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Abstract—We present a general framework for the control
of a Direct Current (DC) microgrid with star topology (a
common DC bus) consisting of renewable sources of energy,
loads and storage devices connected via step-up and step-down
DC/DC converters. The control objective is guaranteeing voltage
stability in the DC microgrid while delivering power to the
loads and extracting energy efficiently from renewable sources.
To verify grid voltage regulation among a number of devices
via current sharing, we use a Lyapunov-based Input-to-State
Stability (ISS) analysis. We consider three control scenarios:
distributed, partially distributed and decentralized according to
the amount of information available to the controllers.

Index Terms—DC microgrid, Voltage regulation, Current shar-
ing, Nonlinear Control, Lyapunov methods, Large-signal stabil-
ity analysis, Input-to-State Stability, Backstepping, Renewables,
Storage devices, DC/DC converter

I. INTRODUCTION

Direct Current (DC) microgrids have attracted significant
interest because of their advantages over Alternate Current
(AC) grids (see [1], [2]) where renewable energy sources and
DC loads (such as LED lighting) are present. DC grids consist
of i) renewable energy sources (renewables), in particular
photo-voltaic (PV) devices, ii) Hybrid Energy Storage Systems
(HESSs) consisting of slow and fast storage devices (batteries
or super-capacitors), and iii) loads such as LEDs and electric
vehicles that operate in DC. Fast and slow storage devices
are usually integrated with the renewables to ensure power
availability under any circumstances. Slow storage devices,
such as batteries and fuel cells, are used to provide energy
when renewables are not available, while fast storage devices
such as super-capacitors and flywheels are used to compensate
power transient variations in power production or consumption
(see [3], [4], [5]). To reduce losses due to high currents and to
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add redundancy to the system, multiple slow and fast storage
devices are commonly used.

To exchange power in a reliable way, DC grid voltage
stability must be guaranteed under adverse circumstances (see
[6], [2], [7], [8], [9], [10]). The storage device system is
usually controlled in a master-slave or droop control configu-
ration, according to the number of devices that are devoted to
voltage stabilization, as described in [10]. Responsibilities are
allocated according to the available information. The rigorous
analysis of voltage stabilization is an open research problem
(see [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21]). Current sharing stability results [22], [23], [24] are
important in this respect.

In this paper, we analyze the stability of voltage and current
dynamics involved in the microgrid. We assume that energy
and power levels are decided by higher level controllers (see
[10], [25]) and are given as set-points that satisfy power
balance [7], [8], [9]. We analyze the short-term stability of
the microgrid with respect to the set-points and references
chosen to guarantee long-term stability [7], [8]. Further, we
introduce a constructive modular stability analysis for a DC
microgrid, where sources, loads and slow storage devices act
as perturbations on a shared DC voltage bus and fast storage
devices are used to stabilize voltage. We obtain this result by
using nonlinear control techniques such as backstepping (see
[26], [27]), dynamic feedback linearization (see [28], [29]) and
Input-to-State Stability (ISS) (see [30], [31], [32], [33]). In
our stability analysis, we consider a scenario where complete
information about the system is available and one where only
partial information is provided.

We extend the analysis of a DC microgrid with a single
super-capacitor introduced in [4] and [18]. The master-slave
distributed nonlinear control technique presented in [4] is
modified into a droop-like current sharing one, which is
obtained from an ISS Lyapunov function (see [31], [34], [35],
[36], [37]) with respect to a reference signal playing the role of
a (fictitious) input [38]. The novelty of our results as compared
to contributions on current sharing for DC microgrids is the
use of a droop-like approach that is closer to well-known
control techniques for power systems. We use modularity to
facilitate the extension of this approach to the case where the
microgrid includes any number of devices.

We verify the stability of customized DC microgrids with
a star topology that include devices with non-minimum phase
for DC bus voltage regulation, such as step-up converters (see
[39]). This case has not been considered in the literature (see
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[16], [22], [24], [40]) even if it is the solution of choice, given
that it can use less expensive storage devices. Also in this
case, we investigate the cases of complete and partial knowl-
edge of the system by the control subsystem. The resulting
Lyapunov-based control laws allow current (and consequently
power) sharing by the different devices with the same goal
of stabilizing the grid while considering nonlinearities and
different communication topologies. The literature considers
mostly linear techniques with distributed communication (see
[41]). We show that our control laws are less complex and
consequently easier to implement with respect to previous
results (see [4]). We generalise specific solutions adopted for
particular microgrids (see [18], [38], [42]). Finally, we dis-
tribute tasks to the microgrid devices for steady-state stability
using a Lyapunov ISS approach.

The paper is organized as follows. Section III introduces
the model of the DC microgrid. In Section IV, we present the
control laws for each subsystem, while Section V provides
Lyapunov functions for stability analysis. In Section VI, we
show that the entire system is stable using the results of Sec-
tion IV. Section VII provides simulation results, and Section
VIII offers conclusions.

II. NOTATION AND BASIC DEFINITIONS

The symbol |·| denotes the absolute value, the symbol ‖·‖
denotes the Euclidean norm and ‖·‖p denotes the p-norm in
Rn. The symbol ◦ denotes composition (of functions). The
notation ḟ and f̈ indicate the first and second derivative,
respectively, of the function f with respect to time. Given a
finite set S, its cardinality is denoted as card(S). The operator
col produces a single column vector composed by the the
aggregation of other vectors. That is, given m vectors si ∈ Rn,
i = 1, ...,m, the resulting vector s = col[si], i = 1, 2, . . . ,m,
is:

s = col[si, i = 1, ...,m] = [ sT1 sT2 ... sTm ]T ∈ Rnm. (1)

We refer to [26] for the definition of Lyapunov functions, and
functions K, K∞ and KL. We refer to [27], [30], [31], [33],
[43], for the definition of Input-to-State Stability and practical
Input-to-State Stability.
Given that the argument of all functions in this paper is
time, for the sake of notational simplicity, time dependence
is omitted.

III. MICROGRID CONFIGURATION

A typical DC microgrid consists of a set of devices, as
renewables, storage devices, and loads. It is intended to:

I) Extract renewable power and store it,
II) Feed the loads, and

III) Ensure power quality by DC bus voltage regulation.
To achieve these goals, a DC/DC converter is connected

to each physical device, providing the degree of freedom to
control the device. To satisfy I), the renewables have to be
controlled so that the maximum available power is extracted,
where the slow storage devices act as a buffer between the
power flow requested by the load and the power flow supplied
by the renewables. For II), the loads are fed in a Constant

Fig. 1. The electrical scheme of the bidirectional converters: step-down in a)
and step-up in b). When unidirectional, the switches in the upper positions are
replaced by diodes, but the notation and the mathematical modeling remain
the same. On the right hand side, the converters are connected to the DC bus,
while on the left hand side they are connected to an exogenous input (voltage
source, current source, CIL or CPL).

Power Load (CPL) and Constant Impedance Load (CIL) mode.
Finally, the fast storage devices have to be controlled so that
voltage regulation and an appropriate transient are obtained
(see [7]).

Different types of stability problems arise in a microgrid
[7, 8, 9]. We consider in this paper: i) long-term stability,
which is ensured by matching the demanded power (loads)
with the supplied one provided by renewables and storage
devices, and ii) short-term stability, which is related to fast
dynamics acting on the DC bus voltage caused by tempo-
rary power balance mismatch [7], [8]. Long-term stability
is achieved by high-level controllers that provide the power
references for the supplied power such that the loads are fed
while ensuring a minimum level of charge in the storage
devices. Short-term stability is achieved by local controllers
that deal with fast variations of loads, renewable power and
disturbances [7], [10], [25].

In the sequel, we make the following assumptions:

Assumption 1. The components in the DC microgrid always
provide the power demanded by the loads.

Assumption 2. Higher-level controllers provide constant volt-
age, currents, or power references/set-points for the local
controllers. The set-points are such that power balance in
steady-state is achieved (see [7]).

Assumption 3. The voltages and currents of the sources and
loads and their time derivatives are bounded over time.

A. Microgrid Modeling

Let Iη be the index set corresponding to the renewables,
the loads and the slow storage devices, and let Iφ be the
index set corresponding to the fast storage devices. Each
element indexed by the sets Iη and Iφ is connected to the
DC grid by a DC/DC converter. The mathematical models
used here are obtained using the power electronics averaging
technique with Pulsed Width Modulation (PWM) [44]. We
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TABLE I
STATE SPACE MATRICES OF THE CONVERTERS

Converter type Aq Gq Dq Bq

a)
step-down source-
bus; step-up load-bus

−gdq (Cd
q )−1 − δq 0 −Cd

q
−1

0 −gbq(Cb
q)−1 − (Rb

qC
b
q)−1 Cb

q
−1

0 −L−1
q −(Rs

q +Rr
q)L−1

q


 0

(Rb
qC

b
q)−1

0

 δdq0
0

  0 0 Cd
q
−1

0 0 0

L−1
q 0 0


b)
step-up source-bus;
step-down load-bus

−gdq (Cd
q )−1 − δq 0 −Cd

q
−1

0 −gbq(Cb
q)−1 − (Rb

qC
b
q)−1 Cb

q
−1

L−1
q 0 −(Rs

q +Rr
q)L−1

q


 0

(Rb
qC

b
q)−1

0

 δdq0
0

 0 0 0

0 0 −Cb
q
−1

0 −L−1
q 0



use the standard Quasi-Stationary Line (QSL) approximation
of the power lines, as in [17], and [22].

The electrical scheme of each bidirectional step-up or step-
down converter is shown in Fig. 1. In the case of unidirectional
converters, as for renewables or loads, a diode replaces a
switch, without changing the mathematical description (see
[44] for more details). Each converter is indexed with q ∈
{Iη ∪ Iφ}. The symbols vdq , vbq and iq denote the voltages at
the input and output capacitors, and of the currents through
the inductors, respectively. We assume vdq , v

b
q > 0, while iq

can assume both positive and negative values. On the right-
hand side, the converters are connected to the DC bus vbus,
while on the left-hand side, they are connected to an exogenous
input δdq (voltage source, current source, Constant Power Load
(CPL) or Constant Impedance Load (CIL)). In the sequel, we
use the subscripts for describing to which set of converters
the variables take part (or their union, in case), while we use
superscripts to address the difference between the voltages of
the capacitances connected to the DC bus, i.e. vbq , and the
voltages connected to the exogenous disturbance inputs, i.e.
vdq . The same apply to the circuit elements. Here Lq , and
Cdq , Cbq , and Rbq , R

d
q , gbq , g

d
q , Rrq , Rsq are known positive

values describing the inductors, capacitors and resistances in
the circuits, respectively. Rrq and Rsq are the internal resistance
of the switches and of the inductance, respectively.

The state of each converter is denoted by

ηj = [ vdj v
b
j ij ]T ∈ R3, ∀ j ∈ Iη (2)

φl = [ vdl v
b
l il ]T ∈ R3, ∀ l ∈ Iφ. (3)

Here, the vector η includes the voltages and currents of the
nη converters connected to the nη renewables, loads, either for
CIL or CPL, and slow storage devices needed to provide long-
term stability. The vector φ includes the voltages and currents
of the nφ converters connected to the nφ fast storage devices
that regulate transient stability. The voltage vbus > 0 is the
voltage of the bus that interconnects the microgrid devices.
Then:

η = col [ ηj ] ∈ R3nη , j ∈ Iη, card(Iη) = nη (4)

φ = col [ φl ] ∈ R3nφ , l ∈ Iφ, card(Iφ) = nφ (5)

vbus ∈ R (6)

and the global state is denoted as follows:

x =
[
ηT φT vbus

]T ∈ R3(nη+nφ)+1. (7)

The global model is summarized as follows, where f , g, h are
functions that will be defined in (9),

ẋ = f(x) + g(x, u, d) + h(x, d) (8)

where d is the exogenous input vector representing the source
or load voltages and currents and u is the control vector
representing the duty cycles of the converters. When not
explicitly specified, the state x ∈ R3(nη+nφ)+1 and the
exogenous input vector d ∈ R(nη+nφ) are measurable. The
vector function d is the aggregate vector of δdq in Table II,
and is assumed constant. Assumptions on considering the
exogenous input vector d to be constant are reasonable, as the
proposed stability analysis investigates dynamics at different
time-scales with respect to the ones modifying the exogenous
input [22]. We assume vbus < Vl for a), and vbus > Vl for
b). The system parameters in Fig. 1 and Cbus are known,
where Cbus represents the value of the capacitor of the DC
bus. The control vector u ∈ R(nη+nφ) contains the duty cycles
of the converters. The dynamical equations of the microgrid
is therefore a composition of the dynamical equations of the
converters and their interconnection:


η̇j = Ajηj +Bjηjuj +Dj +Gjvbus, j ∈ Iη
φ̇l = Alφl +Blφlul +Dl +Glvbus, l ∈ Iφ

v̇bus = 1
Cbus

[∑
j∈Iη

vbj−vbus
Rbj

+
∑
l∈Iφ

vbl−vbus
Rbl

]
(9)

where the involved matrices of the converters are reported in
Table I and II. Unidirectional and bidirectional step-down or
step-up converters are considered.

Due to the presence of both step-up and step-down con-
verters, the stability analysis of (9) is complex. According to
the control objectives introduced in Section III, we propose to
decouple the dynamics of the system (9) into two to reduce
complexity. One system describes the dynamics of the slow
devices (loads, sources and storage devices) with respect to
the DC voltage bus at the equilibrium vebus, and the other
represents the devices’ interconnection and the fast devices.

Furthermore, we consider input capacitors of the nφ con-
verters to be negligible with respect to the size of the voltage
source (see [45, 46]). For this reason, we assume

vdl = Vl, φl = [ vbl il ]T ∈ R2, ∀ l ∈ Iφ. (10)
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Consequently, the simplified decoupled model is:

i̇l = − 1
Ll
vbl −

Rsq+R
r
q

Ll
il + 1

Ll
vdl ul, l ∈ Iφ, a)

i̇l = 1
Ll
vdl −

Rsq+R
r
q

Ll
il − 1

Ll
vbl ul, l ∈ Iφ, b)

v̇bq = −
[
gbq
Cbq

+ 1
RbqC

b
q

]
vbq + 1

RbqC
b
q
vbus + 1

Cbq
iq+

− 1
Cbq
iquqζq, q ∈ Iη ∪ Iφ

v̇bus = 1
Cbus

[∑
j∈Iη

vbj−vbus
Rbj

+
∑
l∈Iφ

vbl−vbus
Rbl

]
(11)

η̇j = Ajηj +Bjηjuj +Dj +Gjv
e
bus, j ∈ Iη (12)

where ζq = 0 in case the device is of type a), ζq = 1 otherwise.
The system in (11) represents the subsystems’ interconnection
and the fast devices, and the one in (12) describes the dynamics
of slow devices with the DC bus at steady state. We focus
on DC bus voltage regulation, and therefore consider control
objectives (I) and (II) reached in (12). For this reason, we
suppose there exist control inputs uj , j ∈ Iη, such that the
variables in (12) converge to the given set-points [4, 18]. Then,
we define control laws ul, l ∈ Iφ, at the aim that system (11)
admits a steady-state equilibrium point and vbus converges to
its reference value.

This decoupling is common practice in power systems ap-
plications. Indeed, the problem of ensuring short-term voltage
stability is usually treated without considering the dynamics
of the devices responsible for long-term stability, i.e. the slow
devices [13], [23], [22]. The decoupling can be obtained via
multi-time scale analysis, as in [47]. Singular perturbation
theory (see [48], [49], [27], [26]) can be used to derive
controllers that decouple the dynamics with respect to the
desired objective, as for example in [50]. The dynamics of
the output capacitor of the converters together with the DC
bus dynamics describes the subsystems interconnection, and
for this reason, it is included in subsystem (11). We use the
decoupled system to derive the control laws and to study
stability. The results so obtained will be validated with respect
to the model in (9) by simulations.

The voltage reference for vbus is a constant value v̄bus
determined by a design decision. The steady-state values
for system (11) are the set-points given by the higher level
controllers combined with the solutions of the equations in
(11) and (12) at equilibrium. Let v̄bq, īq, ūq be the values at
steady-state of the state variables vbq , iq , and of the control law
uq , q ∈ {Iη ∪ Iφ}: the steady-state power balance condition
can be expressed as

Ψ̄Iη =
∑
j∈Iη

[
v̄bj īj(1− ūjζj)− gbj(v̄bj)2

]
= 0 (13)

where ζj = 0 in case the device is of type a), ζj = 1 otherwise.

A graphical representation of a star topology DC microgrid
is given in Fig. 2. We assume that each subsystem knows the
DC bus voltage. We consider three cases: i) the complete-
information case, where the controller of each fast device
knows the complete state of the system; ii) the partial-
information case, where each controller of the fast devices

TABLE II
THE DIFFERENT PARAMETERS OF THE MATRICES ACCORDING TO THE

CONSIDERED CASE: VOLTAGE SOURCE, CURRENT SOURCE, CIL, CPL.

Voltage Current CIL CPL
δq 1/(Rd

qC
d
q ) 0 0 0

δdq Vq/(Rd
qC

d
q ) Iq/(Cd

q ) vdq/(R
L
q C

d
q ) PL

q /v
d
q

Fig. 2. The DC microgrid and its communication architecture.

knows the state of the other fast devices, but has no knowledge
of the other subsystems. iii) the no-information case, where the
controller of each subsystem has only information related to
the variables of its subsystem.

The control problem addressed in this paper is:

Problem 1. Given the system in (11) and under the as-
sumptions (1), (2), (3), find control laws to achieve objective
(III) while ensuring the steady-state power balance (13) and
voltage regulation around the reference value of vbus by
current sharing.

IV. DEVICE CONTROL

In this section, we propose a systematic procedure for
controlling each fast storage device connected to the DC
bus. The proposed control laws are introduced with respect
to a reference. Each state variable in (6) and (10) of the
system in (11) will be analyzed according to its characteristics
(step-up or step-down) and the proper control reference. Each
subsystem is not fully linearizable by static nonlinear feedback
since its maximum relative degree is two or one, according to
a) or b) in Table I.

We define the error variables ṽbl and ĩl depending on the
voltage reference zl and on the current reference rl as

ṽbl = vbl − zl, ĩl = il − rl, ∀ l ∈ Iφ. (14)
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The control law ul, l ∈ Iφ, depends on the current reference
rl, l ∈ Iφ, and on the voltage reference zl, l ∈ Iφ, to be
computed according to each subsystem characteristics:

a) ul =
1

vdl

[
(Rsl +Rrl )rl + zl + Llṙl −Ki

l ĩl
]
, (15)

b) ul =
1

vbl

[
vdl − (Rsl +Rrl )rl − Llṙl +Ki

l ĩl
]
, (16)

with Ki
l > 0, l ∈ Iφ. The control laws in (15) and (16)

are obtained using nonlinear control methods as backstepping,
singular perturbation theory, dynamic feedback linearization
and Lyapunov methods (see [26], [27]). Computation of the
proposed control laws (15) and (16) are reported in Appendix
A, and the reference values used are described below.

A. Reference choice for fast devices in Iφ
These devices stabilize the DC bus by tracking a trajectory

zl for vbl .
1) Trajectory choice for DC bus voltage regulation: The

trajectory zl is different according to the information level. It
is computed using backstepping (see [26], [27]).
• Distributed control case: complete-information of state

and control variables
Let

ΨIη =
∑
j∈Iη

vbj
[
ij(1− ujζj)− gbjvbj

]
, (17)

where ζj = 0 in case the devices is of type a), ζj = 1
otherwise. Here ΨIη describes a time-varying perturba-
tion whose dynamics are generated by the (known) exo-
system in (12). We choose zl, l ∈ Iφ, as follows:

zl = vbus−
Rbl
vbus

γl
[
ΨIη +Kl(v

2
bus − v̄2

bus)
]
, Kl >

1

Rbl
,

(18)
where each gain γl is such that

γl ∈ [0, 1],
∑
l∈Iφ

γl = 1. (19)

Therefore, γl ∈ Ωγ , where

Ωγ =

γl ∈ [0, 1] :
∑
l∈Iφ

γl = 1

 . (20)

• Partially distributed control case: partial-information of
state and control variables

Our choice of zl is

zl = vbus−
Rbl
vbus

γl
[
Kl(v

2
bus − v̄2

bus)
]
, Kl >

1

Rbl
, (21)

where the gains γl satisfy condition (19).
• Decentralized control case: no-information

The reference zl is

zl = vbus −
Rbl
vbus

[
Kl(v

2
bus − v̄2

bus)
]
, Kl >

1

Rbl
. (22)

2) Reference current trajectories: Because the relative de-
gree of the converter is different according to its topology, rl
is computed by either 1) using backstepping (see [26], [27])
or 2) using backstepping, dynamic feedback linearization and
singular perturbation theory (see [29], [42], [48]).

1) Step-down case, a) in Table I.
The choice of rl is

rl =

(
gbl +

1

Rbl

)
zl −

1

Rbl
vbus + Cbl żl −Kb

l ṽ
b
l . (23)

2) Step-up case (b) in Table I).
Based on singular perturbation theory and similarly to [42],

we apply control law (16) in steady-state to vbl in (11). To
obtain rl, we use dynamic feedback linearization (see [29],
[28]). Using a Lyapunov-based approach, we consider the
function ḟ bl that includes the term ˙̃vbl . We differentiate ḟ bl ,
to obtain a function f̈ bl :

ḟ bl =
1

Rl
vbus −

(
gbl +

1

Rl

)
zl + rl − Clżl

− 1

ṽvl + zl
rl
(
vd + (Rs +Rr)rl

)
= L1

fv , (24)

f̈ bl =
1

Rl
v̇bus −

(
gbl +

1

Rl

)
żl − Clz̈l

− 1

(ṽvl + zl)2
rl( ˙̃vvl + żl)

(
vd + (Rs +Rr)rl

)
+ ṙl

[
1− vd + 2(Rs +Rr)rl

ṽvl + zl

]
. (25)

Then f̈ bl = L2
fv

+ Lgv ṙl, where terms L2
fv

and Lgv (notation
of Lie derivatives is used) are obtained from (25).

Considering ṙl as a virtual input, rl is obtained by integrat-
ing ṙl:

rl(t) =

∫ t

0

1

Lgv

[
−L2

fv − ṽ
b
l −Kf ḟv

]
dτ (26)

with Kf > 0. Details on the choice of rl are given in
Appendix A.

Let the state vector φ̃l be:

φ̃l =

{
[ ṽbl ĩl ]T , ∀ l ∈ Iφ, a)

[ ṽbl ĩl ḟ
b
l ]T , ∀ l ∈ Iφ, b)

(27)

V. LYAPUNOV FUNCTIONS

In this section we leverage results available in the literature,
and in particular, [4], [26], [27], [29], [42], [51], to analyse the
stability of each device. We will derive Lyapunov functions for
each subsystem.

A. Lyapunov functions for the interconnection subsystem

In order to deal with system interconnection stability, we
define the following Lyapunov function W bus(vbj , vbus):

W bus(vbj , vbus) =
∑
j∈Iη

Cbj
2

(
vbj
)2

+
Cbus

2
v2
bus (28)
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that represents the energy stored in the DC bus and in the
output capacitors of the DC/DC converters connected to the
slow devices. The three cases of information sharing among
the devices are investigated: complete-information, partial-
information and no-information. They result in three control
approaches: distributed control, partially distributed control
and decentralized control, respectively. Figure 2 shows the
complete and partial information sharing cases.
The time derivative of W bus in (28) is

Ẇ bus = −ΨIη,vbus + vbusΨIφ,vbus + ΨIη (29)

where ΨIη is defined in (17), and

ΨIη,vbus =
∑
j∈Iη

(vbj − vbus)2

Rbj
, ΨIφ,vbus =

∑
l∈Iφ

(vbl − vbus)
Rbl

.

(30)
1) Distributed control case: complete-information of state

and control variables: Each controller of the subsystems in
Iφ has information about the state and control inputs of the
other subsystems, i.e., ΨIη is known to each ul, and can be
used in the calculation of zl. Each zl, l ∈ Iφ, is chosen as in
(18) such that condition (19) is satisfied.

Similarly to the droop gains, the gains γl that satisfy
condition (19) allow for the sharing of the current needed to
regulate the DC bus voltage. The resulting Ẇ bus is:

Ẇ bus =−ΨIη,vbus −
∑
l∈Iφ

(
1

Rbl
γlKl

)
(v2
bus − v̄2

bus)

+ vbus
∑
l∈Iφ

1

Rbl
ṽbl . (31)

2) Partially distributed control case:
partial-information of state and control variables: The term
ΨIη in (29) is unknown. However, from Assumptions 1 and
3, it can be modeled as an unknown bounded disturbance. Be-
cause of the communications taking place among the fast de-
vices, they can still balance their control contribution through
γl, similarly to (18). From Assumption 3 and the exogenous
input vector being constant, the boundaries of ΨIη are known.
ΨIη is now seen as a disturbance, and |ΨIη |, |Ψ̇Iη |≤ Ψmax.
The Ẇ bus in (29) is then rewritten as

Ẇ bus = −ΨIη,vbus + vbusΨIφ,vbus + ΨIη (32)
≤ −ΨIη,vbus + vbusΨIφ,vbus + Ψmax.

The choice of zl in (21) where the gains γl respect condi-
tion (19), ensures the possibility to share the control effort.
Equation (32) can be rewritten as

Ẇ bus = −ΨIη,vbus −
∑
l∈Iφ

(
1

Rbl
+ γlKl

)
(v2
bus − v̄2

bus)+

+ Ψmax + vbus
∑
l∈Iφ

1

Rbl
ṽbl . (33)

3) Decentralized control case: no-information: In this
case, the term ΨIη in (29) continues to be seen as a dis-
turbance, but each device is supposed to deal with it in a non-
cooperative mode, without the possibility to share the needed

power. The resulting Ẇ bus is as (32), and the reference zl is
as (22). Then, we have a result similar to (33). However, here,
it is not possible to choose the amount of power provided by
each device, and consequently no current sharing is achievable.

B. Lyapunov functions for fast devices
The Lyapunov function Wφ(φ̃l) used to verify stability is:

Wφ(φ̃l) = W i
Iφ (̃il) +W b

Iφ(ṽbl , ḟ
b
l )ζl

+W b
Iφ(ṽbl )(1− ζl), ∀ l ∈ Iφ, (34)

where ζl = 0 in case the device is of type a), ζq = 1 otherwise.
W i
Iφ is defined as

W i
Iφ =

∑
l∈Iφ

Ll
2

(̃
il
)2

(35)

and W b
Iφ is defined in accordance to a) or b).

Selecting the references in (23) and (26), we have:

1) Step-down case (a) in Table I).
W b
Iφ is defined as

W b
Iφ =

∑
l∈Iφ

Cbl
2

(
ṽbl
)2
. (36)

Given ul in (15) with respect to the references rl in (23),
there exists matrix QAl > 0 such that the time derivatives of
W i
Iφ and W b

l defined in (35) and (36) with respect to Wφ in
(34) are negative definite, i.e.

Ẇφ =−
∑
l∈Iφ

[ ṽbl ĩl ]

[
gbl + 1

Rbl
+Kb

l 0

0 Rsl +Rrl +Ki
l

]
︸ ︷︷ ︸

QAl

[
ṽbl
ĩl

]

− vbus
∑
l∈Iφ

1

Rbl
ṽbl (37)

Stability results are computed applying the backstepping tech-
nique to Ẇ bus (see [26, 27]). The reader is referred to
Appendix A1 for further details.

2) Step-up case (b) in Table I).
We consider a function W i

Iφ in the form of (35) to find the
control ul in (16) ensuring convergence of il to rl. Then, W b

Iφ
is

W b
Iφ =

∑
l∈Iφ

[
Cbl
2

(
ṽbl
)2

+
1

2

(
ḟ bl

)2
]
. (38)

In accordance to (25) and rl in (26),

Ẇφ = −vbus
∑
l∈Iφ

1

Rbl
ṽbl (39)

−
∑
l∈Iφ

[ ṽbl ḟ
b
l ĩl ]

gbl + 1
Rbl

0 0

0 Kf 0
0 0 Rsl +Rrl +Ki

l


︸ ︷︷ ︸

QBl

ṽblḟ bl
ĩl

 .
These functions are obtained by applying backstepping and
dynamic feedback linearization techniques together with sin-
gular perturbation theory (see [26], [27], [29]) (See Appendix
A2 for further details).
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VI. SYSTEM STABILITY ANALYSIS

In this section, we combine the functions of the previous
section to assess ISS for the entire system. We will show
that the control laws solve Problem 1 under all information
scenarios. ISS is of interest in power systems, and in particular,
in microgrids, where each control level depends on external
set-points fixed by higher level controllers and external dis-
turbances act on the system [7]. In a microgrid, some state
variables represent electrical power generators while others
represent loads, storage systems and connection lines. Our
analysis based on the composition of Lyapunov functions to
prove ISS allows separating the different characteristics of the
devices.

Let us consider the extended state Υ of the subsystems in
(11) and the variables added for control purposes ḟ bl in φ̃l in
(27):

Υ(t) =
[
col[φ̃l, l ∈ Iφ]; col[vbj , j ∈ Iη]; vbus

]
. (40)

We consider a set Ωd and a set ΩΥ such that for any Υ(0) ∈
ΩΥ and for any d ∈ Ωd the input function ul in (15) and
(16) is well defined (finite), and Υ(t) ∈ ΩΥ, ∀t ≥ 0. The
variables vbq and vbus are always strictly positive because of
the physics of the system. Thus, the control laws in (15) and
(16) are always well defined. For physical reasons, we choose
the set ΩΥ to be

ΩΥ = {Υ ∈ R2nφ+nη+1 : vbq, vbus > 0, q ∈ {Iφ∪Iη}}. (41)

We assume that the set Ωγ of γl respecting condition (19)
and the set-points from the higher level controller are given.

A. Distributed case
Theorem 1. In the distributed control case, given:

1) the set Ωγ;
2) the exogenous input d;
3) the working set-points;
4) the voltage reference v̄bus;
5) the reference zl, l ∈ Iφ, in (18).

Let the solution of the closed loop system (11), (15), (23) (case
a) and (11), (16), (26) (case b) exist and stay in ΩΥ (see (41))
∀ t ∈ R+.
Then, there exist functions β ∈ KL and ω ∈ K such that the
following inequality holds:

|Υ(t)|≤ β(Υ(0), t) + ω(v̄bus),∀ Υ(0) ∈ ΩΥ, ∀ t ∈ R+.
(42)

Proof. Let W be the Lyapunov function composed of the
Lyapunov functions introduced in the previous section. Using
(28), (34), (35), (36), (38), W is

W (Υ(t)) =Wφ +W bus

=
∑
l∈Iφ

Ll
2

(̃
il
)2

+
∑
l∈Iφ

(1− ζl)
Cbl
2

(
ṽbl
)2

+
∑
l∈Iφ

ζl

[
Cbl
2

(
ṽbl
)2

+
1

2

(
ḟ bl

)2
]

+
∑
j∈Iη

Cbj
2

(
vbj
)2

+
Cbus

2
v2
bus, (43)

where ζl = 0 in case the device is of type a), ζq = 1 otherwise.
Consequently, from the quadratic structure of W in (43), there
exist functions α, α ∈ K∞ such that

α(|Υ(t)|) ≤W (Υ(t)) ≤ α(|Υ(t)|), t ≥ 0. (44)

We compute the time derivative of W (Υ(t)) in (43) accord-
ing to (29), (34), (37) and (39), as

Ẇ (Υ(t)) = Ẇφ + Ẇ bus

≤−
∑
l∈Iφ

(1− ζl)[ ṽbl ĩl ]QAl

[
ṽbl
ĩl

]

−
∑
l∈Iφ

ζl[ ṽ
b
l ḟ

b
l ĩl ]QBl

ṽblḟ bl
ĩl


−
∑
j∈Iη

(vbj − vbus)2

Rbj
−
∑
l∈Iφ

γlKlv
2
bus︸ ︷︷ ︸

Ψ

+
∑
l∈Iφ

γlKl(v̄bus)
2.

(45)

The Lyapunov function W bus in (28) and (43) is equal to
zero at zero, while its time derivative in (31) and (45) holds
only in ΩΥ. However, the function Ψ in (45) is a negative
definite quadratic function of the variables [ col[vbj , j ∈
Iη]; vbus ]. Then, from the quadratic structure of the time
derivative in (45) and from the considerations on Ψ, there exist
functions βΥ, γΥ ∈ K∞ such that the following inequality
holds:

Ẇ (Υ(t)) ≤ −βΥ(|Υ(t)|) + γΥ(|v̄bus|). (46)

From (44) and (46), by Lemma 2.14, pp. 82-84, in [52],
inequality (42) follows.

The control laws ul in (15) and (16), the references rl in
(23) and (26), and the references zl in (18), l ∈ Iφ, are
developed based on power flow considerations. They target
steady state by matching power balance among the devices in
the microgrid, thus counteracting the voltage variations and
keeping the evolution of Υ(t) in ΩΥ.

The Lyapunov function in (43) is similar to an ISS Lya-
punov function, as described in [31], [32], [38]. The proposed
result provides a typical ISS inequality for the closed loop
system (11), (15), (23) (case a) and (11), (16), (26) (case b).
Here v̄bus plays the role of the virtual input, and notice that
it must be positive.

B. Partially distributed case

Theorem 2. In the partially distributed control case, given:
1) the set Ωγ;
2) the exogenous input d;
3) the working set-points;
4) the voltage reference v̄bus;
5) the reference zl, l ∈ Iφ, in (21).

Let the solution of the closed loop system (11), (15), (23) (case
a) and (11), (16), (26) (case b) exist and stay in ΩΥ (see (41))
∀ t ∈ R+.
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Then, there exist functions β ∈ KL, ω ∈ K and a positive real
ε such that the following inequality holds:

|Υ(t)|≤ β(Υ(0), t) + ω(v̄bus) + ε ∀ Υ(0) ∈ ΩΥ ∀ t ∈ R+.
(47)

Proof. As for Theorem 1, the proof is based on the construc-
tion of a Lyapunov function W as (43) for the entire system.
The difference with respect to Theorem 1 is Ẇ bus. Indeed, its
time derivative is described by equation (32), where ΨIη is
unknown but bounded by Ψmax. Then,

Ẇ = −
∑
l∈Iφ

(1− ζl)[ ṽbl ĩl ]QAl

[
ṽbl
ĩl

]

−
∑
l∈Iφ

ζl[ ṽ
b
l ḟ

b
l ĩl ]QBl

ṽblḟ bl
ĩl


−
∑
j∈Iη

(vbj − vbus)2

Rbj
−
∑
l∈Iφ

γlKlv
2
bus

+
∑
l∈Iφ

γlKlv̄
2
bus + Ψmax. (48)

Then

Ẇ (Υ(t), v̄bus) ≤ −βΥ(|Υ(t)|) + γΥ(|v̄bus|) + Ψmax (49)

with functions βΥ and γΥ defined as in (46). From (44) and
(49), the condition in (47) follows, with ε depending on Ψmax.

When we have no global knowledge of the subsystem in
(11), a number of solutions that depend on the number of
variables involved in the compensation of ε exist. Depending
on the system initial conditions and on its evolution, the set
of possible solutions can be defined according to the set Ωε,
where

Ωε = {Υ : |Υ|≤ β(Υ(0), 0) + ω(v̄bus) + ε}. (50)

Then, due to the incomplete knowledge of the system, the
interaction among m state variables leads to ∞m possible
solutions, i.e., we can obtain power balance with an infinite
number of possible configurations of power supply.

The Lyapunov function in (47) is similar to a practical
Input-to-State Stability Lyapunov function (see [27], [43]).
The proposed result provides a typical practical ISS inequality
for the closed loop system (11), (15), (23) (case a) and (11),
(16), (26) (case b). If Assumption 2 is valid, the function
ΨIη is a vanishing perturbation function, since condition (13)
implies ΨIη = 0 at steady-state, which, in turn, implies that
the proposed result reduces to be similar to ISS.

C. Decentralized case

Theorem 3. In the decentralized control case, given:
1) the set Ωγ;
2) the exogenous input d;
3) the working set-points;
4) the voltage reference v̄bus;
5) the reference zl, l ∈ Iφ, in (22).

Let the solution of the closed loop system (11), (15), (23) (case
a) and (11), (16), (26) (case b) exist and stay in ΩΥ (see (41))
∀ t ∈ R+.
Then, there exist functions β ∈ KL, ω ∈ K and a positive real
ε such that the following inequality holds:

|Υ(t)|≤ β(Υ(0), t) + ω(v̄bus) + ε ∀ Υ(0) ∈ ΩΥ ∀ t ∈ R+.
(51)

Proof. The proof follows directly from the one for Theorem 2
in the special case γl = 1, ∀ l ∈ Iφ. The same considerations
apply for the possible solutions.

Here the missing information reduces the effectiveness of
the proposed control action. Theorem 3 yields the same
result of Theorem 2 when the control inputs dedicated to
interconnection stability do not share information about their
state. The loss in coordination does not modify the stability
results.

In the partially distributed or decentralised case, the model-
ing of the system interconnection with bounded disturbances
may lead to solutions where the fast devices conflict for
power outputs. However, voltage stability is still ensured.
Since infinite solutions leading to power balance exist, it is
possible that the fast devices see each other as disturbances
acting on the system. A situation where some of them provide
power while others take power (in general, each with different
power levels) may appear. Albeit this situation does not impact
stability (and is therefore not be considered in this paper),
control at a higher level may be needed. This will be the
subject of further analysis in a forthcoming paper.

D. Remarks

The model in (12) is based on the hypothesis that the DC
voltage is stable. This hypothesis is verified by Theorems 1, 2
and 3 with respect to (11). Here, ISS inequalities demonstrates
that the fast devices counteract the voltage variations induced
by the slow devices into the system interconnection, thus
stabilizing the system. Note that the equilibrium points of
vbj , j ∈ Iη , are actually different from 0, contrary to what
could be inferred from (28). Here, the zero states are used
only for energy considerations in ISS where power balance is
ensured (see [53] for further details). Control laws uj similar to
the ones in (15) and (16) are considered for reaching targets (I)
and (II) with respect to given set-points (see [4, 18] for more
details). They are used to simulate the closed loop system (12).

The stability results presented here are valid for a generic
DC microgrid consisting of a number nη > 0 and nφ > 0
of elements connected by step-up or step-down DC/DC con-
verters and a single DC bus connection. They allow for the
possibility to customize the DC microgrid according to specific
necessities. The inclusion of new elements can be performed
at design time or at implementation time. The elements of the
microgrid can be inserted in Plug&Play mode (see [17]).

VII. SIMULATIONS

To show that the introduced control strategies are effective,
we use the Matlab&Simulink SimPowerSystems tool. Based



9

Fig. 3. The DC microgrid considered for the simulations is composed by
seven nodes, with a PV source (node 1), a battery (node 2), a CIL (node 4)
and a CPL (node 5), and three supercapacitors (nodes 3, 5, 7).

on the modeling in (9), a seven nodes DC microgrid is
analysed, composed by PV generation, a slow storage device,
three fast storage devices, a constant impedance load (CIL)
and a constant power load (CPL), as shown in Figure 3. The
parameters of the grid are introduced in Table III. Even if the
standard QSL approximation is used to develop the controllers,
inductances are considered in simulations to provide a more
realistic framework.

We carried out experiments with simulation time of 15
seconds and reference changes. The PV production is variable
in node 1, as shown in Fig. 4. The battery reference for the
absorbed/supplied energy in node 2 varies according to the
set-point given from a higher level controller (see Fig. 5). In
node 4, the constant impedance load at t=0 s is equal to 100
Ω, and is equal to 50 Ω at t=10 s (see Fig. 7). In node 6, the
constant power load is varying each 4 seconds, as shown in
Fig. 8. In nodes 3, 5 and 7 three supercapacitors of different
sizes are considered. They implement the proposed current
sharing control laws with respect to the considered commu-
nication framework: distributed full information, distributed
partial information and decentralized case. Two different sets
of values are considered for the corresponding set Ωγ . In
the first case, we set (γ3 = γ5 = γ7), and in the second
one we set γ3 6= γ5 = γ7. The voltage reference value for
the DC bus is 160 V. The output capacitor of the DC/DC
converter connected to the battery is here taken as DC bus.
Supercapacitor 1 in node 3 has a nominal voltage value of
140V. It is connected to the DC bus through a bidirectional
step-up converter. Supercapacitors 2 and 3 (at node 5 and 7,
respectively) have nominal value of 190V, and are connected
to the DC bus through step-down converters.

Fig. 4. The power output of the PV array in both Cases I and II.

Fig. 5. The power output of the battery in both Cases I and II: the battery
is supplying energy when power output is positive, while absorbing energy
when negative.

A. Case I: equal values for γl
In this case, all the fast devices (supercapacitors) have the

same gains: γ3 = γ5 = γ7 = 1/3. Consequently, they will
contribute equally in the full and partial information scenarios.

The DC voltages for the full, partial and decentralized
information case are shown in Figure 6. The system response
to the different kinds of disturbances is satisfactory under all
three scenarios. Indeed, only a high peak is produced due to
system initialization, which is under an admissible tolerance of
10%. The voltage level is kept with an acceptable error, which
is less than 5% with respect to the reference value (160 V). The
control action acts faster when full information is available.

TABLE III
THE SIMULATION PARAMETERS

R L
Line 1 0.5 Ω 0.1 H Grid Voltage 160 V
Line 2 0.1 Ω 0.01 H PV Voltage 150 V
Line 3 0.2 Ω 0.02 H Power 1 kW
Line 4 0.5 Ω 0.01 H Cap1 Capacity 4.5 kWh
Line 5 0.3 Ω 0.03 H Voltage 140 V
Line 6 0.1 Ω 0.01 H Cap2 Capacity 2.25 kWh
Line 7 0.15 Ω 0.02 H Voltage 190 V
Battery Capacity 6.5 kWh Cap3 Capacity 2.25 kWh

Voltage 130 V Voltage 190 V



10

Fig. 6. Case I: The DC Microgrid voltage according to the different informa-
tion sharing situations: full information (dotted red line), partial information
(blue line) and no information sharing (dotted yellow line).

Fig. 7. Case I: The voltage in the CIL with respect to the reference (dotted
violet line) in case of partial information (blue line), full information (dotted
red line) and no information sharing (dotted yellow line).

However, when full information spreading is not available,
control action still performs well under the load variations
shown in Figures 7 and 8, both for the subsystems and their
interconnection. Figure 7 shows the voltages for the CIL in the
three different scenarios. At t=0, the load is equal to 100 Ω,
amd it reduces to 50 Ω at t=10 s; the reference changes from
180 V to 200 V at t=3 s. Figure 7 shows that the different
controls correctly track the references. Small perturbations at
t=4, 8, 12 and 13 s match with the variations in other nodes.
In Figure 8, the power profiles for the CPL are shown. As
expected, the case considering full information is the one
with the smaller perturbations. The trajectories converge to
the operating points according to each power and voltage level,
consistently with the power profile.

Figure 9 shows the currents of each supercapacitor in the
considered cases: the associated energy levels are shown in
Figure 10. As the values for γl are identical, the current sharing
mechanism forces the fast devices to contribute equally to the
voltage stabilization when either full or partial information
sharing is considered, . Instead, when no information is shared,
the voltage stabilization participation depends mainly on the
different value of the resistances in the connecting cables and
on the size of the supercapacitors. This results in different

Fig. 8. Case I: a) Power in CPL with respect to the reference (dotted violet
line) in case of partial information (blue line), full information (dotted red
line) and no information sharing (dotted yellow line). b) Trajectories in the
CPL.

Fig. 9. Case I: The currents in the supercapacitors in the considered situations
of information sharing. The current of supercapacitor 1 is the blue line, while
the ones of supercapacitors 2 and 3 are the dotted red and dotted yellow lines,
respectively.

Fig. 10. Case I: The energy in the supercapacitors in the considered situations
of information sharing. The energy of supercapacitor 1 is the blue line, while
the ones of supercapacitors 2 and 3 are the dotted red and dotted yellow lines,
respectively.
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energy profiles for the decentralized case.
The different control strategies successfully reach the target

to control the DC grid voltage under adverse circumstances.

B. Case II: different values for γl
In this case, the supercapacitors have different values for

the gains γl: γ3 = 0.3, while γ5 = γ7 = 0.35. Consequently,
supercapacitor 1 (in node 3) will contribute less with respect
to supercapacitors 2 (in node 5) and 3 (in node 7) to voltage
regulation. Since these gains are not involved in the decentral-
ized case, the comparison is performed between only the two
information sharing cases. The same load variations of Case
I are considered.

Figure 11 shows the DC voltage for both full and partial
information cases. In both situations the controllers perform
well. The voltage does not exceed the admissible considered
tolerance (±10%), and the most critical error is due to the
initial conditions. The more complete knowledge of the system
in the full information case results in a shorter transient and
a reduced peak.

Figure 12 shows the currents of each supercapacitor: from
the choice of γl, the currents of supercapacitors 2 and 3 are
equal and have different magnitude with respect to the one
of supercapacitor 1 in both cases of full information sharing
or partial one. As a result, the energy levels are different, as
shown in Figure 13. In the full information case, where a
unique solution is possible, the set of supercapacitors perform
the same needed discharging action. The different evolution
of the currents is highlighted by the different energy levels of
supercapacitors 2 and 3 with respect to supercapacitor 1. In-
stead, in the partial information case, where multiple possible
solutions exist, the different evolution is demonstrated by the
fact that supercapacitor 1 is charging while supercapacitors 2
and 3 are discharging. This situation corresponds to Section
VI-C, where long-term energy strategies may underperform in
the partial information case with respect to the full information
one, due to inefficient power exchange among the fast devices.
This situation does not impact stability (and hence, it is not
considered in this paper), and a dedicated control at a higher
level will be investigated in future publications. However, the
proposed control laws allow engineers to choose between
performance (e.g. of voltage transients or efficient power
exchange) and needed communication exchange by selecting
an appropriate trade-off. For lack of space, the entire set of
dynamics is not shown here. Nevertheless, for sake of com-
pleteness, Figure 14 shows the currents of the supercapacitors
tracking their reference trajectories. The PV and battery power
outputs are introduced in Fig. 4 and 5. The control inputs of
the DC/DC converters connected to the three supercapacitors
are shown in Fig. 15 and 16.

The distributed coupled control action maintain the grid
voltage around the desired equilibrium point, as shown in Fig.
6 and 11.

VIII. CONCLUSIONS

In this paper, we introduced a constructive ISS-Lyapunov-
based current-sharing control framework for a DC microgrid

Fig. 11. Case II: The voltage of the DC grid in case of partial information
(blue line) and full information (dotted red line).

Fig. 12. Case II: The currents in the supercapacitors for the information
sharing case. The current of supercapacitor 1 is the blue line, while the ones of
supercapacitors 2 and 3 are the dotted red and dotted yellow lines, respectively.

Fig. 13. Case II: The energy in the supercapacitors for the information sharing
case. The energy of supercapacitor 1 is the blue line, while the ones of
supercapacitors 2 and 3 are the dotted red and dotted yellow lines, respectively.
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Fig. 14. Case II: The currents in the supercapacitors of Fig. 12 with respect
to their references.

Fig. 15. Case I: The control inputs for the information sharing case. The
input of supercapacitor 1 is the blue line, while the ones of supercapacitors
2 and 3 are the dotted red and dotted yellow lines, respectively.

Fig. 16. Case II: The control inputs for the information sharing case. The
input of supercapacitor 1 is the blue line, while the ones of supercapacitors
2 and 3 are the dotted red and dotted yellow lines, respectively.

consisting of renewables, a HESS composed by two kinds
of storage devices, DC loads and their connected step-up or
step-down converter devices. The DC microgrid is decom-
posed in two subsystems with different targets, to provide
a desired amount of power to uncontrolled bounded loads
while ensuring a given grid-voltage value. A Lyapunov-based
stability analysis is carried out for the system describing the
interconnection by composing the stability analysis performed
on each subsystems. The Lyapunov function is used to ensure
the appropriate power exchange between the devices providing
voltage regulation in a current sharing mode (similar to a
fast droop control), assuming that enough power is available
for long term stability. Different information scenarios are
investigated. Their impact on the stability of the system are
discussed. Finally, a set of simulation experiments shows the
efficiency of the proposed control action.

The results presented here are general and valid for any kind
of DC microgrid with a star topology consisting of step-up
or step-down DC/DC converters with the objective of using
renewable power to feed the loads while ensuring voltage
regulation. The control method can be used in Plug&Play
mode thus allowing to scale to larger dimensions. Future work
will extend the proposed framework to meshed microgrids and
will focus on solutions to the multiple solution problem in the
partially distributed case.
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APPENDIX

A. Calculations for W

Here we leverage the construction of the Lyapunov function
W when proving that the control inputs ul in (15) and (16)
with respect to the references zl in (18), (21), (22) and rl in
(23) and (26) stabilize the system in (11). We recall the error
states ṽbl and ĩl as

ṽbl = vbl − zl, ĩl = il − rl. (52)

We begin by computing the time derivative of the storage
function W bus(vbj , vbus) in (28), i.e. Ẇ bus(vbj , vbus) in (29):

Ẇ bus =
∑
j∈Iη

vbj

[
−gbjvbj +

vbus − vbj
Rbj

+ ij(1− ujζj)

]

+ vbus

∑
j∈Iη

vbj − vbus
Rbj

+
∑
l∈Iφ

ṽbl + zl − vbus
Rbl


=−

∑
j∈Iη

(vbj − vbus)2

Rbj
+
∑
j∈Iη

vbj
[
ij(1− ujζj)− gbjvbj

]
+ vbus

∑
l∈Iφ

1

Rl
[zl − vbus] + vbus

∑
l∈Iφ

1

Rl
ṽbl

=−ΨIη,vbus + ΨIη + vbus
∑
l∈Iφ

zl − vbus
Rl

+ vbus
∑
l∈Iφ

ṽbl
Rl

(53)

where ΨIη,vbus and ΨIη are defined in (30) and (17).
According to the considered information scenario and the

related choice for zl, Ẇ bus in (53) is defined as:

• Distributed control case: complete-information of state
and control variables

Ẇ bus = −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
v2
bus

+
∑
l∈Iφ

(
1

Rl
+ γlKl

)
v̄2
bus + vbus

∑
l∈Iφ

1

Rl
ṽbl (54)

• Partially distributed control case: partial-information of
state and control variables

Ẇ bus = −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
v2
bus + Ψmax

+
∑
l∈Iφ

(
1

Rl
+ γlKl

)
v̄2
bus + vbus

∑
l∈Iφ

1

Rl
ṽbl (55)

• Decentralized control case: no-information

Ẇ bus = −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+Kl

)
v2
bus + Ψmax

+
∑
l∈Iφ

(
1

Rl
+Kl

)
v̄2
bus + vbus

∑
l∈Iφ

1

Rl
ṽbl (56)

From here on, we refer to the distributed case without loss
of generality. We introduce the following Lyapunov function
W bus,b, and describe the step-down and step-up cases:

W bus,b = W bus +
∑
l∈Iφ

Cbl
2

(
ṽbl
)2

(57)
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1) step-down case, a) in Table I: The time derivative
Ẇ bus,b of W bus,b in (57) is:

Ẇ bus,b = Ẇ bus +
∑
l∈Iφ

ṽbl ˙̃vbl = −ΨIη,vbus

−
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus) + vbus
∑
l∈Iφ

1

Rl
ṽbl

+
∑
l∈Iφ

ṽbl

[
−
(
gbl +

1

Rl

)
(ṽbl + zl) +

1

Rl
vbus

]
+
∑
l∈Iφ

ṽbl
[
(̃il + rl)− Clżl

]
=−ΨIη,vbus −

∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

(
gbl +

1

Rl

)
(ṽbl )

2 +
∑
l∈Iφ

ṽbl ĩl

+
∑
l∈Iφ

ṽbl

[
−
(
gbl +

1

Rl

)
zl +

2

Rl
vbus + rl − Clżl

]
. (58)

The definition of rl, as in (23), i.e.

rl =

(
gbl +

1

Rbl

)
zl −

2

Rbl
vbus + Cbl żl −Kb

l (v
b
l − zl), (59)

modifies Ẇ bus,b in (58) to become

Ẇ bus,b = −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

[(
gbl +

1

Rl

)
+Kb

l

]
(ṽbl )

2 +
∑
l∈Iφ

ṽbl ĩl. (60)

We introduce the storage function W bus,b,i as

W bus,b,i = W bus,b +W i = W bus,b +
∑
l∈Iφ

Ll
2

(̃
il
)2

(61)

and compute its time derivative:

Ẇ bus,b,i = −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

[(
gbl +

1

Rl

)
+Kb

l

]
(ṽbl )

2 +
∑
l∈Iφ

ĩl

[
ṽbl + ˙̃il

]
= −ΨIη,vbus −

∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

[(
gbl +

1

Rl

)
+Kb

l

]
(ṽbl )

2

+
∑
l∈Iφ

ĩl
[
ṽbl − (ṽbl + zl)− (Rsl +Rrl )(̃il + rl) + vdl ul − Llṙl

]
= −ΨIη,vbus −

∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

[(
gbl +

1

Rl

)
+Kb

l

]
(ṽbl )

2 −
∑
l∈Iφ

(Rsl +Rrl )(̃il)
2

+
∑
l∈Iφ

ĩl
[
−zl − (Rsl +Rrl )rl + vdl ul − Llṙl

]
. (62)

The choice of ul as in (15), i.e.

ul =
1

vdl

[
(Rsl +Rr)lrl + zl + Llṙl −Ki

l ĩl
]
, (63)

provides the final form of Ẇ bus,b,i as

Ẇ bus,b,i =−ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

[(
gbl +

1

Rl

)
+Kb

l

]
(ṽbl )

2

−
∑
l∈Iφ

[
(Rsl +Rrl ) +Ki

l

]
.(̃il)

2. (64)

Equation (64) can be rewritten as

Ẇ bus,b,i = −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

[ ṽbl ĩl ]

[(
gbl + 1

Rl

)
+Kb

l 0

0 (Rsl +Rrl ) +Ki
l

]
︸ ︷︷ ︸

QAl

[
ṽbl
ĩl

]
.

(65)

2) step-up case, b) in Table I: We:
• introduce a control input ul such that the current variable
il tracks a reference rl to be defined;

• decouple the dynamics of il and vbl using singular per-
turbation theory;

• use the time derivative of rl as dynamic controller for
stabilizing vbl ;

• integrate ṙl to find the reference rl.
To let il track a desired reference rl, we define the storage

function W i and its time derivative:

W i =
∑
l∈Iφ

Ll
2

(̃
il
)2
, (66)

Ẇ i =
∑
l∈Iφ

ĩl
[
vd − (Rsl +Rrl )(̃il + rl)− ul(ṽbl + zl)− Llṙl

]
.

(67)
The control input ul in (16) imposes a negative definite Ẇ i:

ul =
1

ṽbl + zl

[
vdl − (Rsl +Rrl )rl − Llṙl +Ki

l ĩl
]

; (68)

Ẇ i = −
∑
l∈Iφ

[
(Rsl +Rrl ) +Ki

l

] (̃
il
)2
. (69)

The dynamics of ĩl is

i̇l = −
[

(Rsl +Rrl ) +Ki
l

Ll

]
ĩl, ∀ l ∈ Iφ. (70)

We then rewrite the equations of il and vbl as{
Cbl v̇

b
l = 1

Rbl
vbus −

[
gbl + 1

Rbl

]
(ṽbl + zl) + (̃il + rl)(1− ul)

Ll i̇l = −
[
(Rsl +Rrl ) +Ki

l

]
ĩl

(71)

In a well-designed converter, Ll is small enough to be chosen
as the ε value in the singular perturbation theory (see [49],



16

[27]), i.e., the current dynamics is way faster than the voltage
one. In singular perturbation standard form, the equations in
(71) become {

v̇bl = fv(ṽ
b
l , zl, vbus, ĩl, rl)

εi̇l = −
[
(Rsl +Rrl ) +Ki

l

]
ĩl

(72)

Consequently, for ε→ 0, we have

0 = −[(Rsl +Rrl ) +Ki
l ]̃il (73)

and ĩl = 0. Then, we apply control ul in (68) to the expression
of ṽbl considering ĩl = 0. We obtain:

˙̃vbl = −
[
gbl
Cbl

+
1

RblC
b
l

]
(ṽbl + zl) +

1

RblC
b
l

vbus +
1

Cbl
rl

− 1

Cbl
rl

1

ṽbl + zl

[
vdl + (Rsl +Rrl )rl

]
− żl. (74)

We then consider W bus,b as in (57), and compute its time
derivative Ẇ bus,b:

Ẇ bus,b = Ẇ bus +
∑
l∈Iφ

ṽbl ˙̃vbl = −ΨIη,vbus

−
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)−
∑
l∈Iφ

(
gbl +

1

Rl

)
(ṽbl )

2

+
∑
l∈Iφ

ṽbl

[
2

Rl
vbus −

(
gbl +

1

Rl

)
zl + rl − Clżl

]

−
∑
l∈Iφ

ṽbl

[
1

ṽvl + zl
rl
(
vd + (Rsl +Rrl )rl

)]
. (75)

Consequently, we define the function ḟ bl as

ḟ bl =
2

Rl
vbus −

(
gbl +

1

Rl

)
zl + rl − Clżl

− 1

ṽvl + zl
rl
(
vd + (Rsl +Rrl )rl

)
= L1

fv (76)

and, by remarking that ḟ bl appears in the last two lines of the
inequality in (75), we rewrite equation (75) as

Ẇ bus,b =−ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

(
gbl +

1

Rl

)
(ṽbl )

2 +
∑
l∈Iφ

ṽbl ḟ
b
l . (77)

Therefore, we define the storage function W bus,b,f as

W bus,b,f = W bus,b +
1

2

∑
l∈Iφ

(
ḟ bl

)2

, (78)

where the time derivative of ḟ bl in (76) is

f̈v =
2

Rl
v̇bus −

(
gbl +

1

Rl

)
żl − Clz̈l

− 1

(ṽvl + zl)2
rl( ˙̃vvl + żl)

(
vd + (Rsl +Rrl )rl

)
+ ṙl

[
1− vd + 2(Rsl +Rrl )rl

ṽvl + zl

]
=L2

fv + Lgv ṙl (79)

and

Ẇ bus,b,f =Ẇ bus,b +
∑
l∈Iφ

ḟ bl f̈
b
l

=−ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

(
gbl +

1

Rl

)
(ṽbl )

2 +
∑
l∈Iφ

ḟ bl

[
ṽbl + f̈ bl

]
.

(80)

Consequently, the choice of rl as in (26), i.e.

rl(t) =

∫ t

0

1

Lgv

[
−L2

fv − ṽ
b
l −Kf ḟv

]
dτ (81)

allows for a negative definite Ẇ bus,b,f :

Ẇ bus,b = Ẇ bus +
∑
l∈Iφ

ṽbl ˙̃vbl

= −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

(
gbl +

1

Rl

)
(ṽbl )

2 −
∑
l∈Iφ

Kf

(
ḟ bl

)2

= −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

[ ṽbl ḟ
b
l ]T

[(
gbl + 1

Rl

)
0

0 Kf

] [
ṽbl
ḟv

]
. (82)

A storage function for the entire set of dynamics is

W bus,b,f,i = W bus,b,f +W i (83)

and, according to (69) and (82), its time derivative is

Ẇ bus,b,f,i = Ẇ bus,b,f + Ẇ i =

= −ΨIη,vbus −
∑
l∈Iφ

(
1

Rl
+ γlKl

)
(v2
bus − v̄2

bus)

−
∑
l∈Iφ

ṽblḟ bl
ĩl

T

(
gbl + 1

Rl

)
0 0

0 Kf 0
0 0 (Rsl +Rrl ) +Ki

l


︸ ︷︷ ︸

QBl

ṽblḟ bl
ĩl

 .
(84)

3) Conclusion: Given the results in Sections A1 and A2,
the inequality in (45) holds with respect to the choice in (18)
for zl. The results for the choices of zl in (21) and (22) are
similar.


