
‖xxx0‖=1

r∑
i=1

log max

N, λmax

(
AAATAAA+

∑N
i=1CCCiCCC

T

i

)
λi

(
WWW
(
xxx
‖xxx‖
)
WWW
(
xxx
‖xxx‖
)T)


+
N − r

2
log

(
N + Pλmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))

+ inf
α

(
α log

(
N + Pλmax

(
AAATAAA+

N∑
i=1

CCCiCCC
T

i

))

+ αψ(N/2) log(e) + log Γ(α)− α logα

)
− log Γ(N/2)− N

2
log(2e). (64)

Since this bound holds for any input distribution, it is also an

upper bound on the capacity.
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