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Abstract

In this paper we propose a new algorithm that estimates on-line the parameters of a classical vector linear regression

equation Y = Ωθ, where Y ∈ Rn, Ω ∈ Rn×q are bounded, measurable signals and θ ∈ Rq is a constant vector

of unknown parameters, even when the regressor Ω is not persistently exciting. Moreover, the convergence of

the new parameter estimator is global and exponential and is given for both, continuous-time and discrete-time

implementations. As an illustration example we consider the problem of parameter estimation of a linear time-

invariant system, when the input signal is not sufficiently exciting, which is known to be a necessary and sufficient

condition for the solution of the problem with standard gradient or least-squares adaptation algorithms.

Keywords: Parameter estimation, Persistent excitation, Interval excitation, Dynamic regressor extending and

mixing, Nonlinear filter

1. Introduction and Problem Formulation

One of the central problems in control and systems theory, that has attracted the attention of many researchers for

several years, is the estimation of the parameters that appear in the mathematical model that describes the systems

behavior, usually a differential or a difference equation. A typical paradigm, which appears in system identification

[12], adaptive control [21], filtering and prediction [8], reinforcement learning [11], and in many other application5

areas, is when the unknown parameters and the measured data are linearly related in a so-called linear regression

equation (LRE). Classical solutions for this problem are gradient and least-squares estimators. The main drawback of

these schemes is that convergence of the parameter estimates relies on the availability of signal excitation, a feature

that is codified in the restrictive assumption of persistency of excitation (PE) of the regressor vector. Moreover, their

transient performance is highly unpredictable and only a weak monotonicity property of the estimation errors can10

be guaranteed.

In recent years, various efforts to ease the PE requirement have been suggested, such as concurrent [6], or

composite learning [20] that, in the spirit of off-line estimators, incorporate the monitoring of past data to build

a stack of suitable regressor vectors. Another approach that has been extensively studied by the authors is the

dynamic regressor extension and mixing (DREM) parameter estimation procedure, which was first proposed in [2]15

for continuous-time (CT) and in [4] for discrete-time (DT) systems. The construction of DREM estimators proceeds

∗Corresponding author
Email address: marina.korotina@centralesupelec.fr (M. Korotina)
This work was supported by theRussian Science Foundation, project no. 18-19-00627, https://rscf.ru/project/18-19-00627/.

Preprint submitted to Systems & Control Letters December 2, 2021



in two steps, first, the inclusion of a free, stable, linear operator that creates an extended matrix LRE. Second, a

nonlinear manipulation of the data that allows to generate, out of an q-dimensional LRE, q scalar, and independent,

LREs. DREM estimators have been successfully applied in a variety of identification and adaptive control problems,

both, theoretical and practical ones, see [16, 17] for an account of some of these results.20

A very important feature of the new concurrent and composite learning estimators is that parameter convergence

is guaranteed under the extremely weak assumption of interval excitation (IE) [9]—the interested reader is refered

to [16] where a detailed discussion of these methods, and the connections of them with existing results, is thoroughly

discussed. This key property was also recently established for a version of DREM reported in [7], that has the

additional feature of ensuring convergence in finite-time—see also [17, Propositions 6 and 7]. A potential drawback25

of this DREM algorithm is that it relies on fixing the initial conditions of some filters, which may adversely affect

the robustness of the estimator, [17, Remark 7] and [19].

In the recent paper [5] a procedure to generate, from a scalar LRE, new scalar LREs where the new regressor

satisfies some excitation conditions, even in the case when the original regressor is not exciting, was proposed.

Instrumental for the development of the new adaptation algorithm is to borrow the key idea of the parameter30

estimation based observer proposed in [14], later generalized in [15], to generate the new LRE that includes some

free signals. Then, applying the energy pumping-and-damping injection principle of [23], we select these signals to

guarantee some excitation properties of the new regressor. Unfortunately, to prove that the aforementioned excitation

properties guarantee parameter convergence it is necessary to assume some a priori non-verifiable conditions [5,

Proposition 3]—in particular the absolute integrability of a signal and a non-standard requirement on the limiting35

behavior of some of the components of the trajectories of the estimator.

In this paper we extend the DREM procedure and, in particular the results of [5], in several directions with our

main contributions summarized as follows.

C1 We give a definite answer to the question of ensuring that the new regressor is PE assuming only the extremely

weak condition of IE of the original vector regressor. Towards this end, still abiding to the energy pumping-40

and-damping injection principle of [23], we propose a new selection of the free signals of the LRE generator

of [5] for which the exponential convergence proof can be completed without any additional assumptions. In

summary, the main contribution of the paper is to construct a new LRE with a regressor which is PE, even

though the original regressor Ω is not.

C2 We illustrate our result with the important example of parameter identification of linear time-invariant (LTI)45

systems. It is well-known that a necessary and sufficient condition for global exponential convergence of the

standard gradient (or least squares) estimators is the sufficient richness condition of the plants input signal

[21, Theorems 2.7.2 and 2.7.3], which is equivalent to the PE of the original regressor. We prove here that this

condition is not necessary, and show that it is possible to exponentially estimate the parameters of the plant

under the very weak assumption of IE of the original regressor.50

C3 Motivated by the practical relevance of DT implementations we extend the LRE generator procedure of [5],

which was given for the CT case, to the DT case. Also, we propose the new DT signals that yield essentially

the same results of CT mentioned in C1 and C2 above.
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The remainder of the paper is organized as follows. Some background material of the Kreisselmeier regressor

extension (KRE) reported in [16, Subsection 4.1.2] and [17, Subsection IV-B], DREM estimators and the LRE gen-55

erator procedure of [5] is given in Section 2. In Section 3 we present our main result discussed in C1 above. In

Section 4 we briefly discuss the results. Section 5 presents the application to the parameter identification of LTI

systems mentioned in C2. Simulation results of the DT version of the result are presented in Section 6. The paper

is wrapped-up with concluding remarks and future research in Section 7. To simplify the reading, a list of acronyms

is given at the end of the paper.60

Notation. In is the n × n identity matrix. Z>0 and Z≥0 denote the positive and non-negative integer numbers,

respectively. For x ∈ Rn, we denote the Euclidean norm |x|2 := x>x. CT signals s : R≥0 → R are denoted s(t),

while for DT sequences s : Z≥0 → R we use s(k) := s(kTs), with Ts ∈ R>0 the sampling time. The action of an

operator H : L∞e → L∞e on a CT signal s(t) is denoted as H[s](t), while for an operator H : `∞e → `∞e and65

a sequence s(k) we use H[s](k). In particular, we define the derivative operator pn[s](t) =: dns(t)
dtn and the delay

operator q±n[s](k) =: s(k ± n), where n ∈ Z>0. When a formula is applicable to CT signals and DT sequences the

time argument is omitted.

2. Background Material

In this section we present the following preliminary results which are instrumental for the development of our70

new results.

� Derivation and properties of the KRE with the DREM estimator in CT [16, Proposition 3] [2, Proposition 1]

and in DT [18, Proposition 3].

� Generation of new LREs for CT [5, Proposition 1]2 and DT. Since the derivation of the DT LREs is reported

here for the first time, we present also a detailed proof of the proposition.75

� Properties of the standard gradient estimator for the new LRE in CT [2, Proposition 1] and in DT [18,

Proposition 3].

The following definitions will be used in the sequel.

Definition 1. A bounded signal s ∈ Rr×s is PE [21] if∫ t+Ta

t

s(τ)s>(τ)dτ ≥ CaIr,

for some Ca > 0 and Ta > 0 and for all t ≥ 0 in CT and

k+kb∑
j=k

s(j)s>(j) ≥ CbIr,

2As explained in Section 4 there is a slight modification of the z(t) dynamics with respect to the one given in [5, Proposition 1], namely

the addition of a signal u4(t), that is introduced to simplify the proof of boundedness of z(t).
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for some Cb > 0 and kb ∈ Z>0 and for all k ∈ Z≥0 in DT.

It is said to be IE [9, 10] if ∫ tc

0

s(τ)s>(τ)dτ ≥ CcIr

for some Cc > 0 and tc > 0 in CT and

kd∑
j=0

s(j)s>(j) ≥ CdIr,

for some Cd > 0 and kd ∈ Z>0 in DT.80

Proposition 1 (Construction of the KRE). Consider the LRE

Y = Ωθ (1)

where Y ∈ Rn, Ω ∈ Rn×q are bounded, measurable signals and θ ∈ Rq is a constant vector of unknown parameters.

Fix the constants λ > 0, g > 0, 0 < α < 1, and define the signals

Z = H[Ω>Y]

Ψ = H[Ω>Ω]

Y = adj{Ψ}Z

∆ = det{Ψ}, (2)

where

H[s] =


g

p+λ [s](t) in CT

g
q−α [s](k) in DT,

and adj{·} denotes the adjugate matrix.3

P1 The signal ∆ verifies

∆ ≥ 0. (3)

P2 The following implications are true [3, Proposition 1]

Ω is


IE

PE

⇒ ∆ is


IE

PE

(4)

P3 The q scalar LREs

Yi = ∆θi, i ∈ {1, 2, . . . , q}, (5)

hold.

3Notice that a state space realization of the operator H : s 7→ y is ẏ(t) = −λy(t) + gs(t) in CT and y(k + 1) = αy(k) + gs(k) in DT.
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Proof. A detailed proof of the proposition may be found in [5]. For the sake of completeness we give below a brief

sketch of it.

From (1), the extended LRE Ω>Y = Ω>Ωθ follows. Then, due to the linearity and BIBO stability of the chosen85

H[s], for the signals Z and Ψ it holds Z = Ψθ. Recalling that the identity adj{Ψ}Ψ = det{Ψ}I, which holds even

for a singular Ψ, scalar LREs (5) follow.

The matrix Ψ is generated applying H to the semi-positive-definite matrix Ω>Ω, and it is straightforward to show

that Ψ is also a semi-positive-definite matrix; thus, (3) follows.

Finally, the implication (4) can be established by solving the differential or difference equation defined by H in90

CT or DT, respectively, and deriving a lower bound for the eigenvalues of Ψ; see [3, 5] for details. ���

Proposition 2 (Generation of new LREs). Consider the scalar LREs (5).4 Define the dynamic extension via the

following (difference and differential) equations

d[z] = u2Y + u3z + u4, z(0) = 0 (6a)

d[ξ] = Aξ + b, ξ(0) = col(0, 0) (6b)

d[Φ] = AΦ, Φ(0) = col(1, 0), (6c)

where the operator d[·] is defined as

d[u] =


p[u](t) in CT

q[u](k) in DT

(7)

and we defined

A :=

A11 u1

u2∆ u3

 , b :=

−u1z
u4

 , (8)

with ui ∈ R, i = 1, . . . , 4, arbitrary signals and

A11 =


0 in CT

1 in DT

(9)

The new LRE

Y = Φ2θ, (10)

holds with

Y := z − ξ2,

and Φ2 the second component of the vector Φ defined in (6c).

Proof. [DT version]5 Notice that, since θ is constant, we can write

θ(k + 1) = θ(k) + u1(k)[z(k)− z(k)], θ(0) = θ. (11)

4To simplify the notation we omit the subindex i in the proposition.
5The proof of the CT case may be found in [5].

5



Combining (6a) and (11), and using (5), we can write the “virtual” LTV system

x(k + 1) = A(k)x(k) + b(k), (12)

with x(k) := col(θ(k), z(k)), A(k) and b(k) defined in (8) and initial conditions

x(0) =

θ
0

 . (13)

Define the error signal

e(k) := ξ(k)− x(k), (14)

which satisfies e(k + 1) = A(k)e(k). Consequently, from (14) and the properties of the signals Φ(k) defined in (6c),

we get

x(k) = ξ(k)− Φ(k)e1(0)

= ξ(k) + Φ(k)θ (15)

where, to get the second identity, we took into account (13) and the initial conditions in (6b).

Now Y(k)

z(k)

 =

∆(k) 0

0 1

x(k) =

∆(k) 0

0 1

(ξ(k) + Φ(k)θ
)
.

The proof is completed rewriting the latter asY(k)

z(k)

−
∆(k)ξ1(k)

ξ2(k)

 =

∆(k)Φ1

Φ2

 θ,
where (10) corresponds to the second row of this matrix equation. ���

Proposition 3 (Convergence properties of the gradient estimator). Consider the scalar LRE (10) of Proposition 2

with the gradient estimator

˙̂
θ(t) = γΦ2(t)

[
Y (t)− Φ2(t) θ̂(t)

]
, (16)

in CT and

θ̂(k + 1) = θ̂(k) +
γΦ2(k)

1 + γΦ2
2(k)

[
Y (k)− Φ2(k) θ̂(k)

]
. (17)

in DT with γ > 0.95

The following equivalences are true:

θ̂ → θ ⇔ Φ2 6∈


L2 in CT

`2 in DT

θ̂ → θ, (exp) ⇔ Φ2 ∈ PE.

Proof. A detailed proof of the proposition may be found in [2, Proposition 1] for CT and in [18, Proposition 3] for

DT. For the sake of completeness we give below a brief sketch of it.
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Consider the estimation error θ̃ := θ̂ − θ. In CT, the parameter error equation takes the form

˙̃
θ(t) = −γΦ2

2(t)θ̃(t),

and in DT is

θ̃(k + 1) =
1

1 + γΦ2
2(k)

θ̃(k).

For both error dynamics equations, proofs of the implications of Proposition 3 are widely known in adaptive control

[8, 21]. ���

3. Main Result100

In this section we give the main result of the paper, namely the selection of the signals ui, i = 1, . . . , 4, in (6)-(8)

that ensure the new regressor Φ2 is PE under the very weak assumption of IE of the regressor Ω of the original LRE

(1). In the DT case, it is necessary to impose an additional assumption on a tuning parameter.

Proposition 4. Consider the LRE (1) and the KRE construction of Proposition 1. Assume Ω is IE. Consider the

dynamics (6)-(8) with the signals

u(t) =


u1(t)

u2(t)

u3(t)

u4(t)

 =


−µ∆(t)Φ1(t)

µΦ1(t)

−Ṽ (t)

[Ṽ (t)− µ]z(t)

 , (18)

in CT and

u(k) =


u1(k)

u2(k)

u3(k)

u4(k)

 =


−Tµ∆(k)Φ1(k)

TµΦ1(k)

1− T Ṽ (k)

[T Ṽ (k)− b]z(k)

 (19)

in DT, where

Ṽ :=
1

2

(
Φ2

1 + Φ2
2

)
− β, (20)

with 0 < b < 1, β > 1
2 , µ > 0 and T > 0 is a small number such that we can assume6

T 2 ≈ 0. (21)

F1 The signals z, ξ and Φ are bounded.

F2 Φ2 is PE.105

Proof. The proof proceeds in the following three steps.

� Proof of boundedness of Φ.

� Proof of PE of Φ2.

6See the second bullet in Section 4 for the motivation to include this assumption.
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� Proof of boundedness of z and ξ.

Although the arguments for the CT and the DT case are similar, for the sake of clarity, we present them in separate110

subsections whenever needed.

(i) Proof of boundedness of Φ(t)

Replacing (18) in (6)-(8) yields

Φ̇1(t) = −µ∆(t)Φ2(t) Φ1(t), (22a)

Φ̇2(t) = µ∆(t)Φ2
1(t)− Ṽ (t)Φ2(t). (22b)

From (20) and the equations of Φ(t) above we immediately get

˙̃V (t) = −Φ2
2(t)Ṽ (t), (23)

from which we conclude the invariance of the set

Ω := {Φ ∈ R2|1
2

(
Φ2

1 + Φ2
2

)
= β}. (24)

Now, invoking the initial condition constraint Φ1(0) = 1, and Φ2(0) = 0, we have

1

2
(Φ2

1(0) + Φ2
2(0)) =

1

2

⇔ Ṽ (0) + β =
1

2

⇔ Ṽ (0) =
1

2
− β

⇒ Ṽ (0) < 0,

where we used β > 1
2 to get the last implication. The latter inequality implies that the trajectory starts inside

the disk delimited by the set Ω. This, together with the invariance of the set implies, that the whole trajectory

(Φ1(t),Φ2(t)) is inside this disk, that is,

Ṽ (t) ≤ 0, ∀t≥0. (25)

Replacing the bound above in (23) we have that ˙̃V (t) ≥ 0 from which we conclude that Ṽ (t) is non-decreasing, hence

Ṽ (t) ≥ Ṽ (0) =
1

2
− β. (26)

Combining the bounds (25) and (26) we conclude that

1 ≤ Φ2
1(t) + Φ2

2(t) ≤ 2β.

The bounds above can be further sharpened as follows. From the constant µ(t) ≥ 0, (22b), (25), (3), and recalling

the initial condition Φ2(0) = 0, it follows that Φ̇2(t) ≥ 0 and, consequently, Φ2(t) ≥ 0 for all t. Moreover,

Φ̇1(t) = −µ∆(t)Φ2(t) Φ1 ≤ 0,

hence Φ1(t) is not increasing and, recalling that Φ1(0) = 1, it follows that 0 ≤ Φ1(t) ≤ 1.

In summary, the whole trajectory Φ(t) lives in the gray section indicated in Fig. 1.
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Figure 1: Behavior of the trajectory Φ.

(ii) Proof of boundedness of Φ(k)115

Replacing (19) in (6)-(8) yields the dynamics

Φ(k + 1) =

 1 −Tµ∆(k)Φ1(k)

Tµ∆(k)Φ1(k) 1− T Ṽ (k)

Φ(k). (27)

Hence, computing

|Φ(k + 1)|2 =Φ>(k)

 1 Tµ∆(k)Φ1(k)

−Tµ∆(k)Φ1(k) 1− T Ṽ (k)

 1 −Tµ∆(k)Φ1(k)

Tµ∆(k)Φ1(k) 1− T Ṽ (k)

Φ(k)

=Φ>(k)

1 0

0 1− 2T Ṽ (k)

Φ(k) + T 2Φ>(k)

 µ2∆2(k)Φ2
1(k) −µ∆(k)Ṽ (k)Φ1(k)

−µ∆(k)Ṽ (k)Φ1(k) µ2∆2(k)Φ2
1(k) + Ṽ 2(k)

Φ(k)

=|Φ(k)|2 − 2T Ṽ (k)Φ2
2(k) + T 2Φ>(k)

 µ2∆2(k)Φ2
1(k) −µ∆(k)Ṽ (k)Φ1(k)

−µ∆(k)Ṽ (k)Φ1(k) µ2∆2(k)Φ2
1(k) + Ṽ 2(k)

Φ(k).

Invoking the assumption that T 2 ≈ 0 we obtain

Ṽ (k + 1) = Ṽ (k)− T Ṽ (k)Φ2
2(k) (28)

from which we conclude the invariance of the set (24).

Following verbatim the reasoning carried out in CT we conclude that the whole trajectory (Φ1(k),Φ2(k)) is inside

the disk described by the set Ω, that is,

Ṽ (k) ≤ 0, ∀k ∈ Z≥0. (29)

Replacing the bound above in (28) we have that Ṽ (k) is non-decreasing, hence

Ṽ (k) ≥ Ṽ (0) =
1

2
− β. (30)

Combining the bounds (29) and (30) we conclude that

1 ≤ Φ2
1(k) + Φ2

2(k) ≤ 2β.
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As done in CT the bounds above can be further sharpened as follows. From (27) we have that

Φ2(k + 1) = [1− T Ṽ (k)]Φ2(k) + Tµ∆(k)Φ2
1(k).

From µ > 0, ∆(k) ≥ 0 and (25) it follows that Φ2(k) is non-decreasing. Moreover, recalling the initial condition

Φ2(0) = 0, it follows that Φ2(k) ≥ 0 for all k ∈ Z≥0.

Now, from (27) we also have that

Φ1(k + 1) = [1− Tµ∆(k)Φ2(k)]Φ1(k).

Since, the term in brackets belongs to the interval [0, 1) under a proper—sufficiently small—choice of T , we have

that the sequence Φ1(k) is non-increasing and, recalling that Φ1(0) = 1, it follows that 0 ≤ Φ1(k) ≤ 1.120

In summary, the whole trajectory Φ(k) lives in the gray section indicated in Fig. 1.

(iii) Proof of PE of Φ2

The assumption that ∆(t) in IE implies that there exists a t0 ∈ (0, tc] such that ∆(t0) > 0, which in turn implies

that there exists a tρ > 0 such that ρ := Φ2(tρ) > 0. Since we proved above that Φ2(t) is non-decreasing we have

that

Φ2(t) ≥ ρ > 0, ∀t ≥ tρ.

Consequently,

lim inf
t→∞

Φ2(t) > 0,

and Φ2(t) is PE.7

Exaclty the same arguments can be used in DT to prove that

lim inf
k→∞

Φ2(k) > 0,

hence Φ2(k) is PE.

(iii) Boundedness of z and ξ125

From (15)—and the equivalent relation in CT [5]—we have that

x =

θ
z

 = ξ + Φθ.

Since we proved that Φ is bounded, to establish boundedness of ξ it suffices to prove that z is bounded. Towards

this end, we replace (18) or (19) in the z dynamics of (6a) to get

ż(t) = −Ṽ (t)z(t) + µΦ1(t)Y(t) + u4(t)

= −µz(t) + µΦ1(t)Y(t),

7It is well-known that a scalar signal (with a bounded derivative) that does not converge to zero is PE.
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in CT and

z(k) = [1− T Ṽ (k)]z(k) + TµΦ1(k)Y(k) + u4(k)

= (1− b)z(k) + TµΦ1(k)Y(k),

in DT. In both cases, we are dealing with asymptotically stable LTI filters with bounded input, completing the proof.

���

4. Discussion

The following remarks are in order.

130

• The main message of Proposition 4 is that it is possible to estimate the parameters of a classical vector LRE (1)

even when the regressor Ω is not PE—the convergence of the new parameter estimator being global and exponential.8

• The choice of the signals u(k) given in (19) is motivated by the CT dynamics (22). Indeed, the DT dynamics

of Φ(k) given in (27) is the Euler approximation of (22). It is well-known [22] that the Euler approximation is a135

numerical integration method of order one whose global approximation error is O(T 2).9 This explains our need to

impose the assumption (21) in our stability analysis. It should be underscored that if we remove this assumption the

result is not valid anymore. However, notice that T is a designer chosen constant. See also the discussion pertaining

this issue in Section 6.

140

• Although it is possible to consider other (higher order) discretization methods of the Φ(t) dynamics (22), the

resulting discretized dynamics cannot be matched with the A(k) matrix given in (8) due to the fact that—as seen in

(9)—it is necessary to have the term A11(k) = 1. A condition that stymies the selection of a more precise discretiza-

tion method.

145

• Another alternative to remove the undesirable assumption (21) is to directly pose a regulation problem for the

DT system identified in Proposition 2, that is

Φ(k + 1) =

 1 u1(k)

u2(k)∆(k) u3(k)

Φ(k).

The task is to select the signals ui(k), i = 1, 2, 3, that insure boundedness of all signals and that Φ2(k) is PE.

Unfortunately, this a highly complicated nonlinear control problem with non-standard regulation objectives.

• In [5] the proof of boundedness of the signal z(t) is quite involved and requires the addition of an unverifiable

absolute integrability assumption [5, Equation (14)]. This is due to the fact that the new free signal u4(t) in the150

8Additional properties of the DREM estimator, like element-by-element monotonicity of the parameter errors, may be found in [17].
9f(t, T ) is O(T 2), refered in the literature as“big o of T 2”, if and only if |f(t, T )| ≤ CT 2 with C a constant independent of t and T .
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vector b(t) in (8), was not included in [5]. It is clear that the addition of this signal does not affect the main result,

and trivializes the proof of boundedness of z(t).

5. Application to Identification of CT Systems in Unexcited Conditions

To illustrate the result of Proposition 4, we consider in this section the problem of parameter estimation of an

CT LTI system and choose, as an example, the system:

yp(t) =
B(p)

A(p)
[up](t) =

b1p+ b0
p2 + a1p+ a0

[up](t), (31)

where up(t) ∈ R and yp(t) ∈ R are the control and output signals, respectively. Following the standard procedure

[21, Subsection 2.2] we derive the LRE (1) for the system (31) as follows

Y(t) := yp(t), Ω(t) :=

F (p)B(p)
A(p)

F (p)

 [up](t), F (p) :=
1

λ(p)


1

p
...

pn−1

 , θ :=



λ0 − a0
...

λn−1 − an−1
b0
...

bn−1


, (32)

with λ(p) =
∑n
i=0 λip

i, λn = 1, an arbitrary Hurwitz polynomial.

155

We consider the following simulation scenarios.

S1 Estimation of the vector θ with the standard gradient estimator

˙̂
θ(t) = ΓΩ(t)

[
Y(t)− Ω>(t)θ̂(t)

]
, Γ > 0, (33)

using the original vector LRE (1).

S2 Estimation of the parameters θi using the scalar regression form (5) obtained via the KRE and DREM of

Proposition 1, that is

˙̂
θi(t) = γi∆(t)

[
Yi(t)−∆(t)θ̂i(t)

]
, γi > 0. (34)

S3 Estimation of the parameters θi using the new scalar regression form (10) obtained via the LRE generator of

Proposition 4, that is

˙̂
θi(t) = γiΦ2(t)

(
Yi(t)− Φ2(t)θ̂i(t)

)
, γi > 0. (35)

S4 Simulation of the three estimators above for a sufficiently rich input signal

upa(t) = sin(2πt) + cos(3t), (36)

and for an input signal that is not sufficiently rich, but generates a regressor Ω which is IE, namely

upb(t) = e−2t + e−1.5t. (37)

12
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Figure 2: θ̃(t) with gradient algorithm (33) and upa(t)

The following remarks concerning the theoretical results are in order

� For the sufficiently rich signal (36) the three estimators yield consistent estimates.

� For the not sufficiently rich signal (37) the first and second estimators will not generate consistent estimates.160

For the first estimator this follows from the fact that, as shown in [21, Theorems 2.7.2 and 2.7.3] sufficient

richness of the plants input signal is equivalent to PE of the regressor Ω(t). Regarding the DREM estimator

with the regressor ∆(t), it was shown in [1, Proposition 2] that DREM alone cannot relax the PE condition in

the system identification problem. Hence, sufficient richness is necessary for parameter convergence.

� On the other hand, the result of Proposition 4 ensures that DREM with the new LRE will ensure convergence165

even for the input signal (37).

The simulations were carried out for the system studied in [1, Section 5], that is (a0, a1, b0, b1) = (2, 1, 1, 2) and

we choose λ1 = 20 and λ0 = 100. This yields θ =
[
98 19 1 2

]
.

For all estimators we set θ̂i(0) = 0. The gain matrix for the first algorithm (33) is

Γ = 100 diag(100, 50, 30, 10).

For the estimators (34) and(35) we choose γi = 1, i = 1, . . . , 4. The parameters of the KRE (2) are g = 100, λ = 30.

For the new LRE we choose β = 0.51.170

The simulation results, which corroborate the claims above, are shown in Figs. 2–7. Notice, in particular, that

for the input signal (37) only DREM with the new LRE ensures convergence.

To test the robustness of the various estimators bounded noise was added to the output signal, as shown in Fig. 8,

for the case of the input upb(t).

As expected, in this case none of the estimators ensures that the error θ̃(t) converges to zero, as shown in Figs. 9–175

11. However, notice that the gradient algorithm (33) actually diverges. On the other hand, while the steady state
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Figure 3: θ̃(t) with DREM procedure, estimator (34) and upa(t)
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Figure 4: θ̃(t) with DREM procedure and new LRE, estimator (35) and upa(t)

error of the estimator with DREM (34) is quite large, the one of (35) with the new LRE, is negligible—illustrating

the robustness to additive noise of the the new scheme.

6. Simulations of the Discrete-time LRE Generator

In this section, we present comparative simulations of the DT estimation of a scalar parameter θ ∈ R using the

standard gradient descent adaptation with the original and the new regressor, that is,

θ̂ori(k + 1) =θ̂ori(k) +
γ∆(k)

1 + γ∆2(k)

[
Y(k)−∆(k)θ̂ori(k)

]
(38)

θ̂new(k + 1) =θ̂new(k) +
γΦ2(k)

1 + γΦ2
2(k)

[
Y (k)− Φ2(k)θ̂new(k)

]
, (39)
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Figure 5: θ̃(t) with gradient algorithm (33) and upb(t)
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Figure 6: θ̃(t) with DREM procedure, estimator (34) and upb(t)

with γ > 0 for three different signals ∆(k), namely:180

∆a(k) = e−3t

∆b(k) =

1 t ∈ [0, 0.2]

0 t > 0.2

∆c(k) =
1

7 + t
.

(40)

with t = kT .

Clearly, the three signals are not PE and belong to L2. Hence, according with Proposition 3 the estimator (38)

will not converge. On the other hand, since they are IE, the estimator (39) should guarantee convergence for small

values of T .

In the first simulations we consider the unknown parameter θ = 5 and select β = 3
4 , µ = 0.4, b = 0.1 and γ = 0.2.185
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Figure 7: θ̃(t) with DREM procedure and new LRE, estimator (35) and upb(t)
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Figure 8: yp(t) with additive noise η(t)

The initial conditions of the estimators are set as θ̂ori(0) = 0 and θ̂new(0) = 0. In the light of the key assumption

(21) we also check the effect of the size of the constant T , carrying out simulations using the values T = 0.01, T = 0.1

and T = 1.5.

The results of these simulations are given in Figs. 12–14, that confirm the predictions of the theoretical analysis.

We also notice that taking a large value for T does not affect the steady-state performance, but it increases significantly190

the convergence time. The rationale for this behavior may be explained as follows. In the scenarios considered above

the signals ∆(k) converge to zero, reducing the effect of the truncation error.

The situation is different if ∆(k) does not converge to zero, for instance if it is PE. In that case, it is expected

that the performance is degraded with increasing values of T . To validate this conjecture we carried out a simulation

with the PE signal ∆d(k) = cos
(
π
4 k
)
. In this case the estimator (38) always converges. However, (39) will ensure195

parameter convergence only for small values of T . This is corroborated with the plots of Fig. 15 that show how the
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Figure 9: θ̃(t) (under the influence of η(t)) with gradient algorithm (33) and upb(t)
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Figure 10: θ̃(t) (under the influence of η(t)) with DREM procedure, estimator (34) and upb(t)

performance of the estimator (39) degrades with increasing T . Moreover, from the phase portrait we notice that

for T = 1.5 the signal Φ(k) does not live in the gray section indicated in Fig. 1, violating the predictions of the

theory because assumption (21) is not valid anymore. It is important to underscore that the main motivation for

the introduction of the LRE generator is for the case when the original regressor is not PE, therefore the scenario200

considered in these simulations will not be encountered in practice.

7. Conclusions and Future Research

We have proposed new CT and DT estimators for the LRE (1) that ensure global exponential convergence under

the weak assumption that the regressor Ω is IE. To the best of our knowledge, this is the first time that such a result
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Figure 11: θ̃(t) (under the influence of η(t)) with DREM procedure and new filter, estimator (35) and upb(t)

is established for an estimator that does not rely on off-line data memory manipulation.10 It should be noticed,205

however, that the estimator is quite computationally demanding, requiring the introduction of various filters and

algebraic operations. Moreover, experience has shown that tuning of the various gains of the algorithm—that is now

done via trail-and-error—is far from obvious.

Our current efforts are directed towards the relaxation of the assumption (21) for the DT estimator and to further

study the effect of noise in the estimators performance—in particular carrying out a theoretical analysis.210
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