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Abstract—The high-SNR capacity of the noncoherent MIMO
channel has been derived for the case of independent and
identically distributed (IID) Rayleigh block fading by exploiting
the Gaussianity of the channel matrix. This implies the optimal
degrees of freedom (DoF), i.e., the capacity pre-log factor. Nev-
ertheless, as far as the optimal DoF is concerned, IID Rayleigh
fading is apparently a sufficient but not necessary condition. In
this paper, we show that the optimal DoF for the IID Rayleigh
block fading channel is also the optimal DoF for a more general
class of generic block fading channels, in which the random
channel matrix has finite power and finite differential entropy.
Our main contribution is a novel converse proof based on the
duality approach.

Index Terms—noncoherent communications, MIMO, degrees
of freedom, block fading

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology, consist-
ing in transmitting and/or receiving with multiple antennas, has
been an efficient solution to exploit the extra spatial degrees of
freedom (DoF) in wireless communications. Under the ideal
assumption that the channel matrix is well conditioned and
known to either end of the channel, it was shown that the
capacity of a point-to-point MIMO channel scales linearly with
the number of antennas as C = min {M,N} log SNR +O(1)
in the high signal-to-noise ratio (SNR) regime, where M
and N are the numbers of transmit and receive antennas,
respectively [1], [2]. The DoF, defined as the pre-log of
the capacity at high SNR, is min {M,N} in this case. In
practice, however, the channel matrix varies over time and is
not known a priori. Communication without a priori channel
state information (CSI) is said to be noncoherent.

In this paper, we consider a noncoherent M × N MIMO
channel. Under stationary fast Rayleigh fading, i.e., the channel
changes independently after each channel use, it was shown
that the channel capacity scales double-logarithmically with
the SNR in the single-input single-output (M = N = 1)
case [3]. This result was then generalized to the MIMO case
in [4], where the authors showed that the capacity scales as
C = log log SNR + χ(HHH) + o(1) where HHH is the channel
matrix and χ(HHH) is called the fading number of the channel.
This implies a zero DoF. Remarkably, the Rayleigh fading
assumption was not needed in [4]. Instead, it was broadly
assumed that the channel matrix has finite differential entropy
and finite second moment. We refer to this fading model as
generic fading. Under block fading, i.e., the channel matrix

is assumed to remain constant during each coherence block
of T channel uses and varies independently between blocks,
high-SNR approximations of the capacity have been derived
for the Rayleigh fading case only [5], [6], [7], [8]. The optimal
DoF was shown to be

dopt = M∗
(

1− M∗

T

)
, (1)

with M∗ :=min {M,N, bT/2c}, and can be achieved either by
well-designed space-time modulations [6], [7], [8], or by simple
training-based strategies [9]. The converse in these works was
based on the Rayleigh fading assumption, using either a direct
approximation at high SNR [5], [7] or a duality upper bound
with a well chosen auxiliary output distribution [8].

In this work, we generalize the DoF result of [5], [6], [7],
[8] to the generic fading model. Specifically, we prove that the
DoF given in (1) is also the optimal DoF under generic block
fading. The main technical contribution of this paper lies in the
converse proof. Leveraging the duality upper bound [4], we
carefully choose an auxiliary output distribution with which
we derive a tight DoF upper bound.

The remainder of this paper is organized as follows. We
present the channel model in Section II, and then the main
result and the achievablility in Section III. The converse proof
is given in Section IV. Finally, we conclude the paper with a
future perspective in Section V. The mathematical preliminaries
for our analysis are provided in the appendix.

Notation: For random quantities, we use non-italic letters
with sans-serif fonts, e.g., a scalar x, a vector vvv, and a
matrix MMM. Deterministic quantities are denoted with italic
letters, e.g., a scalar x, a vector vvv, and a matrix MMM . The
Euclidean norm is denoted by ‖vvv‖ and the Frobenius norm
by ‖MMM‖F. The trace, transpose and conjugate transpose of
MMM are denoted tr{MMM}, MMM T and MMMH, respectively. {λi(MMM)}
denote the eigenvalues of MMM in decreasing order. We use
diag (x1, . . . , xN ) to denote the diagonal matrix with diagonal
entries x1, . . . , xN , and H(·), h(·), and D(·‖·) to denote
the entropy, differential entropy, and Kullback-Leibler (KL)
divergence, respectively. Logarithms are in base 2; 1{·} is
the indicator function; log+(x) := max{log(x), 0}; (x)+ :=
max{x, 0}; Γ(x) =

∫∞
0
zx−1e−zdz is the Gamma function;

Γm(a) := πm(m−1)/2
∏m
k=1 Γ(a − k + 1) is the complex

multivariate Gamma function; Iµ,ν :=
∫∞

0
xµ

(1+x2)ν dx (see
Lemma 3 in the appendix).



II. CHANNEL MODEL

We consider a MIMO channel consisting of a transmitter
equipped with M antennas and a receiver with N antennas.
The channel between the transmitter and the receiver is flat and
block fading with coherence time of T channel uses. That
is, the channel matrix HHH ∈ CN×M containing the fading
coefficients from the M transmit antennas to the N receive
antennas remains unchanged during each block of length T
and changes independently between blocks. The realizations of
HHH are unknown to both the transmitter and the receiver. During
a coherence block b, the received signal is

YYY[b] = HHH[b]XXX[b] + ZZZ[b], b = 1, 2, . . . ,

where ZZZ[b] ∈ CN×T is the additive white Gaussian
noise (AWGN) with independent and identically distributed
(IID) NC(0, 1) entries and XXX[b] is the transmitted signal
satisfying the power constraint

1

nb

nb∑
b=1

‖XXX[b]‖2F ≤ PT,

where nb is the number of blocks spanned by a codeword.
The parameter P is referred to as the SNR of the channel.
Hereafter, we omit the block index b whenever confusion is
not likely.

Since the channel is block memoryless, the channel capacity
is given by C(P ) = 1

T max
pXXX: E[‖XXX‖2F]≤PT

I(XXX;YYY) bits per channel

use. Then we say that dopt is the optimal DoF with dopt :=

lim
P→∞

C(P )
logP . We assume that the channel matrix HHH is drawn

from a generic distribution satisfying the following conditions:

h(HHH) > −∞, E
[
‖HHH‖2F

]
<∞.

That is, the channel matrix has finite differential entropy and
finite second moment. This class of fading model includes
as a special case the IID Rayleigh fading model in which HHH
contains IID NC (0, 1) entries considered in [5], [6], [7], [8].

For notational convenience, we define some parameters
related to the channel’s coherence time T , the number of
transmit antennas M , and the number of receive antennas N
as S := min{N,T}, S := max{N,T}, L := min{M,N, T},
and M ′ := min{M,N} for future reference.

III. MAIN RESULT: THE OPTIMAL DOF

The optimal DoF of the noncoherent MIMO generic block
fading channel described above is stated in Theorem 1.

Theorem 1. For the noncoherent M ×N MIMO channel in
generic, flat, and block fading with coherence interval T , if
T = 1, the optimal DoF is zero; otherwise, the optimal DoF
is given by

dopt = M∗
(

1− M∗

T

)
(2)

with M∗ := min{M,N, bT/2c}.

The zero optimal DoF result for T = 1 (fast fading) has been
shown in [4] and is included in Theorem 1 for completeness.

In this case, the channel capacity scales double-logarithmically
with the SNR.

Corollary 1. In the single input and/or single output case
(min{M,N} = 1) or the T = 2 case, the optimal DoF is
dopt = 1− 1

T .

Remark 1. Theorem 1 generalizes the optimal DoF of the
noncoherent IID Rayleigh block fading channel given in [7],
[8]. This results show that the optimal DoF (2) holds even for
non-Rayleigh fading channels as long as the channel matrix
has finite differential entropy and finite power.

For T > 1, the optimal DoF is achieved by using only M∗

antennas and a simple pilot-based scheme: let the transmitter
send pilot symbols in M∗ channel uses of a coherence block,
and send data symbols in the remaining T −M∗ channel uses;
the receiver estimates the channel based on the received pilot
symbols and detects coherently the data symbols based on the
channel estimate. A performance analysis of this pilot-based
scheme following the same lines of [7, Section V], [9] shows
that the DoF (2) is indeed achievable. We present next the
converse proof.

IV. THE CONVERSE PROOF

In this converse proof, we shall make use of the mathematical
preliminaries (Lemmas 1, 2, and 3) in the appendix. The
channel input-output mutual information is expressed as

I(XXX;YYY) = h(YYY)− h(YYY |XXX). (3)

By using Lemma 1 with WWW = [HHH ZZZ] and AAA = [XXX III T ]
T for

each realization XXX of XXX, the entropy h(YYY|XXX) is given by

h(YYY|XXX) = NE
[
log det(III T + XXXHXXX)

]
+ E

[
h(H̆HH)

]
, (4)

where H̆HH contains the first T columns of [HHH ZZZ]UUU[XXX IIIT ]T with
UUU[XXX IIIT ]T being an (M+T )×(M+T ) unitary matrix containing
the left singular values of [XXX III T ]T. In particular, under IID
Rayleigh fading, H̆HH is an N × T Gaussian matrix with IID
NC(0, 1) entries, thus h(H̆HH) = NT log(πe).

To bound h(YYY), we use the duality approach [4] as follows

h(YYY) = E [− log pYYY(YYY)]

= E [− log qYYY(YYY)]−D(pYYY‖qYYY)

≤ E [− log qYYY(YYY)] , (5)

due to the nonnegativity of the KL divergence D(pYYY‖qYYY). Here,
the distribution pYYY is imposed by the input, channel, and noise
distributions, while qYYY is any distribution in CN×T . Note that
a proper choice of qYYY is the key to a tight upper bound. Let
us consider the singular value decomposition (SVD) of YYY:

YYY = UUUΣΣΣVVVH,

where UUU ∈ CN×S and VVV ∈ CT×S are (truncated) unitary
matrices, and ΣΣΣ = diag

(
σ1, . . . , σS

)
contains the singular

values of YYY in decreasing order. To make the SVD unique,
we further assume that the diagonal elements of VVV are real
and nonnegative [8]. Then UUU belongs to the Stiefel manifold



S(CN , S), while VVV belongs to a submanifold S̃(CT , S) of
S(CT , S). The Jacobian of this SVD transformation is given
by [7, App. A]

JS,S(σ1, . . . , σS) =

S∏
i=1

σ
2(S−S)+1
i

S∏
i<j

(σ2
i − σ2

j )2

=

S∏
i=1

σ
2(S−S)+1
i

S∏
i=1

S∏
j=i+1

(σ2
i − σ2

j )2

≤
S∏
i=1

σ
2(S−S)+1
i

S∏
i=1

σ
4(S−i)
i

=

S∏
i=1

σ2T+2N−4i+1
i , (6)

=: ĴS,S(σ1, . . . , σS)

where the inequality is due to the decreasing order of
σ1, . . . , σS . We choose qYYY such that UUU, VVV, and ΣΣΣ are mutually
independent with the following distributions.
• Since the signal power is not captured in the singular vectors,

as far as the DoF is concerned, the choice of distribution
on the manifold for UUU and VVV can be arbitrary as long
as E [− log qUUU(UUU)] and E [− log qVVV(VVV)] are finite. Here, for
a closed-form expression, we let UUU and VVV be uniformly
distributed in the Stiefel manifold S(CN , S) and submanifold
S̃(CT , S), respectively. That is,

qUUU(UUU) =
1

|S(CN , S)|
1
{
UUU ∈ S(CN , S)

}
, (7)

qVVV(VVV ) =
1

|S̃(CT , S)|
1

{
VVV ∈ S̃(CT , S)

}
, (8)

where the volumes of S(CN , S) and S̃(CT , S) are given
by |S(Cn,m)| = 2mπmn

Γm(n) and |S̃(Cn,m)| = |S(Cn,m)|
(2π)m =

πm(n−1)

Γm(n) , respectively [10, Sec. V].
• On the other hand, the choice of qΣΣΣ is crucial in deriving

a tight DoF upper bound. Our choice is made so that,
after taking the Jacobian of the SVD transformation into
account, E [− log qYYY(YYY)] depends on {σ2

i } only through
E
[
log(1 + σ2

i )
]
, which can be straightforwardly upper

bounded in terms of logP . Specifically, we let the singular
values of YYY follow the distribution with the pdf

qσ1,...,σS (σ1, . . . , σS) = β
ĴS,S(σ1, . . . , σS)∏S

i=1(1 + σ2
i )αi

= β

S∏
i=1

σ2T+2N−4i+1
i

(1 + σ2
i )αi

, (9)

where β is a scaling factor. Lemma 3 implies that with 2αi =
(2T +2N−4i+1)+1+ ε, that is, αi = T +N−2i+1+ ε

2 ,

i ∈ [S], for any ε > 0, then
∏S
i=1

σ2T+2N−4i+1
i

(1+σ2
i )αi

is integrable,

i.e., there exists β such that β
∏S
i=1

σ2T+2N−4i+1
i

(1+σ2
i )αi

is a pdf.

Specifically, β is given by β =
∏S
i=1 I

−1
2T+2N−4i+1,αi

.

Having specified qYYY, we now proceed to compute
E [− log qYYY(YYY)] using the change of variables as

E [− log qYYY(YYY)]

= E [− log qUUU,ΣΣΣ,VVV(UUU,ΣΣΣ,VVV)] + E
[
log
(
JS,S(σ1, . . . , σS)

)]
= E [− log qUUU(UUU)] + E [− log qVVV(VVV)]

+ E
[
− log qσ1,...,σS (σ1, . . . , σS)

]
+ E

[
log
(
JS,S(σ1, . . . , σS)

)]
. (10)

Plugging (6), (7), (8), and (9) into (10), we obtain

E [− log qYYY(YYY)] ≤ log |S(CN , S)|+ log |S̃(CT , S)| − log β

+

S∑
i=1

αiE
[
log(1 + σ2

i )
]
. (11)

Substituting the bounds of h(YYY) in (4) and h(YYY |XXX) in (5), (11)
into (3), we have the following bound

I(XXX;YYY)

≤
S∑
i=1

αiE
[
log(1 + σ2

i )
]
−NE

[
log det(III T + XXXHXXX)

]
+ log |S(CN , S)|+ log |S̃(CT , S)| − log β − E

[
h(H̆HH)

]
=

S∑
i=1

(αi −N)E
[
log(1 + σ2

i )
]

︸ ︷︷ ︸
c1

+N

(
S∑
i=1

E
[
log(1 + σ2

i )
]
− E

[
log det(III T + XXXHXXX)

])
︸ ︷︷ ︸

c2

+ log |S(CN , S)|+ log |S̃(CT , S)| − log β

− E
[
h(H̆HH)

]
. (12)

To proceed, we bound c1 and c2. For c2,
E
[
log det(III T + XXXHXXX)

]
is bounded in terms of the singular

values of YYY as follows
S∑
i=1

E
[
log(1 + σ2

i )
]

= E
[
log det(IIIN + YYYYYYH)

]
= E

[
log det(IIIN + HHHXXXXXXHHHHH +HHHXXXZZZH +ZZZXXXHHHHH +ZZZZZZH)

]
≤ E

[
log det

(
IIIN+EZZZ

[
HHHXXXXXXHHHHH +HHHXXXZZZH +ZZZXXXHHHHH +ZZZZZZH

])]
(13)

= E
[
log det((1 + T )IIIN + HHHXXXXXXHHHHH)

]
(14)

= E
[
log det(IIIM + (T + 1)−1XXXXXXHHHHHHHH)

]
+N log(T + 1)

≤
L∑
i=1

E
[
log
(

1 + λi
(
(T + 1)−1XXXXXXHHHHHHHH

))]
+N log(T+1)

(15)

≤
L∑
i=1

E
[
log
(
1+(T+1)−1λi(XXXXXXH)λ1(HHHHHHH)

)]
+N log(T+1)

(16)



≤
L∑
i=1

EXXX

[
log

(
1 + λi(XXXXXXH)

EHHH

[
‖HHH‖2F

]
T + 1

)]
+N log(T+1)

(17)

≤
L∑
i=1

E
[
log
(
1+λi(XXXXXXH)

)]
+log+ E

[
‖HHH‖2F

]
T + 1

+N log(T+1)

(18)

≤
min{M,T}∑

i=1

E
[
log
(
1 + λi(XXXXXXH)

)]
+ log+ E

[
‖HHH‖2F

]
T + 1

+N log(T + 1)

= E
[
log det

(
III T +XXXHXXX

)]
+ log+ E

[
‖HHH‖2F

]
T + 1

+N log(T+1),

where (13) follows from Jensen’s inequality since the log det
function is concave on the set of positive definite matrices;
(14) holds because E [ZZZ] = 0 and E

[
ZZZZZZH

]
= TIIIN ; (15)

holds because the rank of XXXXXXHHHHHHHH is upper bounded by
L := min{M,N, T}; (16) follows from Lemma 2; (17) is
due to λ1(HHHHHHH) ≤ ‖HHH‖2F and Jensen’s inequality; and (18)
follows from

log(1 + ax) ≤ log(max{1, a}+ max{1, a}x)

= log(1 + x) + log+ a,∀x ≥ 0, a ≥ 0.

Therefore,

c2 ≤ N log+ E
[
‖HHH‖2F

]
T + 1

+N2 log(T + 1). (19)

For c1, we use Jensen’s inequality to write

c1 ≤
S∑
i=1

(αi −N)+ log
(
1 + E

[
σ2
i

] )
=

S∑
i=1

(T − 2i+ 1 + ε/2)+ log
(
1 + E

[
σ2
i

] )
, (20)

where we recall that αi = T +N − 2i+ 1 + ε
2 , i ∈ [S]. For

i = 1, . . . , L, we bound E
[
σ2
i

]
as

E
[
σ2
i

]
≤ E

[
tr
(
YYYYYYH

)]
= E

[
tr
(
HHHXXXXXXHHHHH + HHHXXXZZZH + ZZZXXXHHHHH + ZZZZZZH

)]
= E

[
tr
(
XXXXXXHHHHHHHH

)]
+ E

[
tr
(
ZZZZZZH

)]
=

L∑
i=1

E
[
λi(XXXXXXHHHHHHHH)

]
+NT

≤
L∑
i=1

E
[
λi(XXXXXXH)λ1(HHHHHHH)

]
+NT (21)

≤
min{M,T}∑

i=1

E
[
λi(XXXXXXH)

]
E
[
‖HHH‖2F

]
+NT (22)

= E
[
‖XXX‖2F

]
E
[
‖HHH‖2F

]
+NT

≤ PTE
[
‖HHH‖2F

]
+NT,

where (21) follows from Lemma 2, and (22) is due to L ≤
min{M,T} and λ1(HHHHHHH) ≤ ‖HHH‖2F. Thus

log(1 + E
[
σ2
i

]
) ≤ log

(
PTE

[
‖HHH‖2F

]
+NT + 1

)
= log

(
P
(
TE
[
‖HHH‖2F

]
+
NT + 1

P

))
= logP+log T+logE

[
‖HHH‖2F

]
+o(1) (23)

as P →∞. In the high-SNR regime, since the noise variance is
bounded, the main contributor to the power of YYY is HHHXXX, which
has rank at most L. Thus, it is intuitive that the S−L smallest
singular values of YYY carry information about the noise only and
are bounded. To see this, we follow the footsteps in [7, p. 377]
as follows. Since σL, . . . , σS are the S − L smallest singular
values of YYY, for any (N −L)×N truncated unitary matrix QQQ,
we have

∑S
i=L+1 σ

2
i ≤ tr

(
QQQYYYYYYHQQQH

)
. We write ZZZ = ZZZ1 +ZZZ2,

where ZZZ1 is the projection of ZZZ onto the subspace spanned
by the row vectors of HHHXXX, and ZZZ2 contains the perpendicular
components. Since the subspace Span (HHHXXX) is independent of
ZZZ, the total power in ZZZ2 is E

[
tr(ZZZ2ZZZH

2)
]

= N(T − L). Since
HHHXXX + ZZZ1 has rank L, we can find a (N − L)×N truncated
unitary matrix QQQ0 such that QQQ0(HHHXXX + ZZZ1) = 0. Note that QQQ0

is independent of ZZZ2, thus

E

[
S∑

i=L+1

σ2
i

]
≤ E

[
tr(QQQ0YYYYYYHQQQH

0)
]

= E
[
tr(QQQ0ZZZ2ZZZH

2QQQ
H

0)
]

= (N − L)(T − L).

This implies that

E
[
σ2
i

]
≤ (N − L)(T − L), i = L+ 1, . . . , S. (24)

Plugging (23) and (24) into (20), we get

c1 ≤
L∑
i=1

(T − 2i+ 1 + ε/2)+
(

logP + log
(
TE
[
‖HHH‖2F

] ))
+

S∑
i=L+1

(T − 2i+ 1 + ε/2)+ log
(
1 + (N − L)(T − L)

)
+ o(1). (25)

Substituting (19) and (25) into (12), after some manipulations,
we obtain that for any ε > 0,

I(XXX;YYY) ≤
L∑
i=1

(T − 2i+ 1 + ε/2)+ logP + c0 + o(1) (26)

as P →∞, where

c0 =

L∑
i=1

(T − 2i+ 1 + ε/2)+ log
(
TE
[
‖HHH‖2F

] )
+

S∑
i=L+1

(T − 2i+ 1 + ε/2)+ log
(
1 + (N − L)(T − L)

)
+ log |S(CN , S)|+ log |S̃(CT , S)| − log β − E

[
h(H̆HH)

]
+N log+ E

[
‖HHH‖2F

]
T + 1

+N2 log(T + 1).



We see that the high-SNR capacity pre-log is
∑L
i=1(T − 2i+

1 + ε/2)+. Letting ε arbitrarily close to zero (but remaining
positive), this pre-log converges to

∑L
i=1(T − 2i + 1)+ =∑min{L,bT/2c}

i=1 (T−2i+1)=
∑M∗

i=1(T−2i+1)=M∗(T−M∗),
where the first equality holds because T −2i+1 < 0 whenever
i > bT/2c. Thus the optimal DoF is upper-bounded by M∗

(
1−

M∗

T

)
. Furthermore, as ε→ 0,

c0 → S + S(N + T − 1) log π − log(ΓS(N)ΓS(T ))

+

S∑
i=1

log I2T+2N−4i+1,αi +N2 log(T + 1)− E
[
h(H̆HH)

]
+N log+ E

[
‖HHH‖2F

]
T + 1

+M∗(T −M∗) log
(
TE
[
‖HHH‖2F

] )
+ 1{M ′ ≤ bT/2c}

(
bT/2c(T − bT/2c)−M ′(T −M ′)

)
× log

(
1 + (N −M ′)(T −M ′)

)
.

V. CONCLUSION AND PERSPECTIVE

In this paper, we have derived the optimal DoF for the
noncoherent MIMO generic block-fading channel. Our results
generalize the known optimal DoF for the Rayleigh fading
case to a wider class of fading in which the channel matrix
has finite differential entropy and finite second moment.

In the future, it would be interesting, as in the IID Rayleigh
block fading case [7], [8], to characterize the constant term
after the logarithmic term in the capacity formula.1 Note that
even for IID Rayleigh fading, no high-SNR approximation
(up to a vanishing term) of the channel capacity has been
found for the case 1 < T < 2 min{M,N}. To this end, the
escape-to-infinity property [4], [11] would be useful. It allows
one to assume without loss of generality that the high-SNR
capacity-achieving input distribution has no mass in a disk
around the origin, whose radius can be made arbitrarily large.

Our novel converse proof can be used for other problems,
such as characterizing the optimal DoF region for the noncoher-
ent MIMO multiple-access channel (MAC), which is not known
even for the IID Rayleigh block fading case. For the two-user
single-input multiple-output (SIMO) MAC in generic block
fading, we have found the optimal DoF region in [12], but a
generalization to the MIMO MAC was not obvious. The main
challenge is to deal with inter-user interference which becomes
an equivalent colored noise while decoding the signal of a
user. This can be taken into account in the choice of auxiliary
output distribution following the approach in the current paper.

APPENDIX
MATHEMATICAL PRELIMINARIES

Lemma 1. Let AAA = UUUΣΣΣVVV ∈ Cm×t have full column rank
(UUU ∈ Cm×m), and WWW ∈ Cn×m be a random matrix such that
h(WWW) > −∞ and E

[
‖WWW‖2F

]
<∞. Then we have

h(WWWAAA) = n log det(AAAHAAA) + h(WWW′),

1In our analysis, the term c0 in (26) would be a loose upper bound on the
constant term in the channel capacity since the terms I2T+2N−4i+1,αi—
although they do not scale with the power—become very large as ε→ 0.

where WWW′ contains the first t columns of WWWUUU . Furthermore,
h(WWW′) is finite, i.e., −∞ < h(WWW′) <∞.

Proof. See [12, Appendix A-1].

Lemma 2. IfAAA andBBB are n×n Hermitian positive semidefinite
matrices, then

λi(AAA)λn(BBB) ≤ λi(AAABBB) ≤ λi(AAA)λ1(BBB), i ∈ [n],

where {λi(MMM)} denote the eigenvalues of a matrix MMM in
decreasing order.

Proof. The result follows immediately by applying [13, Theo-
rem 3] and [13, Theorem 4] with k = 1 therein.

Lemma 3. The function f(x) = xµ

(1+x2)ν , x ≥ 0 is integrable
for any µ ≥ 1 and 2ν > µ+ 1.

Proof. Since f(x) is a nonnegative function, we have∫∞
0
f(x) dx ≤

∫∞
0
g(x) dx if f(x) ≤ g(x),∀x ≥ 0. Let

ν = µ+1
2 + ε with ε > 0, we have xµ

(1+x2)ν = xµ

(1+x2)
µ+1
2

+ε
is a

decreasing function in µ for any x ≥ 0. Thus xµ

(1+x2)ν ≤
x

(1+x2)1+ε , x ≥ 0, ∀µ ≥ 1. Therefore,
∫∞

0
xµ

(1+x2)ν dx ≤∫∞
0

x
(1+x2)1+ε dx = 1

2ε <∞, ∀ε > 0.

We denote Iµ,ν :=
∫∞

0
xµ

(1+x2)ν dx. Note that Iµ,ν →∞ as
2ν − µ− 1→ 0.
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