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Abstract
Incipient fault detection is growing as a challenging and hot topic in industrial and academic areas.
It is essential to avoid slight unpermitted changes of a system state that can be aggravated and lead
to severe security issues. The main challenge of this problem lies in the fact that tiny changes in the
early stage can be blurred with noise and create confusion leading to poor detection performance of
typical fault detection methods. To detect subtle deviations buried in noise and cope with the non-
Gaussian distributed data condition while keeping with the time series information, a sensitive fault
detection methodology combining a specifically tuned Local Mahalanobis Distance (LMD) algorithm
and an Empirical Probability Density (EPD) estimation technique is proposed. More specifically, first,
a healthy domain estimation is proposed to compute the local Mahalanobis distance with optimally
tuned characteristics. To approximate a healthy domain, this work proposes a down-sampling al-
gorithm for anchors generation and a parameter estimation method optimally tuned and based on
Generalized Extreme Value distribution (GEV) for the domain margin selection. Subsequently, the
EPD cumulative sum technique is applied to the LMD result for improving the detection sensitivity
further. The performance analysis based on simulation data shows that our proposal is effective to
non-Gaussian data and sensitive for incipient fault detection. A case study based on the Continuous-
flow Stirred Tank Reactor (CSTR) further validates the effectiveness of our proposal and highlights
its benefit by comparing it with state-of-the-art-based solutions in terms of detection delay, detection
probability, false alarm probability, and area under the receiver operating characteristic curve (AUC).

1. Introduction
Health monitoring plays a key role in modern industrial

systems for increasing requirements on reliability, availabil-
ity, maintainability, and safety. With the development of
sensor technology and computational science, fault diagno-
sis, including fault detection, faulty variables isolation and
fault severity estimation, has become a more and more hot
topic in the last decade. Its applications cover abundant sce-
narios such as chemical manufacturing, electrical system,
and mechanical process [1, 33, 39].

Generally, a fault, defined as "the unpermitted deviation
of at least one process parameter from an acceptable condi-
tion", can lead to system performance degradation or even an
unexpected stop [11, 29]. To avoid a severe accident and re-
duce economic impact, protection actions or necessary fault-
tolerant control are required for systems with faults, which
highly rely on quick and accurate fault detection. Therefore,
it is essential to develop effective fault detection methodolo-
gies with a short detection time delay.

Motivated by the above goal, masses of studies were pre-
sented in the literature to characterize fault behavior and pro-
vide solutions for fault detection. Typical methods like She-
whart charts, cumulative sum, and EWMA (Exponentially
Weighted Moving Average) provided a simple and effective
univariatemeasurement to characterize process behavior [27,
22, 17, 25]. Then, parts of these methods were extended for
multivariate analysis, such as MEWMA (Multivariate Ex-
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ponentially Weighted Moving Average) and the MCUSUM
(Multivariate Cumulative Sum) [18, 8].

For high dimensional data, multivariate statistical tech-
niques were proposed to reduce the data dimension and fur-
ther improve the detection capability by considering the rel-
evant information lying on a low dimensional subspace. As
an example, fault detection approaches using PCA (Principal
Component Analysis), ICA (Independent Component Anal-
ysis), and FDA (Fisher Discriminant Analysis) have been
well studied and compared in [34]. In the multivariate sta-
tistical framework, Hotelling’s T 2 and SPE(Q) statistics are
widely used as indexes to determine if observed data is dif-
ferent from the healthy one [35]. However, one drawback of
these methods lies in their ineffectiveness for non-Gaussian
data or non-linear processes [34].

To cope with this problem, methods focusing on the re-
lation of system input and output were proposed, e.g., PLS
(Partial Least Squares) [19], GCCA (Generalized Canonical
Correlation Analysis) [4], CVA (Canonical Variate Analy-
sis) [21], and CVDA (Canonical Variate Dissimilarity Anal-
ysis) [24]. Despite the pronounced performance of existing
approaches, fault detection for non-Gaussian distributed data
and non-linear systems with minimal false alarm and missed
detection remains an open issue.

Recently, intelligent approaches based onmachine learn-
ing theories are widely used in fault detection problems for
their powerful feature representation capability. In partic-
ular, neural network-based methods, which can automati-
cally extract faulty features and recognize different kinds of
samples, are attracting much interest from academics [30,
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5, 15]. However, major neural networks methods are super-
vised and require a large number of labeled data for both
healthy and faulty scenarios, which is impractical for indus-
trial monitoring since faulty behaviors are diverse and not
always predictable. The lack of faulty knowledge induced
the One-Class Classification (OCC) problem, for which the
auto-encoders method, one-class Support Vector Machine
(OSVM), and k-centers are common solutions [31, 12, 37].
Their drawback is either the weak robustness to noise distur-
bances or the requirement of enormous sample data set.

Furthermore, another hot challenge of the fault detection
problem is that subtle deviation is usually buried in noise,
leading to the difficulty of detection. The subtle deviation
is the so-called incipient fault described as a slowly varying
change of parameters or a disturbance with tiny fault ampli-
tude compared to the noise power [11, 10]. Unfortunately,
most of the aforementioned approaches are reported as not
sensitive enough to detect incipient faults except the CVDA
method [24].

In contrast to multivariate statistical techniques, some
divergence-based approaches introduced in [38, 6, 9, 40] em-
ploy the Kernel Density Estimation (KDE) method to esti-
mate the probability distribution and evaluate the dissimi-
larity of observed data and healthy data. Although these
methods show the benefit of using the Kullback–Leibler and
Jensen–Shannon divergence in incipient fault detection, they
seem unsuitable for online applications due to the strong de-
pendence on a large sample number to estimate probability
distribution.

Recently, a method combining the Empirical Probability
Density (EPD) and Cumulative sum (CUSUM) techniques
is proposed in [32] to provide a sensitive solution for incip-
ient fault detection. However, the so-called EPD-CUSUM
method assumes that a reference fault-free signal with the
same time-scale as the faulty one is available, which is im-
practical for most industrial applications.

Motivated by the above discussion, this work proposes
an incipient fault detection methodology with the goals of 1)
coping with the non-Gaussian and non-linear cases, 2) with-
out using prior knowledge of the faulty behavior, 3) improv-
ing detection sensitivity. The contributions associated with
our proposal are composed of the following three points.

1. Considering samples’ spatial distribution, this work
first proposes a method to determine the healthy do-
main of fault-free samples with multiple anchors and
a domain margin. Based on the approximated healthy
domain, a key index named the local Mahalanobis dis-
tance (LMD), is defined as the closeness measurement
of observed samples concerning the healthy domain.
Although the Mahalanobis distance (MD) is used to
measure the closeness of samples and a Gaussian dis-
tribution, the goal of our LMD proposal is to keep the
advantages of MD and cope with the ineffectiveness
for non-Gaussian cases. Then this allows to reach a
good efficiency for non-linear systems. The properties
of the LMD, including its probability density distribu-
tion and the behavior in healthy conditions, are also

studied and introduced to provide a theoretical foun-
dation for fault detection.

2. In the healthy domain approximation procedure, an
optimized down-sampling algorithm for anchors gen-
eration, extracting the spatial distribution information
of the healthy domain, is developed. The optimization
of this procedure is performed to make a trade-off be-
tween computation cost and approximation error. Ad-
ditionally, for the selection of the healthy domain mar-
gin, a convex optimization problem based on the gen-
eralized extreme value distribution (GEV) as the dis-
tribution model of LMD is established and solved.

3. Finally, our early proposed EPD-CUSUM method is
improved to overcome its primary drawback and be-
come applicable to the LMD index. Then, it is specif-
ically combined with the LMD index as the proposed
incipient fault detection framework to increase sensi-
tivity further. The benefit of using the improved EPD-
CUSUM method is shown by comparing it with the
original LMD index and the typical cumulative sum
method, which again validates its excellent incipient
detection capability.

The remaining part of this paper is organized as follows.
Section 2 formulates the fault detection problem and intro-
duces the challenge in the non-Gaussian distribution case.
The healthy domain approximation for fault detection is pre-
sented in section 3, including the definition of LMD, the
down-sampling algorithm for anchors generation, and pa-
rameters estimation of the GEV model for margin selection.
Then the fault detection framework based on LMD and EPD-
CUSUM is proposed and detailed in section 4. Subsequently,
the performance of our proposal is evaluated by considering
different noise levels and fault severity in section 5. In sec-
tion 6, the CSTR process is introduced as a case study for
the effectiveness validation, and the performance of the pro-
posed method is compared with existing methods. Finally,
section 7 concludes this work.

2. Problem formulation and background
Let’s consider a sample vector x ∈ ℝm with m variables

representing features or original signals, for example, elec-
trical signal, temperature, pressure, and concentration. In
the fault diagnosis context, it is natural to decide x as be-
ing healthy or faulty. From the view of spatial distribution,
x belongs to one of the two domains in m dimension space,
such as the healthy domain denoted as and the faulty one
denoted as  , where  ∩  = ∅ and  ∪  = ℝm. From
this point of view, fault detection turns to determine such a
separating hyperplane (x) − b = 0 satisfying

(x) − b ≤ 0, for x ∈ 
(x) − b > 0, for x ∈ 

where (⋅) ∶ ℝm → ℝ1 and b is an offset.
Although supervised approaches, such as Support Vector

Machines (SVM), can effectively achieve an optimal sepa-
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Figure 1: Healthy domain approximation based on Hotelling's T 2 and SPE(Q) statistics
for di�erent cases. Case 1: two Gaussian distributions with same variance; Case 2: two
Gaussian distributions with di�erent variances; Case 3: two sine functions; Case 4: Gaus-
sian mixture distribution.

ration based on negative and positive samples [16], it is im-
practical for industrial applications. The lack of sufficient
faulty samples in the training step induces themore challeng-
ing OCC problem. A primary solution for the OCC problem
is to obtain the description of the healthy domain in feature
space based on historical fault-free samples, which is called
healthy domain approximation.

For example, hypersphere in m dimension space is com-
monly used as a model to approximate the healthy domain
. Two common PCA-based statistics, namely Hotelling’s
T 2 and SPE(Q), can be regarded as two examples of healthy
domain approximation, where Hotelling’s T 2 is the partic-
ular case of the SPE(Q) statistics considered in normalized
principal component space. The two statistics can be ex-
pressed in the form of separating hyperplane as follows

• Hotelling’s T 2: (xpc) = xTpcΛ−1xpc , b = gtℎ,T 2
• SPE(Q): (xres) = xTresxres, b = gtℎ,spe

where xpc and xres are transformed data with zero mean inL
dimension principal space and residual space, respectively;
Λ = diag(�1,⋯ , �j ,⋯ , �L) is the corresponding eigenval-
ues matrix whose element �j is also the variance of the jtℎ
variable of xpc ; gtℎ,T 2 and gtℎ,spe are thresholds for these twostatistics.

However, Hotelling’s T 2 and SPE(Q) statistics are only
effective to elliptically distributed data, e.g., for multivari-
ate Gaussian distribution and multivariate t-distribution. As
shown in Fig.1, SPE(Q) statistics is only effective in case 1,
the Gaussian distribution with the same variance. For case
2, the two Gaussian distributions with different variances,
the approximate healthy domain determined using SPE(Q)
is dramatically larger than the actual distribution, see Fig.1-
(f). Although for both cases 1 and 2, Hotelling’s T 2 can fit
data perfectly for its normalization of each dimension, it can
not specify an accurate border of the healthy domain for non-
elliptically distributed data, see cases 3 and 4.

In fact, signals like cases 3 and 4 are quite common in
industrial applications, but most fault detection approaches
are only dedicated to Gaussian distribution cases. There-
fore, this work aims at finding an accurate description of the
healthy domain for non-elliptically distributed data by only
using fault-free samples.

3. Healthy domain approximation
Let the fault-free sample matrix be X∗. To specify the

healthy domain’s border, we focus on the samples’ spatial
distribution feature while ignoring their probability density
distribution. For the irregularity of spatial distribution, we
use multiple hyperspheres with the same radius but different
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Figure 2: Proposed idea for healthy domain approximation
(red points are the centers of hyperspheres)

centers to describe the healthy domain.
As illustrated in Fig.2, with the position of centers and

the radius’s value being properly specified, the overlapping
hyperspheres can perfectly cover all the fault-free samples.
These centers, denoted as C and referred to as anchors here-
after, contain essential spatial information of the healthy do-
main. Likewise, the radius denoted as � specifies the margin
of the domain. In other words, an approximate healthy do-
main is completely determined by an anchor set S such as
S = {C1,⋯ ,Ck,⋯}, S ⊆  and the healthy domain mar-
gin �. Consequently, a fault detection procedure can be per-
formed by deciding if a sample is inside the healthy domain.

To obtain such an approximate description of , a par-
ticular distance measure is first defined, providing mathe-
matical tools for the later analysis. Approaches for anchors
generation and domain margin selection will be introduced
in the rest of this section.
3.1. Local Mahalanobis distance

In the concept of healthy domain approximation, dis-
tance measure [3] plays a central role, motivating the fol-
lowing discussion on the distance measure.

In multivariate applications, Mahalanobis distance at-
tracts more interest than Euclidean distance because the for-
mer is unitless and scale-invariant and considers the corre-
lations of variables. Suppose A,B are two sample vectors
generated from the same distribution with the mean vector
� and the covariance matrix �. Then the multivariate Ma-
halanobis distance of A with respect to � is defined as:

dM (A,�) =
√

(A − �)T �−1 (A − �) (1)
The Mahalanobis distance between A and B is

dM (A,B) =
√

(A − B)T �−1 (A − B) (2)
Based on Mahalanobis distance, the local Mahalanobis

distance (LMD), denoted asD, is defined to indicate the dis-
tance between a sample x and , such as:

D(x;)
def
= min

k

{

dM
(

x,Ck
)

|Ck ∈ 
} (3)

Geometrically, D(x;) is the closest Mahalanobis distance
from a sample to the domain . In the healthy domain ap-
proximation procedure, is replaced byS to obtain the esti-
mated distanceD(x;S)which is denoted as � and calculated
as:

� = D(x;S) = min
k

{

dM
(

x,Ck
)

|Ck ∈ S
} (4)

Let � be the element number of S. According to Eq.(4),
three properties of � are summarized as follows:

1. � ∈ [0,+∞)
2. For healthy samples (x ∈ ), lim

�→+∞
� = 0. Since

x ∈  and S =  when � → +∞, we have
� = D(x;S) = min

k

{

dM
(

x,Ck
)

|x,Ck ∈ S
}

Then, there is always a Ck whose value is equal to x,and the minimum value is always 0.
3. According to the theorem of extreme value statistics

[2, 13], whose introduction is given in appendix A,
the distribution of � can be modeled by the following
general form named Generalized extreme value distri-
bution (GEV) for minima

Φ(�; �, �, �) = 1 − exp

{

−
[

1 + �
(

� − �
�

)]−1∕�
}

−� − �(� − �) ≤ 0, � > 0
(5)

where �, �, � respectively the location, scale and shape
parameters.

The three properties of LMD will be used in the follow-
ing two parts to obtain optimal anchors and determine the
domain margin.
3.2. Down-sampling algorithm for anchors

generation
As previously mentioned, the healthy domain approxi-

mation for our proposal has to be done using a set of an-
chors. This part aims at generating these anchors based on
fault-free samples.

One of the goals of the anchors-generation procedure is
to remove redundancy and extract critical spatial informa-
tion from the original sample set. More precisely, geometri-
cally close samples are identified and merged as an anchor.
Although clustering algorithms, like k-means, can achieve a
similar goal, they are either easily affected by outliers or can-
not be optimized in the proposed framework. Therefore, a
distance-based down-sampling algorithm with its optimiza-
tion procedure is proposed to generate anchors.

Using the original fault-free samples matrix denoted as
X∗
K×m = [x1,⋯ ,xi,⋯ ,xK ]T, where K is the number of

samples and m is the number of variables, the procedure is
drawn according to the following main steps:

1. Calculate samples’ Mahalanobis distance dM (xi,�)considering their mean center �.
Junjie YANG et al.: Preprint submitted to Elsevier Page 4 of 15
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2. For initialization, rearrange these samples as a queue
ℚ in ascending order according to their dM value.

3. Then, take one sample xi fromℚ each time as the cen-
ter of a region whose radius is given by  and find out
all the samples inside this region, denoted as Z, such
as:

Zk =
{

xl|dM
(

xi,xl
)

≤ , xl ∈ ℚ
} (6)

4. Afterward, calculate the mean of samples inZk to ob-tain an anchor Ck

Ck = Z̄k =
∑lz
l=1 xl
lz

(7)

where lz is the element number of Zk.
5. Subsequently, remove elements of Zk from ℚ. These

samples will be represented by their anchor Ck.
6. Repeat steps 3 to 5 until ℚ is empty.
7. All the obtained anchors are grouped into the anchors

set S.
In the down-sampling procedure, the region radius  is

crucial to control the anchors’ number �: � decreases as 
increases. In fact, if  → 0+, then S is composed of all
the fault-free samples and � = K . In the opposite, when
 → ∞, then S contains only one element.

According to the definition and properties of LMD, � is
related to computational complexity and approximation er-
ror. On the one hand, a large value of � ( is small) causes a
slow calculation speed since the complexity of LMD compu-
tation is (�). On the other hand, a large � helps to reduce
approximation error because � gets close to 0 in this case.
As an example, Fig.3 shows the evolution of � and � ac-
cording to  . A slight increase of  (reducing �) can lead to
acceptable approximation error but keep a reasonable com-
putational cost, which motivates us to trade off these two
factors.

10-3 10-2 10-1 100 101
0

250

500

0

0.7

1.4

Figure 3: Evolution of LMD and the anchors' number (com-
putational complexity) against di�erent region radiuses

To quantify the approximation error, the mean square er-
ror with normalized coefficient � is used as the cost term.

Err =
1
K
∑K
i=1D

2(xi;S)
�

(8)

where the normalized coefficient � can be obtained as the
maximum error. As discussed above, when  → +∞, the
error becomes maximum, and there is only one anchor, i.e.,
S = {�}. Thus, � can be calculated as follows:

� =
∑K
i=1D

2(xi; {�})
K

=
∑K
i=1 d

2
M (xi,�)
K

(9)

Additionally, the compression rate value Cr is employed
to quantify the computational cost since the computational
complexity is related to �. It can be written as:

Cr = �
K

(10)

Ultimately, the following cost function is proposed and min-
imized to obtain the optimal radius denoted as opt.

Loss = Cr + Err (11)
opt = argmin


(Loss) (12)

Based on this knowledge, the optimization of the loss
function can be done to keep the best radius size resulting
in the minimum computational cost and approximation er-
ror. Thus, the anchors generated from this down-sampling
operation are directly used in LMD calculation.
3.3. Parameter estimation of GEV for domain

margin �
According to the third property of LMD, once the pa-

rameters of the probability distribution model of � are es-
timated, one can select the corresponding domain margin
based on the probability model for a given significance level
�. This approach helps to obtain a robust decision boundary
for healthy domain approximation by mitigating the influ-
ence of outliers.

To that end, we minimize the mean squared error of the
estimated general extreme value distribution model and the
empirical cumulative density. Then the parameters of the
model are determined when the error reaches the minimum.
This parameter estimation procedure can be described by the
following convex optimization problem.

minimize
�,�,�

1
K

K
∑

i=1

[

Φ
(

�i; �, �, �
)

− (�i)
]2

subject to − � − �(� − �i) ≤ 0, � > 0

(13)

where Φ(�i; �, �, �) is the GEV distribution function, (⋅)
is the empirical cumulative density. To solve the convex
optimization problem with multiple constraints, we employ
the Nelder–Mead method to search solutions iteratively until
the objective function (Eq.13) converges [20]. Nelder–Mead
method is a numerical technique allowing to search mini-
mum or maximum in a multidimensional space. It often
serves as a basic tool for convex optimization problemswhen
derivatives of the objective function are unknown or difficult
to calculate [20, 28, 14]. After determining the model’s pa-
rameters, the healthy domain margin � is determined with
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the given significance level �

� = Φ−1(�; �, �, �) = �+
�
�
−
� [− ln (1 − �)]−�

�
(14)

As examples, the proposed healthy domain approxima-
tion method is applied to the four cases previously presented
in section 2. The obtained results are displayed in Fig.4. The
results show that this approach yields a more representative
healthy domain approximation than the classical Hotelling’s
T 2 and SPE(Q) methods: it covers most of the fault-free
samples but excludes outliers.

Figure 4: Healthy domain approximation based on the pro-
posed method for di�erent cases

4. Fault detection
Our proposal for incipient fault detection, referred to as

Local Mahalanobis Distance Analysis (LMDA), can then be
presented in two parts: the training process and the online
monitoring. The main steps of these two parts are summa-
rized in Fig.5 and described in the following subsections.

In order to go through the explanations for the proposal
and show a step-by-step validation, we consider, in the fol-
lowing simulations, a multivariate data system example re-
ferred from the paper [36].

The considered eight-variable system with K values is:
x1(t) = 1 + sin(0.1t), x2(t) = 2cos3(0.25t) ⋅ e−t∕K

x3(t) = log(x2(t)2), x4(t) = x1(t) + x2(t)
x5(t) = x1(t) − x2(t), x6(t) = 2x1(t) + x2(t)
x7(t) = x1(t) + x3(t), x8(t) ∼ (0, 1)

(15)

In the following, let the signal vectorx∗ = (x1,⋯ , x8) standsfor a fault-free and noise-free sample case. The healthy and
faulty sample vectors respectively denoted as xℎ and the xf
can be described as:

xℎ = x∗ + v (16)
xf = x∗ + f + v′ (17)

where f is the fault component, v and v′ are noise com-
ponents whose signal-to-noise ratio (SNR) is settled to 20dB
as a default value. Without loss of generality, for this work,
the fault is modeled as a single and time-varying change oc-
curring at variable c, such as f = [0,… , t�,⋯ , 0], where �
is a constant linked to the fault severity.

Fault Free Samples
!"

Down-sampling

#

Training Process

LMD

GEV Model 
Parameters Estimation

$"

Faulty Sample
%&

Online Monitoring

LMD

EPD-CUSUM

Fault Diagnosis

$&

#

', ), *

Significance 
Level ) +

'

Margin Selection

Control Limit 
,-

Region Radius .

Figure 5: Proposed LMDA-based diagnosis procedure

4.1. Training process
The goal of this training process is to obtain the optimal

anchors set S and determine the domain margin � to provide
a setting for online monitoring. In this part, we consider a
fault-free data matrixXh for training withK×m dimensions
such as Xh

K×m = [X1,⋯ ,Xi,⋯ ,XK ]T.The first step consists in performing the down-sampling
algorithm on Xℎ with different region radius  to search for
the optimal one. The loss function given in Eq.(12) is cal-
culated and its results are shown in Fig.6. When the loss
reaches its minimum value, the searching procedure stop and
the corresponding iteration radius is obtained as the optimal

Junjie YANG et al.: Preprint submitted to Elsevier Page 6 of 15



Signal Processing

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1
Lo

ss

Optimal Point
( =2.16,Loss=0.41)

Figure 6: Evolution of loss function against region radius

one. As an example, the minimum loss and its correspond-
ing radius are marked as a red point in Fig.6.

The second step is the computation of the LMD using
the obtained anchors set as referred to in Eq.(4).

0 10 20 30 40 50 60 70 80
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O
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Solution Found

Figure 7: Objective function in the solution searching proce-
dure

Then, the third step is the GEV model estimation. To
this end, LMD values for all samples inXℎ are used and the
Nelder–Mead method is employed to solve the optimization
problem of Eq.(13). As shown in Fig.7, the objective value
decreases quickly with iterations in the considered proce-
dure. Based on the applied simulation case, after 60 iter-
ations, the solution is found for a low enough considered ob-
jective value (close to 10−3).

Fig.8 displays the estimated and the empirical cumula-
tive density function of �. The comparison of the two curves
indicates that the obtained model has a good approximation
for empirical data.

The last step is the selection of a healthy domain mar-
gin based on the obtained GEV model. The healthy domain
margin � is then determined according to Eq.(14) with the
given significance level �.

Based on the elements obtained in this training process
(anchor set S, healthy domain margin �, and significance
level �), the second part of our proposed procedure (online
monitoring) can be computed using new data that can con-
tain faulty ones.
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Figure 8: Estimated and empirical CDF curve

4.2. Online Monitoring
For this seconds part, we consider a new set of samples

with a fault occurring in x1 at t = 47s (the 47tℎ sample) with
the fault severity � = 0.02, as shown in Fig.9.

0 20 40 60 80
Times (second)

0

1

2

3
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Figure 9: Faulty and healthy x1 simulated signal

For online monitoring, the LMD value of this new set
containing faulty sample xf is first calculated based on S,
as illustrated in Fig.10. Note that the real fault occurrence
time (t = 47s) is spotted out by the green vertical dashed
line.
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Figure 10: LMD results for simulated signals

Although there are few false alarms in the healthy part
of signals, LMD results in this part are basically below the
healthy domain margin � marked as a red dashed line in
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Fig.10. Nevertheless, in the faulty part (beyond the green
vertical dashed line), LMD index increases with time and
finally exceed �.

According to this characteristic, LMD is used as the pre-
liminary monitoring index for fault detection. Despite the
effectiveness of this LMD index in the long-term for fault
detection, missed detections still exist at the beginning of
the fault occurrence, as seen in Fig.10, since the fault ampli-
tude is subtle to recognize (incipient fault). Accordingly, it
is still a challenge to detect incipient faults in the early stage.

To increase the fault detection accuracy and sensitivity,
the Empirical Probability Density Cumulative Sum (EPD-
CUSUM) technique, which is reported as a robust and sen-
sitive methodology for incipient fault detection [32], is fur-
ther applied to the LMD result. However, this technique can
not be applied directly in this work because of its strong as-
sumption requiring healthy reference signals with the same
time-scale as the faulty one. As a result, the original EPD-
CUSUM technique is improved. The main improvements
are in the following two aspects:

• First, in the original version, the observed signal is
compared with the healthy reference signal to decide
the signal’s state. Similarly, in this work, LMD in-
dex is compared with the healthy domain margin for
fault detection. Therefore, the empirical probability
density r, representing the probability of the fault oc-
currence, can recursively be calculated as follows:

r(t) = (1 − !)r(t − 1) + !I(t) (18)
where r(0) = 0, ! ∈ (0, 1] is a weight factor and

I(t) =
{

1 � > �
0 otherwise (19)

• Secondly, according to the original setting of the EPD-
CUSUM method [32], the probability density under
the healthy hypothesis is the constant 0.5, while this
value in this work is equal to 1−�. Thus, by replacing
0.5 with 1 − �, the improved EPD-CUSUM value G
is derived as:

G(t) =
{

ln
r(t)
1 − �

+ G(t − 1)
}+

(20)

where {℘}+ = ℘ for positive values, otherwise it is
equal to 0. Without causing ambiguity, the final detec-
tion resultG will be referred to as the result of LMDA
hereafter. When G exceeds the control limit UG, afault is detected and the current time is recorded as
the fault detection time.
The tuning parameters for ! and UG mainly depend
on noise strength and fault severity. For example, a
large ! leads to high sensitivity to incipient faults and
strong influence by noise. On the other hand, a high
UG reduces the risk of false alarms but causes consid-
erable detection delay.

The benefit of the EPD-CUSUM technique is twofold. It
significantly avoids false alarms and missed detection since
only when the LMD result exceeds � continuously, G will
increase with time. Besides, this technique improves detec-
tion sensitivity because small changes will cumulative with
time, yielding a striking value of G. The LMDA result of
the simulation data is demonstrated in Fig.11.
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Figure 11: LMDA results for simulated signals using the fol-
lowing parameters: ! = 0.3, � = 99.9% and UG = 110.

As one can see in this figure, all the LMDA results are
below the control limit UG without false alarm occurring in
the healthy part. In the faulty part (beyond the green verti-
cal dashed line) G increase and exceed the control limit at
53.4s. A delay between the real fault occurrence time and
the detected one can then be noticed.

5. Performance analysis
This section investigates the fault detection performance

of the proposed method. We study how the proposal will be
affected by noise strength and fault severity changes. We
propose to probabilistically evaluate the fault detection in
these various conditions but also show the effect on the false
alarms and the detection delay. Furthermore, the benefit of
using the EPD-CUSUM method is highlighted by compar-
ing it with the LMD index Df and the original cumulative
sum technique.
5.1. Analysis criteria

To take into account the effect of fault severity and noise
strength simultaneously, the Fault-to-Noise Ratio (FNR) is
proposed as the quantitative metric of the fault severity re-
garding the noise strength [6]. It is defined as:

FNR = 10 log
pf
pv

(21)

where pf is the fault power and pv is the noise power. Notethat incipient faults are defined for FNR values lower than
5dB. In that range these faults can be partially or totally
masked by the noise.

Similarly, the Signal-to-Fault Ratio (SFR) is defined to
quantify fault severity regarding the signal power:

SFR = 10 log
ps
pf

(22)
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where ps is the signal power. In the particular case of incip-ient fault, the SFR values are large.
The above two ratios are related to the common metrics

SNR by the following equation:
SNR = SFR + FNR (23)

The performance evaluation based on samples considers
three probabilistic criteria: the detection probability (Pd),the false alarm one (PFA), and the accuracy (ACC) which
are defined as:

Pd =
No. of samples{detected as faulty|faulty}

No. of {All the faulty samples} (24)

PFA =
No. of samples{detected as faulty|healthy}

No. of {All the healthy samples} (25)

ACC =
No. of {collectly detected samples}

No. of {All the samples} ×100% (26)
Additionally, the ReceivingOperatingCharacteristics (ROC)
curve [7] and its corresponding Area Under Curve (AUC)
value are also used to globally assess the detection perfor-
mance in terms of robustness and efficiency.

Moreover, in the early detection context focusing on in-
cipient faults, an overview of the response speed of a fault
detection method is also an important criterion. Suppose
that a fault occurs at t0 and the detection time is td , the detec-tion delay DD calculated as these two time differences will
allow to reflect the method response speed. It is written as:

DD = td − t0 (27)
In the following, we further analyze our proposal perfor-
mance using these criteria.
5.2. Results and discussions

For the following simulations, the signal model given in
Eq.(15) in section 4 is used. Signals are observed every 0.1
second for a total duration of 94 seconds, where the number
of samples is K = 940, and a fault is introduced at 47s (i.e.
the 470tℎ sample) in the first signal x1. Besides, Gaussian
white noise is added into signals to evaluate the robustness.
For the two parts of the proposed procedure, the default set-
tings are summarized below:

• In the training process, the optimal region radius is
obtained as opt = 2.16 and then the number of an-
chors is � = 96. So, the GEV model parameters
are estimated and the healthy domain margin with the
given significance level � = 99.9% is determined as
� = 2.79.

• In the online monitoring procedure, we set ! = 0.4
for the EPD-CUSUM method to adapt to the noise
strength with SNR = 20dB.

In this section, using the previously mentioned criteria,
we study the training efficiency, the methodology detection
sensitivity regarding the fault severity, the robustness of the
detection methodology facing noise and the detection time
occurrence efficiency.

5.2.1. Training efficiency
The evaluation of training efficiency is to discuss the in-

fluence of available training samples’ number on themethod’s
performance. In the procedure of healthy domain approxi-
mation, two aspects are potentially affected by the number
of training samples: the anchors generation and the domain
margin selection. In the anchors generation part, the down-
sampling algorithm is proposed to reduce the repeated sam-
ples and extract crucial spatial information of the healthy do-
main. Therefore, training samples are expected to include
as much as possible useful information instead of redundant
ones and noises. While, in the domain margin selection, suf-
ficient training samples are necessary to estimate the param-
eters of the density model. Based on these two considera-
tions, the relation between the training samples’ number and
the method’s performance is then investigated.

Fig.12 exhibits the evolution of accuracy performance
along with the change of samples’ number. When training
samples are insufficient, such as the sample’s number is less
than 100, viz. the duration of the signals is shorter than 10
seconds, the accuracy performance is poor, lower than 50%.
Consequently, when samples’ number increases to 300, the
result notably increases and almost reaches 70% accuracy.
A further increase of the result is obtained when 1000 sam-
ples are used for training. However, with the training sam-
ples number continually growing from 1000 to 10000, one
can notice the sight performance degeneration, which may
result from the introduction of a large number of irrelevant
samples. As a result, sufficient training samples (> 100) are
required, but excess samples (> 5000) will degrades the per-
formance.
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Figure 12: Accuracy results for di�erent numbers of training
samples

5.2.2. Detection sensitivity
The second part of the performance analysis focuses on

the effect of the fault severity. We consider different val-
ues of FNR varying from −10dB to 20dB and keep all the
other operating conditions the same as previously defined.
In Fig.13, ROC curves of the LMD index Df for different
FNR settings are displayed to show the fault detection capa-
bility.

It can be noticed that once FNR decreases from 20dB to
−10dB (fault severity decreases), the corresponding AUC
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Figure 13: ROC curves of LMD results for di�erent FNR set-
tings

value decreases and reaches a low value close to 0.5 leading
to theworst detection performance. When FNR is lower than
5dB, meaning that the fault power is lowest than the triple of
the noise power, the fault detection capability of the LMD
index is weak.

However, when using the EPD-CUSUM method in the
detection procedure, one can see a significant improvement
of the detection capability (Fig.14) such as the AUC value
for 5dB FNR case increases from 0.591 to 0.708.
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Figure 14: ROC curves of LMDA results for di�erent FNR
settings

Whenwe focus on the detection probability performance
with a low PFA value, corresponding to a practical condition
for fault detection, the improvement results from the EPD-
CUSUM method is the most significant. As an example, if
we consider PFA = 0.01, the detection probabilities of the
LMDA results are all larger than that of the LMD indexDf ,
especially for FNR = 0dB, 5dB, 10dB.

To further show the benefit of using EPD-CUSUM, we
compare the detection probability of three detection strate-
gies in the case of PFA = 0.01: LMD index, LMD with
EPD-CUSUM (LMDA), and LMDwith the typical CUSUM
method [23]. The results are shown in Fig.15 and demon-
strate that LMDA notably outperforms the other two strate-

gies, particularly for incipient faults detection (like FNR <
5dB). Nevertheless, the benefit of using the typical CUSUM
method is trivial compared to the baseline performance of
the LMD index.
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Figure 15: Detection probability performance for di�erent de-
tection strategies, where PFA = 0.01

Our proposed methodology offers then a good detection
sensitivity and efficiency. For incipient faults that can be
widely affected by the noise strength, this sensitivity is widely
improved.
5.2.3. Detection robustness

Subsequently, different noise and fault severity levels are
taken into account in the simulation to evaluate the perfor-
mance of our proposal deeply. The goal is then to qualify
the robustness of the proposed fault detection methodology
regarding noise. Note that Gaussian white noise is added
into both the training and testing data. A small part of the
noise signal with large values can be regarded as outliers that
potentially affect the accuracy of healthy domain approxima-
tion.

With SNR varying from 0dB to 50dB and SFR varying
from −40dB to 40dB, the resulting AUC values are plot-
ted in Fig.16. The results highlight that both factors affect
the performance of the proposed detection method: either
the increase of noise power or the decrease of fault sever-
ity leads to low detection performance. However, for the
common range of noise level, such as from 20dB to 40dB
SNR,when the SFR correspondingly increases from 10dB to
30dB, the detection performance of the proposed framework
is effective since AUC values in this area are larger than 0.8.
In that range the proposed methodology is remaining robust
enough.

Although the results indicate that the performance will
not dramatically degenerate when training data contains a
small number of outliers (20dB to 40dB SNR), it seems that
the robustness to the consequently introduced outliers can be
further improved by specifically selecting anchors.
5.2.4. Detection time occurrence efficiency

As mentioned in section 4, the fault is time-varying. So,
the detection of the fault occurrence time is important to
qualify the efficiency of the proposal properly.
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Figure 16: AUC performance for di�erent noise strength and
fault severity

As a first study, the noise is settled with SNR = 20dB
and we vary the fault severity considering the FNR. The de-
tection delay is evaluated and plotted in Fig.17 for the three
previously mentioned techniques (LMD, LMDA, and LMD
with CUSUM). For this first study, PFA = 0.01 and the
detection delay is written in sample number (reminder: the
sampling time is 1 sample per 0.1 seconds).
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Figure 17: Detection delay performance for di�erent fault
severity

It can be noticed that the additional classic cumulative
sum procedure with LMD slightly improves the detection
delay but our proposed LMDA using EPD-CUSUM is the
most efficient one. This latter offers the lowest detection de-
lay all over the FNR range. Nevertheless, the more the fault
is incipient (lower FNR) and longer will be the detection de-
lay. As an example, for FNR > 20dB, the detection delay
results are lower than 200 samples but if the FNR value de-
creases, the detection delay exponentially increases.

In a second study, we consider the noise varying in the
same SNR range previously mentioned and the fault severity

with SFR vary from −40dB to 20dB. The detection delay is
evaluated and plotted in Fig.18.
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Figure 18: Detection delay performance for di�erent noise
strength and fault severity

We can notice that the detection delay remains a low
value when SNR is a very high positive value (i.e very low
noise level) and SFR is a negative very low value (i.e very
high fault severity). But if the noise widely increases (SNR
close to zero) and the fault severity deeply decreases (SFR
positive) then the detection delay will exponentially increase
and its value will be very high.

Indeed, the detection occurrence is efficient with our pro-
posal. The noise influence has been widely reduced com-
pared to the original LMD proposal but is still remaining
and cannot be completely removed. This reduction seems
sufficient enough to consider this proposal for an engineer-
ing application study.

6. Application to an engineering process
In this section, the Continuous-flow Stirred Tank Reac-

tor (CSTR) process [24, 26] is employed as a case study to
validate our proposed methodology. For that purpose, the
fault detection performance is evaluated in terms of false
alarm probability, detection probability, detection delay, and
AUC. The effectiveness of our proposal is then highlighted
compared to other state-of-the-art methods known for their
efficiency using this process.
6.1. CSTR process description

The continuous-flow stirred reactor (CSTR), related to
chemical and environmental engineering, is widely used to
simulate incipient faults [24, 26]. It refers to key unit opera-
tion variablesmodeling the behavior of a continuous agitated
tank reactor to reach a specified output. The exothermic first-
order reaction taking place in the reactor can be modeled as
follows:

d
dt

= Q
V
(i − ) − aq + �1 (28)
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Table 1

Parameters for CSTR Process

Parameter Description Parameter Description

 Inlet �ow rate  ,i,c ,ci Reactor temperature
V Tank volume ,i Reactor concentrstion
c Coolant �ow rate  Heat transfer coe�cient
Vc Jacket volume q0 pre-exponential factor
ΔHr Heat of reaction ', 'c Fluid density
E/R activation energy p,pc Fluid heat capacity
�1,2,3 process noise

Table 2

The Description of faulty scenarios

Fault Description � Fault Description �
1 a = a0e−�t 0.0005 2 ℏ = ℏ0e−�t 0.001
3 fault 1 and 2 4 i = Ci,0 + �t 0.001
5 i = Ti,0 + �t 0.05 6 ci = ci,0 + �t 0.05
7  = 0 + �t 0.001 8  = 0 + �t 0.05
9 c = c,0 + �t 0.05 10 c = c,0 + �t -0.1

d
dt

= Q
V
(i− )−a

ΔHrq
'p

−ℏ 
'pV

( −c)+�2E (29)

dc
dt

=
Qc
Vc
(ci − c) + ℏ


'cpcVc

( − c) + �3 (30)

where q = q0exp(−ER ), and the explanation of equations’ pa-rameters are given in Table 1. More details about the CSTR
process can be obtained in [24]. In the model, the system’s
input is denoted as u = [i i ci] and the output is written
as y = [  c Qc].The process simulation model used in this work is pre-
sented by Karl Ezra Pilario et al. and available online [24].
It allows to generate the fault-free data and 10 faulty scenar-
ios, where the faulty conditions and their previously defined
parameters are summarized in Table 2.

Note that all the faults are time-varying ones with differ-
ent severities and constructions structure:

• Fault 1 and Fault 2 are multiplicative ones caused by
catalyst decay and heat transfer fouling.

• Fault 3 is the combination of the two previous faults
(Fault 1 and Fault 2).

• All the others faults are additive ones related to sensor
drifts.

• The process noises �1, �2, �3 are additive white Gaus-sian noise with zero mean and variances �21 = 0.002,
�22 = �23 = 2, respectively, leading to SNR1 = 27dBand SNR2 = SNR3 = 47.9dB.

6.2. CSTR Fault detection performances
To apply our proposal to this case-study, the process vari-

ables are structured as X = [u y]. We tuned our methodol-
ogy as follows:

• For the training procedure, we concatenated 10 groups
of fault-free data with 1200 samples (i.e 1200 min-
utes) for each to form the fault-free data matrix Xℎ.
Based on Xℎ, the optimal region radius was deter-
mined as opt = 1.448 and then 224 anchors were gen-
erated. The healthy domain margin was obtained as
� = 2.7 with the given significance level � = 99.9%.

• To evaluate the online monitoring performance, 250
groups of data for each faulty scenario were gener-
ated, where each group contained 1200 samples, and
faults were introduced at t = 200 minutes (the 200tℎ
sample). For the EPD-CUSUM calculation, the tun-
ing parameters were set as ! = 0.4 and UG = 110.

The obtained detection results for the multiplicative type
faults (Fault 1−3) are illustrated in Fig.19, and those for ad-
ditive type faults (Fault 4 − 10) are displayed in Fig.20. On
the left side of these figures, LMD results are shown in yel-
low, while the margin is marked as a horizontal red dashed
line. On the right side of the figures, LMDA results are in or-
ange, and the control limit for the decision-making is marked
as a horizontal cyan dashed line.
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Figure 19: LMD and LMDA results for Faults 1 − 3.

For the two types of faults, LMD and LMDA results
increase with time after faults occurrence. Although false
alarms exist in the healthy part of the LMD results, the right
figures highlight that LMDA results can significantly alle-
viate the false alarm issue by turning incidental impulse-
like detected results into slight fluctuation. Additionally, us-
ing the EPD-CUSUM technique allows to summarize those
small continuous deviations in LMD results, producing grow-
ing results with time. This helps to have a better detection for
incipient faults and shorten the detection delay. Moreover,
due to the cumulative nature of the EPD-CUSUM method,
missed detection can be remarkably avoided and missed de-
tection can be performed.
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Figure 20: LMD and LMDA results for Faults 4 − 10

Furthermore, to highlight the benefit of our proposal,
LMDA (with EPD-CUSUM) results are comparedwith other
fair literature methods reported as effective to non-Gaussian
distributed data and developed for incipient fault detection.
We have selected theGeneralizedCanonical CorrelationAnal-
ysis (GCCA) [4], Canonical Variate Analysis (CVA) [21],
andCanonical Variate DissimilarityAnalysis (CVDA)method
[24]. For each of them, the results in terms of detection de-
lay, false alarm probability, detection probability, and AUC
value are collected and summarized in Table 3. Note that
due to the large time constant in the CSTR process, the de-

Table 3

Fault diagnosis performance for CSTR

Fault
GCCA CVA CVDA LMDA

T 2r1 T 2r2 T 2 SPE  G

1

11.05 10.54 4.18 2.74 1.46 1.50
0.07 0.13 0.57 0.57 0.89 1.39
48.22 50.88 70.88 82.35 91.05 86.46
0.895 0.943 0.954 0.973 0.981 0.976

2

9.47 2.95 4.82 2.63 1.59 1.11

0.05 0.12 0.59 0.64 0.93 1.52
39.95 83.19 69.74 83.51 89.98 92.49

0.968 0.977 0.912 0.971 0.979 0.982

3

8.33 2.93 3.39 2.42 1.54 0.93

0.04 0.09 0.46 0.53 0.75 1.97
53.97 83.51 77.43 85.04 90.32 93.54

0.973 0.979 0.958 0.977 0.983 0.983

4

2.33 2.30 2.00 2.35 1.44 0.74

0.07 0.11 0.52 0.67 0.83 1.03
86.46 86.73 88.52 85.55 91.38 95.11

0.986 0.984 0.972 0.978 0.982 0.987

5

3.66 9.13 2.82 4.41 2.50 1.30

0.05 0.08 0.33 0.50 0.57 1.03
78.23 47.22 82.90 71.74 84.00 90.84

0.970 0.939 0.960 0.963 0.971 0.974

6

8.73 3.07 3.90 2.90 2.19 1.04

0.08 0.12 0.57 0.54 0.89 0.95
48.36 82.47 76.66 81.92 86.12 92.73

0.979 0.973 0.964 0.973 0.977 0.981

7

0.41 0.38 0.36 0.23 0.15 0.17
0.07 0.11 0.55 0.52 0.83 1.11
97.78 97.93 98.04 98.69 99.18 98.93
0.995 0.997 0.992 0.992 0.994 0.996

8

2.29 0.88 0.87 0.53 0.37 0.37

0.07 0.11 0.51 0.64 0.77 1.60
87.19 95.24 95.15 96.93 97.92 97.70
0.991 0.993 0.989 0.988 0.992 0.994

9

6.62 0.80 1.48 0.80 0.53 0.34

0.09 0.14 0.66 0.66 1.12 1.13
62.27 95.62 91.49 95.42 96.95 97.87

0.992 0.994 0.970 0.988 0.992 0.994

10

10.51 4.35 5.22 3.38 2.37 1.31

0.06 0.09 0.34 0.50 0.60 1.13
37.9 0 75.26 68.27 78.89 84.99 90.39

0.962 0.969 0.937 0.968 0.974 0.982

* For each fault: First row is the Detection Delays (hours); Second
row is the False alarm probability (%); Third row is the Detection
probability (%); Fourth row is the AUC value

tection delay is presented in hours. The false alarm and de-
tection probabilities are given as ratios and presented in per-
centages. The best values overall the reported techniques are
highlighted in the table with bold font.

In terms of detection delay, our proposal is efficient to
detect faults with less than 1.5 of hours detection delay (no
more than 90 additional sample points). This outperforms
the other three approaches for most cases except for Fault 1
and 7. GCCA is not sensitive enough to incipient fault de-
tection as its detection delay for both indexes is quite large.
Although CVDA and CVA seem effective in the early detec-
tion of incipient faults, they are not as efficient as the LMDA
methodology that we propose.
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Nevertheless, in terms of false alarms, the GCCA tech-
nique is the most reliable among the four methods. As for
our proposal, the false alarm probability is not perfect but
acceptable with small rate values always lower than 1.97%.

Even with the not perfect false alarm probability, our
proposal has the best performance in terms of detection prob-
ability for most of the fault conditions. Only CVDA in the
case of Fault 1, 7 and, 8 offers slightly better rate values (less
than 0.25% except for Fault 1where the improvement is close
to 4.6%).

Using the AUC criterion for representing the global per-
formance evaluation, LMDAoffers the largest value for most
cases except in the case of Fault 1 and 7. The difference with
the best results shown GCCA is only 0.001. This indicates
that the results that we obtain are fully acceptable. Our pro-
posal can then be viewed with the best overall performances
for the CSTR case study.

Our solution offers the best trade-off performances com-
pared to the other techniques. Fault 1 has particularly more
tricky results. The impact of the noise seems more affecting
this incipient fault detection.

7. Conclusion
This paper propose a specific incipient fault detection

methodology for time-varying faults in a noisy environment.
It is based on a procedure composed of two main parts: the
training process and the online monitoring.

In the training process, we propose a specific unsuper-
vised healthy domain approximation method using the Ma-
halanobis distance in a particular way. It is composed of an
optimized down-sampling algorithm and a special margin
selection approach. Compared with PCA-based Hotelling’s
T 2 and SPE (Q) statistics, the proposed healthy domain ap-
proximation method can effectively handle non-elliptically
distributed data.

Based on the approximated healthy domain characteris-
tics, the online monitoring process is derived and the local
Mahalanobis distance is defined and served as a preliminary
monitoring index for fault detection. Subsequently, we de-
rive this sensitive incipient fault detection framework com-
bining Local Mahalanobis Distance with the improved Em-
pirical Probability Density Cumulative Sum method.

The performance analysis based on the simulation data
shows that the proposed fault detection method is effective
for data without any distribution-type assumption. The pro-
posal is robust to noise influence and achieves pronounced
performances in incipient fault detection (high sensitivity to
fault). It outperforms other classical methods. The compari-
son result also demonstrates the potential benefit of combin-
ing the improved EPD-CUSUM approach with other typical
process monitoring techniques to improve incipient fault de-
tection capability.

We consider the engineering case study of the CSTR pro-
cess to validate our proposal. Compared to other well-tuned
and efficient state-of-the-art methods, the detection capabil-
ity of our proposal (LMDA) outperforms these techniques

in terms of false alarm probability, detection probability, de-
tection delay, and AUC.

For future works, the characterisation (estimation, iso-
lation, ....) of the detected fault using this approach should
be investigated. Moreover, the wide limits and robustness
improvement to outliers in the training data will be further
considered and evaluated.
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A. Appendix
Introduction to extreme value statistics
Theorem 1. Let X1, X2,⋯ be a sequence of independent
and identically distributed (i.i.d) random variables with cu-
mulative distribution function F (X) and consider their max-
imum valueMn of n samples, i.e. Mn = max{X1,⋯ , Xn}.
The induced distribution of Mn can only take one of three
forms Gumbel, Weibull, or Frechet with �, �, � respectively
denoted as the location, scale and shape parameters:

• Gumbel

FG(x, �, �) = exp
[

−exp
(

−
x − �
�

)]

x ∈ ℝ, � > 0
(31)

• Weibull

FW (x, �, �, �) =

{

1 x ≥ �
exp

[

−
(

�−x
�

)�]
otherwise

(32)

• Frechet

F F (x, �, �, �) =

{

exp
[

−
(

�
x−�

)�]
x ≥ �

0 otherwise
(33)

Let mn = min{X1,⋯ , Xn}. Similarly, the induced dis-
tribution of mn can be one of three:

• Gumbel

FG(x, �, �) = 1 − exp
[

−exp
(

x − �
�

)]

x ∈ ℝ, � > 0
(34)

• Weibull

FW (x, �, �, �) =

{

0 x ≤ �
1 − exp

[

−
(

x−�
�

)�]
x > �

(35)
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• Frechet

F F (x, �, �, �) =

{

1 − exp
[

−
(

�
�−x

)�]
x ≤ �

1 otherwise
(36)

Eqs.(31)–(33) can be unified into a simple form for max-
ima

Φ(x, �, �, �) = exp

{

−
[

1 + �
(

x − �
�

)]−1∕�
}

−� − �(x − �) ≤ 0, � > 0

(37)

Eqs.(34)–(36) can be unified into a simple form for minima

Φ(x, �, �, �) = 1 − exp

{

−
[

1 + �
(

� − x
�

)]−1∕�
}

−� − �(� − x) ≤ 0, � > 0

(38)

For more details about extreme value statistics, readers
can refer to [13, 2].
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