
HAL Id: hal-03420090
https://centralesupelec.hal.science/hal-03420090

Submitted on 8 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two-User MIMO Broadcast Channel with Transmit
Correlation Diversity: Achievable Rate Regions

Khac-Hoang Ngo, Fan Zhang, Sheng Yang, Aria Nosratinia

To cite this version:
Khac-Hoang Ngo, Fan Zhang, Sheng Yang, Aria Nosratinia. Two-User MIMO Broadcast Channel with
Transmit Correlation Diversity: Achievable Rate Regions. 2021 IEEE Information Theory Workshop
(ITW2021), Oct 2021, Kanazawa (virtual), Japan. pp.1-6, �10.1109/ITW48936.2021.9611406�. �hal-
03420090�

https://centralesupelec.hal.science/hal-03420090
https://hal.archives-ouvertes.fr


Two-User MIMO Broadcast Channel with Transmit
Correlation Diversity: Achievable Rate Regions

Khac-Hoang Ngo∗, Fan Zhang†, Sheng Yang‡, Aria Nosratinia†
∗Department of Electrical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden

†Department of Electrical and Computer Engineering, University of Texas at Dallas, Dallas, TX 75080, USA
‡Laboratory of Signals and Systems, CentraleSupélec, 91190 Gif-sur-Yvette, France

Emails: ngok@chalmers.se, {fxz131330, aria}@utdallas.edu, sheng.yang@centralesupelec.fr

Abstract—In a multiple-input multiple-output (MIMO) broad-
cast channel (BC), the difference in spatial transmit correlation
matrices of different users is called transmit correlation diversity.
Recently, several works have extended this concept beyond its
original scope, to include channels whose transmit correlation
matrices have non-overlapping eigenspaces. In contrast to earlier
analyses of overlapping eigenspaces that were mostly described
in terms of degrees-of-freedom, this work presents achievable
rate regions. These achievable regions are derived by rate-
splitting, product superposition, or a combination thereof. Our
rate expressions make explicit the contribution of the common
parts and individual (non-overlapping) parts of the correlation
eigenspaces toward the achievable rate region. As a by-product,
a result of Hassibi and Hochwald on MIMO channel training is
extended to channels with spatial correlation.

I. INTRODUCTION

In practical wireless channels, the fading coefficients between
different antennas are often correlated. This correlation arises
from the propagation environment causing the received signal
gains to be larger in some spatial directions, and also from the
spatially dependent patterns of the antennas [1]. The effect of
spatial correlation on the capacity of multiple-input multiple-
output (MIMO) links has been a subject of long-standing inter-
est [2], [3]. It was shown in [4] that correlation is detrimental
to the sum rate scaling with various transmission schemes,
assuming that all users experience identical correlation. In
practice, however, the users may have different correlation
matrices because they are typically not co-located [5], [6].

The difference between the spatial correlation observed by
different users in the system is called transmit correlation diver-
sity. It was originally conceived for transmit spatial correlation
matrices that have mutually exclusive, i.e., nonoverlapping,
eigenspaces. Under this condition, a joint spatial division
multiplexing (JSDM) transmission scheme was proposed
in [7], [8] that reduces the overhead needed for channel
estimation. Nonoverlapping correlation eigenspaces may occur
in, e.g., severely rank-deficient MIMO links. However, in many
other scenarios, transmit correlation matrices have partially
overlapping eigenspaces, motivating to understand and exploit
transmit correlation diversity in this more general setting.

This paper investigates a two-user MIMO broadcast channel
(BC) with partially overlapping correlation eigenspaces. We
consider the noncoherent setting in which the correlation ma-
trices are deterministic and known, but the channel realizations
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are not known a priori to either the transmitter or users. For
this channel, we have previously proposed some achievable
degrees of freedom (DoF), i.e., rate pre-log, regions in [9]–[11].
In this paper, we make further progress by characterizing some
achievable rate regions.

Section III begins with an achievable rate region with
orthogonal transmission, e.g., time-division multiple access
(TDMA), which was shown to be DoF-optimal in the absence
of spatial correlation [12]. As a by-product, we find the
rate achieved with pilot-based schemes for the single-user
channel, thus generalize the results in [13] to correlated
fading. Section IV derives rate regions achieved with different
superposition techniques. We flexibly employ rate splitting,
product superposition, and a composition thereof to effectively
create multiple data streams in both common and private parts
of the correlation eigenspaces. Numerical results in Section V
show that these superposition techniques significantly enlarge
the achievable rate region upon orthogonal transmission. We
note that most of our results do not require the fading to be
Rayleigh. Due to the space limit, we only provide sketches of
proofs of the theorems. For the full proofs, please refer to [14].

Notation: For random quantities, we use non-italic letters
with sans serif fonts, e.g., a scalar x, a vector vvv, and a matrix
MMM. Deterministic quantities are denoted with italic letters, e.g.,
a scalar x, a vector vvv, and a matrix MMM ; MMM [i:j] denotes the
sub-matrix containing columns from i to j of MMM . All rates are
measured in bits/channel use.

II. SYSTEM MODEL

We consider a MIMO BC in which a transmitter equipped
with M antennas transmits to two users, user k with Nk
antennas, k ∈ {1, 2}. The channel between the transmitter
and user k is flat and block fading with equal-length and
synchronous coherence interval (across the users) of T channel
uses. That is, the channel matrix HHHk∈CNk×M remains constant
during each length-T block and changes independently between
blocks. Let XXX[b]∈CM×T be the transmitted signal during a
coherence block b. The received signal matrix at user k is

YYYk[b] = HHHk[b]XXX[b] +ZZZk[b], k ∈ {1, 2}, b = 1, 2, . . . ,

where ZZZk[b]∈CNk×T is the additive noise with independent
and identically distributed (i.i.d.) CN (0, 1) entries. The input is
subject to the power constraint 1

ν

∑ν
b=1 ‖XXX[b]‖2F≤PT, where

ν is the number of blocks spanned by a codeword. Thus P is



the signal-to-noise ratio (SNR) of the channel. Hereafter, we
omit the block index b whenever confusion is not likely.

Channel Spatial Correlation: We assume that the channel
is spatially correlated at the transmitter’s side according to the
Kronecker model, thus the channel matrices are expressed as

HHHk = H̆HHkRRR
1
2

k , k ∈ {1, 2},

where RRRk = 1
Nk

E [HHHH

kHHHk] ∈ CM×M , tr (RRRk) = M , is the
transmit correlation matrix1 of user k with rank rk, and
H̆HHk∈CNk×M is drawn from a generic distribution satisfying
h(H̆HHk)>−∞,E

[
H̆HH

H

kH̆HHk
]
=NkIIIM , k ∈ {1, 2}. We consider the

eigendecomposition RRRk = UUUkΣΣΣkUUU
H

k where ΣΣΣk is a rk × rk
diagonal matrix containing rk nonzero eigenvalues of RRRk, and
UUUk ∈ CM×rk contains the corresponding eigenvectors of RRRk.
The rows of HHHk belong to Span(UUUk), so-called the eigenspace
of user k. The matrix HHHk can be expanded as

HHHk = H̆HHkUUUkΣΣΣ
1
2

kUUU
H

k = GGGkΣΣΣ
1
2

kUUU
H

k, k ∈ {1, 2},

where GGGk := H̆HHkUUUk is equivalently drawn from a generic
distribution satisfying h(GGGk) > −∞, E [GGGH

kGGGk] = NkIIIrk .
We assume that RRRk is known to both the transmitter and user

k, but the realizations of HHHk are not known a priori at any node.
User k might attempt to estimate HHHk using known pilot symbols
inserted in XXX. Hereafter, we assume that rk ≤ min{Nk, T},
k ∈ {1, 2}, and, without loss of generality, r1 ≥ r2.

III. ACHIEVABLE RATES WITH ORTHOGONAL TRANSMISSION

A. The Single-User Case
We first consider the single-user case and, for simplicity,

drop the user’s index. The received signal is YYY = HHHXXX+ZZZ where
the assumptions for XXX, ZZZ, and HHH are as before. In particular,
HHH is block fading with coherence interval T and has rank-r
correlation matrix RRR = UUUΣΣΣUUUH.

Theorem 1. For the single-user spatially correlated channel,
the rate R is achievable with a pilot-based scheme, where
1) if the transmitter does not know RRR:

R=
(

1−M
T

)
E
[
log det

(
IIIN+

PδPτĤHHĤHH
H

Pδtr
(
(ΣΣΣ−1+PτIIIr)

−1)
+M

)]
,

(1)
where the rows of ĤHH ∈ CN×M are i.i.d. according to
CN
(
0,RRR

(
IIIM +PτRRR

)−1
RRR
)
, and (Pτ , Pδ) satisfies PτM +

Pδ(T −M) ≤ PT ;
2) if the transmitter knows RRR and uses orthogonal pilots:

R=
(
1− r

T

)
E
[
log det

(
IIIN+

PδPτΩ̂ΩΩΩ̂ΩΩ
H

Pδtr
((
R̄RR
−1

+PτIIIr
)−1)

+r

)]
,

(2)
where the rows of Ω̂ΩΩ ∈ CN×r are i.i.d. according to
CN
(
0, R̄RR(IIIr + PτR̄RR)−1R̄RR

)
, R̄RR := VVV HRRRVVV for a truncated

unitary matrix VVV ∈ CM×r such that (s.t.) Span (VVV ) =
Span (UUU), and (Pτ , Pδ) satisfies Pτr + Pδ(T − r) ≤ PT .

1Our results can be extended to the case where the users experience different
large-scale fading, e.g., path loss and shadowing, by considering different
values of tr (RRRk).

Allowing non-orthogonal pilots improves the rate to

R=
(
1− r

T

)
E
[
log det

(
IIIN+

PδΩ̂ΩΩΩ̂ΩΩ
H

rPδ
(
Pτ+ 1

r tr
(
R̄RR
−1))−1

+r

)]
,

(3)
where the rows of Ω̂ΩΩ ∈ CN×r are i.i.d. according to
CN
(
0, R̄RR−

(
Pτ + 1

r tr
(
R̄RR
−1))−1

IIIr
)
.

Remark 1. The optimal power allocation maximizing the rate
in (3) is characterized by Pτ = (1−α)PT

r and Pδ = αPT
T−r with

α = 1
2 if T = 2r and α = b −

√
b(b− a) if T > 2r, where

a = 1+
tr(R̄RR−1)
PT − r2

PT tr(R̄RR)
and b = T−r

T−2r

(
1+

tr(R̄RR−1)
PT

)
.

Corollary 1. If RRR = IIIM , the achievable rate is

R =

(
1− M

T

)
E
[
log det

(
IIIN +

PδPτ
M(1 + Pδ + Pτ )

HHHHHHH

)]
,

where HHH ∈ CN×M is the uncorrelated channel matrix. This
coincides with [13, Eq.(21)].

Proof of Theorem 1. We present here a sketch of the proof.
For the full proof, see [14, Appendix A]. The proof follows by
extending [13] to correlated generic fading. First, if the transmit-
ter does not know RRR, let it transmit XXX =

[√
Pτ
MXXXτ

√
Pδ
MXXXδ

]
,

where XXXτ ∈ CM×M is an orthogonal pilot matrix and
XXXδ ∈ CM×(T−M) is a data matrix with i.i.d. CN (0, 1)
entries. The receiver performs minimum-mean-square-error
(MMSE) channel estimation, thus the residual estimation error
is uncorrelated with the input. By evoking the argument
that the worst-case uncorrelated noise is Gaussian [13], we
obtain (1). Second, by exploiting RRR, the transmitter can project
the signal onto the eigenspace of RRR using precoder VVV . The
transmitted signal is XXX = VVV

[√
Pτ
r XXXτ

√
Pδ
r XXXδ

]
with pilot

matrix XXXτ ∈Cr×r and Gaussian data matrix XXXδ ∈Cr×(T−r).
Again, using MMSE channel estimation and the worst-case
uncorrelated noise argument, we obtain the achievable rate (2)
with orthogonal pilots and (3) with optimized pilots.

B. The Two-User Case with Orthogonal Transmission

We consider a baseline scheme based on orthogonal trans-
mission, e.g., TDMA, that activates only one user per time-
frequency resource unit. From Theorem 1, the following
corollary demonstrates an achievable rate with this strategy.

Corollary 2. For the two-user BC, by activating only user k ∈
{1, 2}, user k can achieve a rate Rk given by R in Theorem 1
with RRR = RRRk, r = rk, N = Nk, while the other user achieves
zero rate. The convex hull of (0, 0), (R1, 0), and (0, R2) is an
achievable rate region with orthogonal transmission.

IV. ACHIEVABLE RATES WITH RATE SPLITTING AND
SUPERPOSITION

For any nonnegative integers s1, s2, s0 satisfying s0 ≤ r0,
s1 ≤ r1 − r0 and s2 ≤ r2 − r0, one can find eigendirections
VVV 0 ∈ CM×s0 ,VVV 1 ∈ CM×s1 ,VVV 2 ∈ CM×s2 that are aligned



with a part of the common and noncommon sections of the
two channel eigenspaces s.t.2

Span (VVV 0) ⊂
(

Span (UUU1) ∩ Span (UUU2)
)
,

Span (VVV 1) ⊂
(

Span (UUU1) ∩ Span (UUU2)
⊥ )
,

Span (VVV 2) ⊂
(

Span (UUU2) ∩ Span (UUU1)
⊥ )
.

In our achievable schemes, we will use VVV 0, VVV 1 and VVV 2 as
precoders to create multiple data streams in both the common
and private sections of the correlation eigenspaces. By tuning
the parameters s1, s2, and s0, we explore the trade-off between
the number of data dimensions (indicating the pilot overhead)
and the amount of channel uses for data transmission within
each section. For k ∈ {1, 2}, let us denote
• ΦΦΦk0 :=UUUH

kVVV 0, ΦΦΦkk :=UUUH

kVVV k, ΦΦΦk :=[ΦΦΦk0 ΦΦΦkk]=UUUH

k[VVV 0 VVV k];
• R̄RRk0 := ΦΦΦH

kΣΣΣkΦΦΦk0, R̄RRkk := ΦΦΦH

kΣΣΣkΦΦΦkk, R̄RR := [R̄RRk0 R̄RRkk] =
ΦΦΦH

kΣΣΣkΦΦΦk;
• R̆RRk0 := ΦΦΦH

k0ΣΣΣkΦΦΦk0, R̆RRkk := ΦΦΦH

kkΣΣΣkΦΦΦkk.

A. Rate Splitting

With rate splitting, we let the transmitter transmit

XXX = VVV 0XXX0 + VVV 1XXX1 + VVV 2XXX2,

where XXX0, XXX1, and XXX2 are independent and satisfy the power
constraint E [tr (XXXHXXX)]≤PT. Thanks to the precoders, XXXk is
seen by user k only, while XXX0 is seen by both users. Specifically,

YYYk = GGGkΣΣΣ
1
2

kΦΦΦk0XXX0 +GGGkΣΣΣ
1
2

kΦΦΦkkXXXk +ZZZk, k ∈ {1, 2},

where the equivalent channels GGGkΣΣΣ
1
2

kΦΦΦk0 ∈ CNk×s0 and
GGGkΣΣΣ

1
2

kΦΦΦkk ∈ CNk×sk are correlated and unknown. The
received signal at user k is similar to the output of a two-
user multiple-access channel (MAC) with (s0, sk) equivalent
transmit antennas and Nk receive antennas. The two MACs
share a common signal XXX0. From the capacity region of the
MACs [16], we know that the rate pairs (R0, R

p
1) and (R0, R

p
2)

are simultaneously achievable for the MAC 1 and MAC 2,
respectively, if the rates R0 ≥ 0, Rp

1 ≥ 0, Rp
2 ≥ 0 satisfy

R0 ≤ 1
T I(YYY1;XXX0|XXX1),

Rp
1 ≤ 1

T I(YYY1;XXX1|XXX0),

R0 +Rp
1 ≤ 1

T I(YYY1;XXX0,XXX1),

R0 ≤ 1
T I(YYY2;XXX0|XXX2),

Rp
2 ≤ 1

T I(YYY2;XXX2|XXX0),

R0 +Rp
1 ≤ 1

T I(YYY2;XXX0,XXX2).

Then for the BC, user 1 achieves rate Rp
1 with private signal XXX1,

user 2 achieves rate Rp
2 with XXX2, and both users can achieve

rate R0 with common signal XXX0. Let R0k be user k’s share in
R0, then the BC can achieve the rate pair (R1, R2) = (R01 +
Rp

1, R02 +Rp2). Replacing R0 = R01 +R02, Rp
1 = R1 −R01,

and Rp
2 = R2 − R02 in (4) and applying Fourier-Motzkin

elimination, we obtain the following achievable rate region.

2VVV 0can be calculated from UUU1and UUU2using, e.g., Zassenhaus algorithm [15].
VVV 1 and VVV 2 can be found similarly from UUU1 and null (UUU2), and null (UUU1)
and UUU2, respectively, where null (UUUk) is s.t. [UUUk null (UUUk)] is unitary.

Lemma 1. With rate splitting, the two-user BC can achieve
any rate pair (R1, R2) satisfying
R1 ≤ 1

T min{I(YYY1;XXX1,XXX0), I(YYY1;XXX1|XXX0)+I(YYY2;XXX0|XXX2)},
R2 ≤ 1

T min{I(YYY2;XXX2,XXX0), I(YYY2;XXX2|XXX0)+I(YYY1;XXX0|XXX1)},
R1+R2 ≤ 1

T min{I(YYY1;XXX1|XXX0) + I(YYY2;XXX2,XXX0),

I(YYY1;XXX1,XXX0) + I(YYY2;XXX2|XXX0)},

for input distributions pXXX0
, pXXX1

, and pXXX2
satisfying the power

constraint E
[
‖XXX0‖2F + ‖XXX1‖2F + ‖XXX2‖2F

]
≤ PT.

We consider the input distribution characterized by

XXX0 =

[√
P0τIIIs0 0s0×s1

√
P0δ

s0
SSS0

]
,

XXX1 =

[
0s1×s0

√
P1τIIIs1

√
P1δ

s1
SSS1

]
,

XXX2 =

[
0s2×s0

√
P2τIIIs2

√
P2δ

s2
SSS2

]
,

where the data matrices SSS0 ∈ Cs0×(T−s1−s0), SSS1 ∈
Cs1×(T−s1−s0), and SSS2∈Cs2×(T−s2−s0) have i.i.d. CN (0, 1)
entries. This signaling corresponds to a pilot-based scheme
where pilots are sent simultaneously in the mutually exclusive
parts of the correlation eigenspaces. With this input distribution,
we obtain the following achievable rate region.

Theorem 2. With rate splitting, the two-user BC with r1 ≥ r2

can achieve any rate pair (R1, R2) satisfying
R1 ≤ min{R′1, R

p
1 +R02},

R2 ≤ min{R′2, R
p
2 +R01},

R1 +R2 ≤ min{Rp
1 +R′2, R

′
1 +Rp

2}.
(6)

Here,

R′1 =

(
1− s1 + s0

T

)
E
[

log det

(
IIIN1

+
Ω̄ΩΩ1R̄RR1PPP 1δR̄RR1Ω̄ΩΩ

H

1

tr
((
R̄RR
−1
1 +PPP 1τ

)−1
PPP 1δ

)
+ 1

)]
,

Rp
1 =

(
1− s1 + s0

T

)
E
[

log det

(
IIIN1

+
P1δΩ̄ΩΩ1R̄RR11R̄RR

H

11Ω̄ΩΩ
H

1

s1

[
tr
((
R̄RR
−1
1 +PPP 1τ

)−1
PPP 1δ

)
+ 1
])],

R01 =

(
1− s1 + s0

T

)
E
[

log det

(
IIIN1

+
P0δΩ̄ΩΩ1R̄RR10R̄RR

H

10Ω̄ΩΩ
H

1

s0

[
tr
((
R̄RR
−1
1 +PPP 1τ

)−1
PPP 1δ

)
+ 1
])],

where PPP 1τ :=

[
P0τIIIs0 0

0 P1τIIIs1

]
,PPP 1δ :=

[P0δ

s0
IIIs0 0

0 P1δ

s1
IIIs1

]
,

and the rows of Ω̄ΩΩ1 ∈ CN1×(s0+s1) are i.i.d. according to
CN
(
0,PPP

1
2
1τ

(
PPP

1
2
1τR̄RR1PPP

1
2
1τ + IIIs1+s0

)−1
PPP

1
2
1τ

)
; furthermore,

R′2 =
s1 − s2

T
E
[

log det

(
IIIN2



+
P2δΩ̄ΩΩ2R̄RR22R̄RR

H

22Ω̄ΩΩ
H

2

P2δtr
(
R̄RR

H

22(R̄RR2 + R̄RR2PPP 2τR̄RR2)−1R̄RR22

)
+ s2

)]
+

(
1− s1 + s0

T

)
E
[

log det

(
IIIN2

+
Ω̄ΩΩ2R̄RR2PPP 2δR̄RR2Ω̄ΩΩ

H

2

tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δ

)
+ 1

)]
,

Rp
2 =

s1 − s2

T
E
[

log det

(
IIIN2

+
P2δΩ̄ΩΩ2R̄RR2R̄RR22R̄RR

H

22R̄RR2Ω̄ΩΩ
H

2

P2δtr
(
R̄RR

H

22(R̄RR2 + R̄RR2PPP 2τR̄RR2)−1R̄RR22

)
+ s2

)]
+

(
1− s1 + s0

T

)
E
[

log det

(
IIIN2

+
P2δΩ̄ΩΩ2R̄RR2R̄RR22R̄RR

H

22R̄RR2Ω̄ΩΩ
H

2

s2

[
tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δ

)
+ 1
])],

R02 =

(
1− s1 + s0

T

)
E
[

log det

(
IIIN2

+
P0δΩ̄ΩΩ2R̄RR2R̄RR20R̄RR

H

20R̄RR2Ω̄ΩΩ
H

2

s0

[
tr
((
R̄RR
−1
2 +PPP 2τ

)−1
PPP 2δ

)
+ 1
])],

where PPP 2τ :=

[
P0τIIIs0 0

0 P2τIIIs2

]
,PPP 2δ :=

[P0δ

s0
IIIs0 0

0 P2δ

s2
IIIs2

]
,

and the rows of Ω̄ΩΩ2 ∈ CN2×(s0+s2) are i.i.d. according
to CN

(
0,PPP

1
2
2τ

(
PPP

1
2
2τR̄RR2PPP

1
2
2τ + IIIs2+s0

)−1
PPP

1
2
2τ

)
. The integers

s0, s1, s2 satisfy s0 ≤ r0, s1 ≤ r1 − r0, and s2 ≤ r2 − r0.
The power components Piτ , Piδ , i ∈ {0, 1, 2}, satisfy

P0τs0 +P0δ(T−s1−s0)+
∑2
i=1

[
Piτsi+Piδ(T−si−s0)

]
≤PT.

(7)
The convex hull of (6) over all feasible values of s0, s1, s2 and
all possible power allocations satisfying (7) is an achievable
rate region for the two-user BC.

Proof. From Lemma 1, the achievable rate region is fully
characterized by the mutual information terms I(YYYk;XXXk,XXX0),
I(YYYk;XXXk |XXX0), and I(YYYk;XXX0 |XXXk), k ∈ {1, 2}. With the help
of the pilots, user k first MMSE-estimates the equivalent
channel GGGkΣΣΣ

1
2

kΦΦΦk by Ω̄ΩΩkR̄RRk and then decodes the data in
SSS0 and SSSk. To analyze the conditional mutual information
I(YYYk;XXXk |XXX0), and I(YYYk;XXX0 |XXXk), consider that the receiver
removes partly the interference caused by XXX0 and XXXk, respec-
tively, using the knowledge of these terms and the channel
estimate, before data decoding. Finally, by using repeatedly the
worst-case uncorrelated noise argument in a similar manner as
in the single-user case, we can show that I(YYYk;XXXk,XXX0) ≥ R′k,
I(YYYk;XXXk |XXX0) ≥ Rp

k, and I(YYYk;XXX0 |XXXk) ≥ R0k, k ∈ {1, 2}.
Substituting these bounds into Lemma 1, we obtain (6). The
full proof can be found in [14, Appendix B].

B. Product Superposition

With product superposition, we transmit

XXX = [VVV 0 VVV 2]XXX1XXX2,

with

XXX1 =

[√
ρ1τIIIs0

√
ρ1δ
s0

SSS1

0
√
ρ1aIIIs2

]
, (8)

XXX2 =

[√
P2τIIIs2+s0

√
P2δ

s2 + s0
SSS2

]
,

where the data matrices SSS1 ∈ Cs0×s2 and SSS2 ∈
C(s2+s0)×(T−s2−s0) have i.i.d. CN (0, 1) entries. In this way,
the signal XXX1 for user 1 is embedded in the pilot of user 2, thus
user 1 communicates in the first s2 + s0 channel uses only. On
the other hand, XXX1 constitutes the equivalent channel of user 2.
This input distribution leads to the following achievable rate.

Theorem 3. With product superposition, the two-user BC can
achieve any rate pair (R1, R2) of the form

R1 =
s2

T
E

[
log det

(
IIIN1

+
ρ1δP2τΩ̂ΩΩ10Ω̂ΩΩ

H

10

ρ1δP2τ tr
((
R̆RR
−1

k0 + ρ1τP2τIIIs0
)−1)

+ s0

)]
,

where the rows of Ω̂ΩΩ10 ∈ CN1×s0 are i.i.d. according to
CN
(
0, ρ1τP2τR̆RR10

(
ρ1τP2τR̆RRk0 + IIIs0

)−1
R̆RRk0

)
; and

R2 =

(
1− s2 + s0

T

)
E
[

log det

(
IIIN2

+
P2δĜGG2eĜGG

H

2e

P2δtr
((
RRR−1

2e + P2τIIIs2+s0

)−1)
+ s2 + s0

)]
where ĜGG2e ∈ CN2×(s2+s0) has distribution imposed by

ĜGG2e =
√
P2τ

(√
P2τGGG2ΣΣΣ

1
2
2 ΦΦΦ2XXX1 +ZZZ2[1:s2+s0]

)
× (P2τRRR2e + IIIs2+s0)

−1
RRR2e. (9)

The integers s0 and s2 satisfy s0 ≤ r0 and s2 ≤ r2 − r0. The
power constraint is(
s0ρ1τ + s2(ρ1δ+ρ1a)

)(
P2τ+

T−s2−s0

s2 + s0
P2δ

)
≤PT. (10)

In (9), XXX1 is given by (8) and RRR2e is defined as

RRR2e :=

[
ρ1τR̆RR20

√
ρ1τρ1aΦΦΦ

H
20ΣΣΣ2ΦΦΦ22√

ρ1τρ1aΦΦΦ
H
22ΣΣΣ2ΦΦΦ20

ρ1δ
s0

tr
(
R̆RR20

)
IIIs2 + ρ1aR̆RR22

]
.

By swapping the users’ roles, a similar rate pair is achievable.
The convex hull of the origin and these rate pairs over all
feasible values of s0, s1, s2 and all possible power allocations
(10) is an achievable rate region for the two-user BC.

Proof. In the first s2 + s0 channel users, user 1 MMSE-
estimates the equivalent channel ΩΩΩ10 := GGG1ΣΣΣ

1
2
1 ΦΦΦ10 by Ω̂ΩΩ10

and then decode the data in SSS1. User 2 first MMSE-estimates
the equivalent channel GGG2e := GGG2ΣΣΣ

1
2
2 ΦΦΦ2XXX1 by ĜGG2e and then

decode the data in SSS2. The achievable rates I(YYYk;XXXk) are lower
bounded by Rk, k ∈ {1, 2}, using the worst-case uncorrelated
noise as before. For the full proof, see [14, Appendix C].



C. Hybrid Superposition

We consider a composite scheme that involves both rate
splitting and product superposition. The transmitted signal is

XXX = [VVV 0 VVV 1] XXX′2XXX1 + VVV 2XXX2

with

XXX1 =

[√
P1τIIIs1+s0

√
P1δ

s1 + s0
SSS1

]
,

XXX2 =

[
0s2×s0

√
P2τIIIs2

√
P2δ

s2
SSS2

]
,

XXX′2 =

[√
ρ2τIIIs0

[
0s0×s2

√
ρ2δ
s0

SSS′2

]
0

√
ρ2aIIIs1

]
,

where the data matrices SSS1 ∈ C(s1+s0)×(T−s1−s0), SSS2 ∈
Cs2×(T−s2−s0), and SSS′2 ∈ Cs0×(s1−s2) have i.i.d. CN (0, 1)
entries. In this way, user 1 communicates in its full eigenspace.
A part (XXX′2) of user 2’s signal is embedded in the pilot of user1,
and the remaining part XXX2 is sent in the private eigenspace
of user 2. With hybrid superposition, we obtain an achievable
rate region reported in [14, Theorem 7]. The expressions are
omitted here due to the space limit.

Remark 2. Hybrid superposition utilizes both rate splitting and
product superposition but is not a generalization, in the sense
that the results of pure rate splitting and product superposition
cannot be recovered from the hybrid scheme.

V. NUMERICAL RESULTS

We assume Rayleigh fading, i.e., GGGk has independent
CN (0, 1) entries, and generate the correlation matrices RRRk =
UUUkΣΣΣkUUU

H

k, k ∈ {1, 2}, as follows:
• The eigenvalues in ΣΣΣk are drawn from the joint distribution

of the nonzero eigenvalues of a Wishart matrix BBBBBBH where
BBB is a M × rk matrix with independent CN (0, 1) entries,
and normalized so that tr (ΣΣΣk) = M . This is suggested by
the maximum-entropy channel modeling approach [17].

• The eigenvectors UUUk are generated as UUUk = ÛUUkΞΞΞk, where
ÛUU1 and ÛUU2 are drawn respectively by selecting randomly
r1 and r2 columns of a random unitary matrix UUU which is
uniformly distributed in the space of M ×M unitary matrix,
and the rotation matrix ΞΞΞk is drawn uniformly from the
space of rk × rk unitary matrix.
In Fig. 1, we plot the rate regions for the BC achieved with

the considered schemes in a setting of T = 24, M = 16,
N1 = N2 = 12, and (r1, r2, r0) ∈ {(9, 7, 2), (10, 6, 4)}, at
SNR P = 30 dB. We observe that the rate region of TDMA
while transmitting in the channel eigenspace Span (UUUk) is
much larger than that while transmitting in full space CM . This
is because the former scheme spends less time (rk channel uses)
for channel estimation than the latter scheme (M channel uses),
while both schemes essentially communicate through the same
effective channel. The rate region can be largely improved with
rate splitting and superposition. Rate splitting achieves a large
region with respect to other schemes, especially when the ranks
of the two eigenspaces are relatively similar (as r1 = 9, r2 = 7

(a) r1 = 9, r2 = 7, r0 = 2

(b) r1 = 10, r2 = 6, r0 = 4

Fig. 1. The rate regions of various schemes for the spatially correlated BC
with T = 24, N1 = N2 = 12, M = 16, and at SNR P = 30 dB.

in Fig. 1(a)). The improvement by product superposition is more
pronounced when the rank difference between two eigenspaces
is more significant (as r1 = 10, r2 = 6 in Fig. 1(b)) since
the gain achieved by product superposition come from the
nonoverlapping part of the eigenspaces.

VI. CONCLUSION

We study the two-user noncoherent MIMO BC with spatial
correlation eigenspaces that partially overlap. We derive some
achievable rate regions with pilot-based signaling together
with rate splitting, product superposition, and a composition
thereof. These schemes exploit effectively both the common
and mutually exclusive parts of the correlation eigenspaces, thus
provide methods to make use of transmit correlation diversity
using only statistical channel knowledge. A next step is to find
outer bounds on the rate region.
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