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Abstract—We consider the joint constellation design problem
for noncoherent multiple-input multiple-output multiple-access
channels. By analyzing the noncoherent maximum-likelihood
detection error, we propose novel design criteria so as to minimize
the error probability. For any given set of constellation sizes, the
proposed metrics can be optimized over the set of signal matrices.
Based on these criteria, we propose a simple and efficient
construction consisting in partitioning a single-user constellation.
Numerical results show that our proposed metrics are meaningful,
and can be used as objectives to generate constellations through
numerical optimization that perform better, for the same trans-
mission rate and power constraint, than a common pilot-based
scheme and the constellations optimized with existing metrics.

I. INTRODUCTION

In multiple-input multiple-output (MIMO) communications,
it is usually assumed that the channel state information (CSI)
is known or estimated (typically using pilots and/or feedback),
and then used for precoding at the transmitter and/or detection
at the receiver. This is known as the coherent approach. On the
other hand, in the noncoherent approach, the transmission and
reception are designed without using the a priori knowledge
of the CSI [1], [2], [3]. This paper studies the latter approach
for the MIMO block-fading multiple-access channel (MAC),
i.e., the channel is assumed to remain unchanged during each
coherence block of length T and varies between blocks.

In the single-user case with isotropic Rayleigh fading, a
noncoherent approach, so-called unitary space-time modulation
(USTM), is to transmit T ×M isotropically distributed and
truncated unitary signal matrices, where M is the number of
transmit antennas. Information is carried by the position of the
signal matrix subspace in the Grassmann manifold G(CT ,M),
defined as the space of M -dimensional subspaces in CT . This
approach was shown to be within a vanishing gap from the high-
SNR capacity if T ≥N+min{M,N} [1], [2], and a constant
gap if 2M≤T ≤M+N [3], where N is the number of receive
antennas. There has been extensive research on the design of
noncoherent constellations as a set of points on the Grassmann
manifold, with a common criterion of maximizing the minimum
pairwise chordal distance between the symbols [4].

In the multi-user case, a straightforward extension of the
single-user coherent approach is to divide the coherence block
into a training part in which orthogonal pilot sequences are sent
to estimate the CSI for each user, and a data transmission part in
which different users communicate in a nonorthogonal fashion.
Although this approach achieves the optimal degree-of-freedom
(DoF) region in the two-user SIMO MAC [5], its optimality

in terms of achievable rate and detection error probability
remains unclear. An amplitude-based encoding scheme was
proposed in [6], but the accompanying energy detector relies
on a large number of receive antennas so that the average
received power concentrates. Also with massive receive antenna
array, some differential encoding schemes were proposed based
on phase shift keying (PSK) [7] or quadrature amplitude
modulation (QAM) [8]. In [9], we proposed a precoding-
based multiple-access scheme allowing efficient detection, but
offering no optimality guarantee.

In this work, we consider a K-user MIMO MAC with
Rayleigh block fading with coherence time T ≥ 2 where user k
is equipped with Mk antennas and the receiver with N antennas.
We aim to derive simple and effective joint constellation design
criteria so as to minimize the joint maximum likelihood (ML)
symbol detection error. If the users could cooperate, the system
could be seen as a

(∑K
k=1Mk

)
× N MIMO point-to-point

channel. Thus the joint constellation can be treated as a
Grassmannian constellation on G

(
CT ,

∑K
k=1Mk

)
, which leads

to a design criterion mimicking the max-min chordal distance
criterion. The error probability of the ML detector for the
MIMO MAC was derived in [10]. With cooperating users,
this analysis led to a design criterion similar to that for a
single-user MIMO channel proposed in [11, Eq.(8)]. However,
for non-cooperating users (as we consider here), using the
same criterion would be suboptimal. The joint ML pairwise
error exponent can be shown to converge to the Kullback-
Leibler (KL) divergence between the output distributions
conditioned on either of the transmitted symbols. Based on this
analysis, a criterion consisting in maximizing the minimum KL
divergence was proposed in [12], but was used only to optimize
the transmit powers and the sub-constellation assignment.

In this paper, we analyze the worst-case pairwise error
probability and introduce new constellation design metrics.
The first proposed metric is the minimum expected pairwise
log-likelihood ratio (PLLR) over the joint constellation. This co-
incides with the minimum KL divergence metric in the massive
MIMO regime. From the dominant term of the expected PLLR
at high SNR, we obtain further simplified metrics. We also
propose an alternating optimization consisting in iteratively
optimizing one user at a time to simplify the optimization.
For any given set of constellation sizes, the proposed metrics
can be optimized over the set of signal matrices. Based on
our metrics, we propose a simple construction consisting
in partitioning a single-user constellation. Assuming unitary



space-time modulation, we numerically optimize the metrics to
generate joint constellations, and compare with a pilot-based
constellation and constellations optimized with existing metrics,
including the one in [11]. Numerical results show that our
proposed metrics are meaningful and effective, and the resulting
constellations outperform the aforementioned baselines.

The remainder of the paper is organized as follows. In Sec. II,
we present the system model and formulate the problem. In
Sec. III, we analyze the detection error probability and derive
the design metrics, based on which we propose a partitioning-
based constructions in Sec. IV. We present the numerical results
in Sec. V and conclude the paper in Sec. VI. The proofs can
be found in the extended version [13].

Notation: Random quantities are denoted with non-italic
letters with sans-serif fonts, e.g., a scalar x, a vector vvv, and a
matrix MMM. Deterministic quantities are denoted with italic letters,
e.g., a scalar x, a vector vvv, and a matrix MMM . The Euclidean
norm is denoted by ‖ · ‖ and the Frobenius norm by ‖ · ‖F. The
trace, transpose, conjugate, and conjugate transpose of MMM are
respectively tr (MMM), MMM T,MMM∗, and MMMH. [n] := {1, 2, . . . , n}.
1{·} is the indicator function.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MIMO MAC consisting of a receiver equipped
with N antennas and K users, user k with Mk antennas,
k ∈ [K]. The channel is assumed to be flat and block
fading with equal-length and synchronous (across the users)
coherence intervals of length T ≥ 2. That is, the channel
matrix HHHk ∈ CN×Mk of user k remains constant within each
coherence block of T channel uses and changes between blocks.
Furthermore, the distribution of HHHk is assumed to be known, but
its realizations are unknown to both the users and the receiver.
We consider independent and identically distributed (i.i.d.)
Rayleigh fading, namely, the rows of HHH:=[HHH1 HHH2 . . . HHHK ]
are independent and follow CN

(
0, IIIMtot

)
where Mtot :=∑K

k=1Mk.1 Within a coherence block t, each user k sends a
signal matrix symbol XXXk ∈ CT×Mk , and the receiver observes

YYY[t] =

K∑
k=1

XXXk[t]HHHT

k[t] +ZZZ[t], t = 1, 2, . . . (1)

where the additive noise ZZZ ∈ CT×N has i.i.d. CN (0, 1)
entries independent of {HHHk}. We consider the power constraint
1
n

∑n
t=1 ‖XXXk[t]‖2F ≤ PT, k ∈ [K] where n is the number of

blocks spanned by a codeword. Thus, P is also an upper bound
of the per-user SNR at each receive antenna.

We assume that XXXk takes value from a finite constellation
Xk of fixed size |Xk| = 2RkT with equally likely symbols,
where Rk (bits/channel use) is the transmission rate. To satisfy
the power constraint, we assume that 1

|Xk|
∑
XXXk∈Xk

‖XXXk‖2F =:

PkT, k ∈ [K], and maxk Pk=P . Let us focus on one block,
omit the block index, and rewrite (1) as

YYY = [XXX1 XXX2 . . . XXXK ][HHH1 HHH2 . . . HHHK ]T +ZZZ = XXXHHHT +ZZZ,

where the concatenated signal matrix XXX := [XXX1 XXX2 . . . XXXK ]

1Note that if the users experience different path losses, an outer power-
loading algorithm could be used to manage the path loss.

takes value from X :=
{

[XXX1 XXX2 . . .XXXK ] : XXXk ∈ Xk
}

=∏K
k=1 Xk. Our goal is to derive the desirable properties of the

set tuple (X1, . . . ,XK) for a given rate tuple (R1, . . . , RK) to
achieve low symbol detection error probability.

The likelihood function pYYY|XXX is given by

pYYY|XXX(YYY |XXX) =
exp(−tr(YYY H(IIIT +XXXXXXH)−1YYY ))

πNTdetN (IIIT +XXXXXXH)
. (2)

Therefore, given the received symbol YYY = YYY , the joint-user
ML symbol detector is

Ξ(YYY ) = arg max
XXX∈X

(
− tr

(
(IIIT +XXXXXXH)−1YYY YYY H

)
−N ln det(IIIT +XXXXXXH)

)
. (3)

We aim to design X so as to minimize the ML detection error
Pe(X ) = P (Ξ(YYY) 6= XXX), i.e.,

X ∗ = arg max
X

Pe(X ).

Since pYYY|XXX(YYY |XXX) depends on XXX only through XXXXXXH, the
following proposition is straightforward.

Proposition 1 (Identifiability condition). For Pe(X ) to vanish
at high SNR, the joint constellation X must satisfy XXXXXXH 6=
XXX ′XXX ′

H
for any pair of distinct symbols XXX and XXX ′ in X .

In the next section, we analyze the error probability and
derive more specific design criteria.

III. CONSTELLATION DESIGN CRITERIA

With XXX uniformly distributed in X , Pe(X ) can be written as

Pe(X ) =
1

|X |
∑
XXX∈X

P (Ξ(YYY) 6= XXX|XXX = XXX) . (4)

We denote the pairwise error event as {XXX → XXX ′} :=
{pYYY|XXX(YYY|XXX) ≤ pYYY|XXX(YYY|XXX ′)|XXX = XXX}. Since the ML detection
error event is the union of the pairwise error events, after some
simple manipulations, we have the following bounds onPe(X ):

1

|X |
max

XXX 6=XXX′∈X
P(XXX→XXX ′)≤Pe(X )≤(|X |−1) max

XXX 6=XXX′∈X
P(XXX→XXX ′).

We see that for a given constellation size |X |, Pe(X ) vanishes
if and only if the worst-case pairwise error probability (PEP),

max
XXX 6=XXX′∈X

P(XXX →XXX ′), vanishes. Therefore, our goal from now

on is to minimize the worst-case PEP. Let us rewrite the
PEP as P(XXX →XXX ′) = P

(
L(XXX →XXX ′) ≤ 0

)
with the PLLR

L(XXX→XXX ′) :=ln
pYYY|XXX(YYY|XXX)

pYYY|XXX(YYY|XXX′) . Using (2), we obtain

L(XXX →XXX ′) = N ln
det
(
IIIT +XXX ′XXX ′

H)
det
(
IIIT +XXXXXXH

)
− tr

((
(IIIT +XXXXXXH)−1 − (IIIT +XXX ′XXX ′

H
)−1
)
YYYYYYH

)
. (5)

Although a closed-form expression of the PEP can be derived
following [10, Prop. 1], it does not bring clear insights into
the constellation design. A high-SNR asymptotic expression of
the PEP was given in [10, Prop. 3], but is also hard to exploit.
An alternative approach is to treat the joint constellation as
a constellation of an Mtot×N MIMO point-to-point channel,



and adopt the single-user max-min chordal distance criterion
X ∗ = arg max

X
min

XXX 6=XXX′∈X
tr
(
III − XXXHXXX′XXX′HXXX

‖XXX‖2F‖XXX
′‖2F

)
, or equivalently,

X ∗ = arg min
X

max
XXX 6=XXX′∈X

tr
(
XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
. (6)

Another criterion inspired by the single-user criterion proposed
in [11, Eq.(8)] is

X ∗ = arg min
X

∑
XXX 6=XXX′∈X

det−N
(
III − XXXHXXX′XXX′HXXX

‖XXX‖2F‖XXX
′‖2F

)
. (7)

Let us denote m1(X ) := maxXXX 6=XXX′∈X tr
(
XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
and

m2(X ) :=ln
∑
XXX 6=XXX′∈X det−N

(
III−XXXHXXX′XXX′HXXX
‖XXX‖2F‖XXX

′‖2F

)
, and refer to

(6) and (7) respectively as Min-m1 and Min-m2. Next, we
present our approach and derive new design criteria.

A. Design Criteria
We resort to the following bound on the PEP

P
(
L(XXX→XXX ′)≤0

)
≤

Var
[
L(XXX→XXX ′)

]
Var
[
L(XXX→XXX ′)

]
+E
[
L(XXX→XXX ′)

]2 (8)

which follows from Cantelli’s inequality.2 Note that the

upper bound decreases when
E[L(XXX→XXX′)]

2

Var[L(XXX→XXX′)] increases. We
choose to relax the problem into maximizing the expected

PLLR E
[
L(XXX → XXX ′)

]
. Although maximizing

E[L(XXX→XXX′)]
2

Var[L(XXX→XXX′)]

and maximizing E
[
L(XXX → XXX ′)

]
are equivalent only when

Var
[
L(XXX→XXX ′)

]
is constant over different symbol pairs, the

relaxation makes the problem tractable.
We further justify our choice by pointing out the connection

to the following hypothesis testing problem. Let us consider
two hypotheses: H0 : {yyyi}Ni=1 ∼ CN (0, IIIT + XXXXXXH) and
H1 : {yyyi}Ni=1 ∼ CN

(
0, IIIT + XXX ′XXX ′

H)
where {yyyi}Ni=1 are

realizations of N columns of YYY. Then, the PEP P(XXX →XXX ′) can
be seen as the type-1 error probability of the optimal likelihood

ratio test. From (8) and the fact that
E[L(XXX→XXX′)]

2

Var[L(XXX→XXX′)] → ∞ as
N →∞, we have that P(XXX →XXX ′)→ 0 as N →∞ for any
constellation satisfying the identifiability condition in Prop. 1.
(A proof is given in [13, Appendix C].) Switching the symbols’
roles, we deduce that P(XXX ′ →XXX) ≤ ε ∈ (0, 1/2) for N large
enough. Then, it follows from the Chernoff-Stein Lemma that

lim
N→∞

1
N lnP(XXX →XXX ′)

= −D
(
CN (0, IIIT +XXXXXXH)‖CN

(
0, IIIT +XXX ′XXX ′

H))
= −E

[
L(XXX→XXX ′)

]
,

whereD(·‖·) is the KL divergence. Thus, maximizing E
[
L(XXX→

XXX ′)
]

maximizes the pairwise error exponent when N→∞.
Therefore, letting emin(X ) := 1

N min
XXX 6=XXX′∈X

E
[
L(XXX → XXX ′)

]
,

we consider the following design criterion and refer to it as
Max-emin:

X ∗ = arg max
X

emin(X ) (9)

2Cantelli’s inequality states that P(x− µ ≤ λ) ≤ σ2

σ2+λ2 for a real-valued
random variable x with mean µ and variance σ2, and λ < 0. Applying this
with x = L(XXX →XXX′) and λ = −E

[
L(XXX→XXX′)

]
, we obtain (8).

where it follows from (5) and E[YYYYYYH] = N
(
IIIT +XXXXXXH) that

E
[
L(XXX→XXX ′)

]
= N ln

det(IIIT +XXX ′XXX ′
H
)

det
(
IIIT +XXXXXXH

) −N
+Ntr

(
(III+XXX ′XXX ′

H
)−1
)
+Ntr

(
(IIIT +XXX ′XXX ′

H
)−1XXXXXXH

)
. (10)

Lemma 1. Let XXX and XXX ′ be s.t. ‖XXX‖2F = Θ(P ) and ‖XXX ′‖2F =
Θ(P ) as P → ∞. We have tr

(
(IIIT + XXX ′XXX ′

H
)−1
)

= O(1);

ln det(IIIT+XXX′XXX′H)

det(IIIT+XXXXXXH)
= O(1) if Span(XXX) = Span(XXX ′) and

Θ(lnP ) otherwise. Furthermore, tr
(
(IIIT +XXX ′XXX ′

H
)−1XXXXXXH

)
=

O(1) if Span(XXX) = Span(XXX ′) and Θ(P ) otherwise.

Proof. See [13, Appendix D].
We see that d(XXX → XXX ′) := tr

(
(IIIT +XXX ′XXX ′

H
)−1XXXXXXH

)
is

the only term in (10) that can scale up linearly with P . Letting
dmin(X ) := min

XXX 6=XXX′∈X
d(XXX → XXX ′), we have the following

design criterion, referred to as Max-dmin,
X ∗ = arg max

X
dmin(X ). (11)

Hereafter, we assume for simplicity that all users have the
same number of antennas, i.e. M1 = · · · = MK = M , although
the general case follows in a straightforward manner.

B. The Single-User Case
In the single-user case with M transmit antennas, it is

known that USTM is optimal, or near optimal, at the high
SNR regime [2], [3]. We consider this approach and let
XXXHXXX = PT

M IIIM ,∀XXX ∈ X . It follows that d(XXX → XXX ′) =

PT
(

1−αP,T,M ‖XXX
′HXXX‖2F

(PT )2

)
, where αP,T,M :=

(
1
PT + 1

M

)−1
.

Therefore, the design criterion (11) is equivalent to X =
arg min

X
max

XXX 6=XXX′∈X
‖XXX ′HXXX‖2F. This coincides with the commonly

used max-min pairwise chordal distance criterion [4].

C. The K-User Case
In the K-user case, we have the following proposition.

Proposition 2. It holds that
min
k∈[K]

dk(X ) ≤ dmin(X ) ≤ min
k∈[K]

dk(X ) + (K − 1)M, (12)

where dk(X ) := minXXXk 6=XXX′
k
∈Xk

XXXj∈Xj ,j 6=k

tr
(
XXXH

k

(
IIIT + XXX ′kXXX

′
k
H

+∑
j 6=kXXXjXXX

H

j

)−1
XXXk

)
.

Proof. See [13, Appendix E].
Proposition 2 says that dmin(X ) is within a constant gap

to mink∈[K] dk(X ), and thus dmin(X ) scales linearly with P
when P is large if and only if mink∈[K] dk(X ) does so. Based
on this observation, we propose the following design criterion

X ∗ = arg max
X

min
k∈[K]

dk(X ). (13)

To simplify the constellation optimization, we propose an
alternating optimization approach as follows. First {Xk}Kk=1

are initialized. Then, for k ∈ [K], we iteratively optimize Xk
by X ∗k = arg maxXk

m(X ) for fixed {Xl}l 6=k in a round robin
manner, where m(X ) is the considered metric. At each iteration,
it has fewer variables to optimize than directly solving (9),
(11), or (13). However, the solution may not converge, and
when it does, it is not guaranteed to converge to the optimum.



IV. CONSTELLATION DESIGN BASED ON PARTITIONING

In this section, we consider the symmetrical power case
Pk = P, k ∈ [K]. This is a reasonable assumption if the rates
are symmetric. To reduce the solution space, we make the
suboptimal assumption that the individual constellations Xk
follow from USTM, i.e., they contain scaled-truncated-unitary-
matrix symbols. From a practical perspective, this is desirable
since the constellation is oblivious to the presence of the other
users and USTM is high-SNR optimal, or near optimal, for the
single-user channel. Nevertheless, there must be constraints
between the symbols of different users. For instance, if the
constellations are s.t. XXX1 = XXX2 can occur, then dk(X ) is
upper-bounded by a constant for any k and any P . This can
be developed in a formal way as follows. By removing the
terms inside the inverse in dk(X ), we obtain an upper bound:

dk(X ) ≤ min
{

min
XXXk 6=XXX′

k∈Xk

tr
(
XXXH

k(IIIT +XXX ′kXXX
′
k
H
)−1XXXk

)
,

min
XXXk∈Xk,XXXl∈Xl,l 6=k

tr
(
XXXH

k(IIIT +XXX lXXX
H

l )
−1XXXk

)}
. (14)

For dk(X ) to be large, the upper bound must be large. This is
made precise in the next proposition.

Proposition 3 (Necessary condition). Let {Xk}Kk=1 be s.t.
XXXH

kXXXk = PT
M IIIM , ∀XXXk ∈ Xk, k ∈ [K]. If the following

lower bound on the d-values holds for some c ∈ [0, 1/M ]

min
k∈[K]

dk(X ) ≥ PT (1− αP,T,M c) ,

where αP,T,M :=
(

1
PT + 1

M

)−1
, then we must have

1
(PT )2 max

{
max

XXXk 6=XXX′
k∈Xk,k∈[K]

∥∥XXX ′kH
XXXk

∥∥2
F
,

max
XXXk∈Xk,XXXl∈Xl,k 6=l∈[K]

‖XXXH

kXXX l‖2F
}
≤ c. (15)

Proof. The proof follows the same steps as in the single-user
case, applying to the upper bound (14).

The above proposition shows that symbol pairs from different
users should fulfill similar distance criteria as symbol pairs
from the same user when it comes to identifiability conditions.
However, it is unclear whether (15) alone is enough to guarantee
a large value of dmin(X ). In the following, we shall show that
these conditions are indeed sufficient if c is small.

Proposition 4 (Sufficient condition). Let {Xk}Kk=1 be s.t.
XXXH

kXXXk = PT
M IIIM , ∀XXXk ∈ Xk, k ∈ [K]. If

1
(PT )2 max

{
max

XXXk 6=XXX′
k∈Xk,k∈[K]

∥∥XXX ′kH
XXXk

∥∥2
F
,

max
XXXk∈Xk,XXXl∈Xl,k 6=l∈[K]

‖XXXH

kXXX l‖2F
}
≤ c

for some c ∈ [0, 1/M ], then we have

min
k∈[K]

dk(X ) ≥ PT
(

1−K
(

1
PT + 1

M −
√

K(K−1)c
21{K=2}

)−1
c
)
.

Proof. See [13, Appendix F].

The two propositions above motivate the following simplified
design criterion

X ∗ = arg min
X

max
{

max
XXXk 6=XXX′

k∈Xk,k∈[K]

∥∥XXX ′kH
XXXk

∥∥2
F
,

max
XXXk∈Xk,XXXl∈Xl,k 6=l∈[K]

‖XXXH

kXXX l‖2F
}
. (16)

Based on (16), we propose a simple construction as fol-
lows. Let XSU be a single-user constellation and let c :=

1
(PT )2 max

XXX 6=XXX′∈XSU

‖XXX ′HXXX‖2F ∈
[
0, 1

M

]
. We can generate

{Xk}Kk=1 by partitioning XSU into K disjoint subsets. Then,
from (12) and Proposition 4, we can guarantee

dmin(X ) ≥ PT
(

1−K
(

1
PT + 1

M −
√

K(K−1)c
21{K=2}

)−1
c
)
. (17)

With such a construction, the joint constellation design prob-
lem becomes essentially an individual constellation design
problem. A random partition suffices to guarantee (17), al-
though one can smartly partition the set XSU to improve
over (17). The optimal partition problem is equivalent to
a min-max graph partitioning. Note that for the right-hand
side of (17) to scale linearly with P , we must have that

c <
[(

1
KPT + 1

KM + K−1
4K21{K=2}

) 1
2 −

√
K−1

4K21{K=2}

]2
, which

limits the size of the mother constellation XSU.

V. NUMERICAL RESULTS

In this section, we consider the single transmit antenna
case (Mk = 1, k ∈ [K]) and assume USTM, i.e., Xk ={√

PkTxxx
(i)
k

}|Xk|
i=1

with each xxx(i)k being a unit-norm vector. We
will compare our design in this paper with our precoding design
in [9] (with Precoder Type II therein), and the constellations
optimized with the criteria Min-m1 (6) and Min-m2 (7) in
terms of joint-ML symbol error rate (SER) (4). We also
consider a pilot-based joint constellation corresponding to the
scenario where K users transmit orthogonal pilots, followed by
spatially multiplexed QAM symbols. The receiver uses either
an ML detector (3) or a linear minimum-mean-square-error
(MMSE) detector consisting of MMSE channel estimation,
MMSE equalization, and component-wise QAM demapper.

Numerical Optimization: We solve numerically Max-emin

(9), Max-dmin (11) and the alternating optimization for given
powers {Pk}. In general, we want to solve the manifold-
constrained optimization max

X=X1×···×XK

min
XXX 6=XXX′∈X

f(XXX,XXX ′),

where f(XXX,XXX ′) is customized according to the considered
criterion. Note that the objective function is not smooth
because of the min. To smooth it, we use the approximation
maxi xi ≈ ε ln

∑
i exp(xi/ε) with a small ε and obtain

minX=X1×···×XK
ε ln
∑
XXX 6=XXX′∈X exp

(
− f(XXX,XXX′)

ε

)
. (For other

smoothing techniques, see, e.g., [14].) We compute the Rie-
mannian gradient of the new objective function and resort to
the Manopt toolbox [15] to solve the optimization by conjugate
gradient descent on the manifold. The criteria Min-m1 and
Min-m2 are solved numerically in a similar manner.

We show next some numerical results for the two-user case
with the symmetrical rate R1 =R2 =B/T and equal power
P1 = P2 = P . (Thus P is identified with the SNR.) We



optimize the joint constellation at P = 30 dB, even when
the performance is benchmarked at other SNR values. In all
figures, the legends representing our schemes are in bold face.

First, in Fig. 1, we plot the joint SER (4) of the considered
schemes for T = 5, B = 5, and N = 4. We observe that the
constellations optimized with our metrics emin(X ) (9) and
dmin(X ) (11) achieve similar performance and are the best
among the schemes with the same rate pair. The performance
of the alternatively optimized constellation is slightly inferior
and better than the pilot-based scheme. The partitioning design
(with random partition) and the precoding design have similar
performance. The constellations optimized with the Min-m1

and Min-m2 criteria, especially the latter, perform worse than
that with Max-emin and Max-dmin.
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Fig. 1. The joint SER of the proposed constellations compared to the baselines
for T = 5, K = 2, B = 5, and N = 4.

To assess the design metrics, we show the values of our
metrics dmin(X ) and emin(X ), and the other metrics m1(X )
and m2(X ) for these constellations in the same setting in
Fig. 2. In Fig. 2(a), dmin(X ) is very close to emin(X ) for
SNR ≥ 20 dB. The constellations with low joint-ML SER in
Fig. 1 exhibit a large value of these metrics. This confirms that
our proposed metrics are meaningful for constellation design
and evaluation. From Fig. 2(b) and Fig. 2(c), we see that the
relative order of the constellations in terms of the value of
m1(X ) and m2(X ) is unrevealing about the SER performance
in Fig. 1. In particular, although the constellation optimized
with Min-m1 (6) also achieves a low joint-ML SER (and a high
value of our metrics), this is not true for other constellations.
For example, the partitioning design has a low m1-value but
a high SER; the pilot-based constellation has a much lower
m2-value than the Max-emin design, but has a higher SER.

VI. CONCLUSION

This work addresses the joint constellation design for
noncoherent MIMO MAC in Rayleigh block fading. By
analyzing the joint detection error, we have derived closed-form
metrics which are effective for designing joint constellations
that achieve a low error rate. In this work, we have focused on
the optimality with respect to the joint maximum-likelihood
detector, which has high complexity in general. It would be
interesting, as in the single-user case, to construct structured
joint constellations that allow for low-complexity detection.
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