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Risk-sensitive safety analysis using Conditional Value-at-Risk*

This paper develops a safety analysis method for stochastic systems that is sensitive to the possibility and severity of rare harmful outcomes. We define risksensitive safe sets as sub-level sets of the solution to a non-standard optimal control problem, where a random maximum cost is assessed via Conditional Value-at-Risk (CVaR). The objective function represents the maximum extent of constraint violation of the state trajectory, averaged over a given percentage of worst cases. This problem is well-motivated but difficult to solve tractably because the temporal decomposition for CVaR is history-dependent. Our primary theoretical contribution is to derive computationally tractable under-approximations to risk-sensitive safe sets. Our method provides a novel, theoretically guaranteed, parameter-dependent upper bound to the CVaR of a maximum cost without the need to augment the state space. For a fixed parameter value, the solution to only one Markov decision process problem is required to obtain the under-approximations for any family of risk-sensitivity levels. In addition, we propose a second definition for risk-sensitive safe sets and provide a tractable method for their estimation without using a parameter-dependent upper bound. The second definition is expressed in terms

Index Terms-Conditional Value-at-Risk, Stochastic optimal control, Safety analysis, Markov decision processes. 2. We develop a safety analysis method that generalizes stochastic safety analysis by assessing the severity of random harmful outcomes. We define the risk-sensitive safe set S r α in terms of CVaR and derive an under-approximation U r α,γ that is computationally tractable. S r α represents the set of initial states from which the maximum extent of constraint violation of the state trajectory, averaged over the α • 100% worst cases, can be reduced to a threshold r.

I. INTRODUCTION

C ONTROL-theoretic formal verification methods for dy- namical systems typically fall in the robust domain [START_REF] Bertsekas | On the minimax reachability of target sets and target tubes[END_REF]- [START_REF] Chen | Hamilton-Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management[END_REF] or in the stochastic domain [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF]- [START_REF] Ding | A stochastic games framework for verification and control of discrete time stochastic hybrid systems[END_REF]. Robust methods for formal verification assume that uncertain disturbances lack probabilistic descriptions, live in bounded sets, and exhibit adversarial behavior. These assumptions are appropriate if probabilistic information about disturbances is not available, and if the conservative policy or safety specification that results from a pessimistic world view is useful in practice. However, when one considers formal verification as a design tool for safety-critical systems in the digital world today, it is reasonable to assume that simulation tools or sensor data are available to estimate probabilistic descriptions for disturbances. Moreover, it is reasonable to consider the following world view: disturbances need not be adversarial, but rare harmful outcomes are still possible.

Control-theoretic stochastic formal verification methods do assume that disturbances are probabilistic and can be nonadversarial [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF], [START_REF] Summers | Verification of discrete time stochastic hybrid systems: A stochastic reach-avoid decision problem[END_REF] or adversarial [START_REF] Kamgarpour | Discrete time stochastic hybrid dynamical games: Verification and controller synthesis[END_REF], [START_REF] Ding | A stochastic games framework for verification and control of discrete time stochastic hybrid systems[END_REF] in nature. These methods compute the probability of safety or performance by using expected indicator cost functions. The expectation, however, is not designed to quantify the features in the tails of a distribution, and the probability of a harmful outcome need not indicate its severity. Thus, formal verification methods at the intersection of the robust and stochastic domains are emerging. A method for distributionally robust safety analysis has been proposed [START_REF] Yang | A dynamic game approach to distributionally robust safety specifications for stochastic systems[END_REF], and methods that use risk measures to assess harmful tail costs, e.g., [START_REF] Samuelson | Safety-aware optimal control of stochastic systems using Conditional Value-at-Risk[END_REF] and our prior work [START_REF] Chapman | A risk-sensitive finitetime reachability approach for safety of stochastic dynamic systems[END_REF], have been introduced. 1 While the notion of risk-sensitive formal verification is recent, it is related to the notion of risk-sensitive Markov decision processes (MDPs), which dates back to the early 1970s. In 1972, Howard and Matheson studied risk-sensitive MDPs on finite state spaces, where the cost is evaluated in terms of exponential utility [START_REF] Howard | Risk-sensitive Markov decision processes[END_REF]. This idea was transferred to linear control systems by Jacobson in 1973 [START_REF] Jacobson | Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games[END_REF] and was further developed in later decades. For example, see the seminal works by Whittle [START_REF] Whittle | Risk-sensitive linear/quadratic/Gaussian control[END_REF], [START_REF] Whittle | Risk-sensitive Optimal Control[END_REF] and di Masi and Stettner [START_REF] Di Masi | Risk-sensitive control of discrete-time Markov processes with infinite horizon[END_REF]. The exponential utility of a non-negative random cost Y J θ (Y ) := -2 θ log(E(e -θ 2 Y )) assesses the risk of Y in terms of the moments of Y and is parametrized by a non-zero scalar θ. Under appropriate conditions, J θ (Y ) tends to E(Y ) as θ → 0 and J θ (Y ) ≈ E(Y )-θ 4 Variance(Y ) if |θ| is sufficiently small [START_REF] Whittle | Risk-sensitive linear/quadratic/Gaussian control[END_REF]. The risk-averse setting corresponds to θ < 0. However, if θ is too negative, the controller can suffer from a phenomenon called "neurotic breakdown" in the linear-quadratic-Gaussian setting [START_REF] Whittle | Risk-sensitive linear/quadratic/Gaussian control[END_REF].

Hence, the notion of risk-sensitive MDPs has been generalized beyond exponential utility. Kreps used the expectation of a utility function as a risk-sensitive performance criterion for MDPs [START_REF] Kreps | Decision problems with expected utility critera, I: Upper and lower convergent utility[END_REF]. Ruszczyński defined a risk-sensitive performance criterion for MDPs in terms of a composition of risk measures [START_REF] Ruszczyński | Risk-averse dynamic programming for Markov decision processes[END_REF]. State-space augmentation has been used to optimize the cumulative cost of a MDP, where the cost is assessed via CVaR [START_REF] Bäuerle | Markov decision processes with Average-Valueat-Risk criteria[END_REF] or a certainty equivalent risk measure [START_REF] Bäuerle | More risk-sensitive Markov decision processes[END_REF]. The former problem is called a CVaR-MDP. Convex analytic methods have been used to solve MDPs with expected utility or CVaR criteria via state-space augmentation and infinite-dimensional linear programming [START_REF] Haskell | A convex analytic approach to risk-aware Markov decision processes[END_REF]. A temporal decomposition for CVaR [START_REF] Pflug | Time-inconsistent multistage stochastic programs: Martingale bounds[END_REF], [START_REF] Pflug | Time-consistent decisions and temporal decomposition of coherent risk functionals[END_REF] has been used to propose a dynamic programming (DP) algorithm on an augmented state space to solve a CVaR- 1 A risk measure (risk functional) is a map from a set of random variables to the extended real line. Exponential utility, Value-at-Risk, CVaR, and Mean-Deviation are examples [START_REF] Shapiro | Lectures on Stochastic Programming: Modeling and Theory[END_REF]. The terms risk measure and risk functional are interchangeable.

MDP problem approximately [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF]. Analysis at the intersection of mean field games, linear systems, and risk measures with connections to CVaR is provided by [START_REF] Bonnans | Discrete-time mean field games with risk-averse agents[END_REF].

Ruszczyński's approach [START_REF] Ruszczyński | Risk-averse dynamic programming for Markov decision processes[END_REF] and MDPs that assess cumulative costs via expectation or exponential utility are timeconsistent problems. That is, these problems satisfy Bellman's Principle of Optimality on the original state space. 2 However, a CVaR-MDP is time-inconsistent. Several solution concepts for time-inconsistent problems have been proposed. For example, a game-theoretic solution concept is studied in [START_REF] Bjork | A theory of Markovian time-inconsistent stochastic control in discrete time[END_REF], which considers the problem as a game against one's future self. Another popular approach is to focus on pre-commitment strategies that cannot be revised at later stages. Optimal or nearly optimal pre-commitment strategies can be obtained using the structure of CVaR; see [START_REF] Bäuerle | Markov decision processes with Average-Valueat-Risk criteria[END_REF], [START_REF] Haskell | A convex analytic approach to risk-aware Markov decision processes[END_REF], [START_REF] Miller | Optimal control of Conditional Value-at-Risk in continuous time[END_REF], for example. Although an optimal pre-commitment strategy is globally optimal only at the initial stage, maintaining suitable empirical performance at later stages is possible, particularly when the time horizon is not too long [START_REF] Rudloff | Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences[END_REF]. In mean-CVaR asset allocation problems, optimal pre-commitment strategies are shown to be effective even with long time horizons [START_REF] Forsyth | Multiperiod mean Conditional Value at Risk asset allocation: Is it advantageous to be time consistent?[END_REF].

A line of research that falls between risk-sensitive MDPs and standard risk-neutral MDPs is risk-constrained MDPs [START_REF] Samuelson | Safety-aware optimal control of stochastic systems using Conditional Value-at-Risk[END_REF], [START_REF] Borkar | Risk-constrained Markov decision processes[END_REF], [START_REF] Haskell | A convex analytic approach to risk-aware Markov decision processes[END_REF], [START_REF] Van Parys | Distributionally robust control of constrained stochastic systems[END_REF]. Here, the goal is to minimize an expected cumulative cost subject to a risk constraint that limits the extent of a cost. Refs. [START_REF] Samuelson | Safety-aware optimal control of stochastic systems using Conditional Value-at-Risk[END_REF], [START_REF] Borkar | Risk-constrained Markov decision processes[END_REF], [START_REF] Van Parys | Distributionally robust control of constrained stochastic systems[END_REF], for example, express this constraint in terms of CVaR.

The additional effort required to solve time-inconsistent problems, including CVaR-MDPs, may be justified for safetycritical applications. A strong theoretical basis for using CVaR to assess harmful tail costs has been in development since the early 2000s, e.g., see [START_REF] Rockafellar | Conditional Value-at-Risk for general loss distributions[END_REF] and the references therein. Informally, CVaR represents the expected cost in the α • 100% worst cases, where α ∈ (0, 1] (Fig. 1). CVaR quantifies the more harmful tail of a distribution, and managing this tail is paramount in safety-critical applications.

This paper proposes a method to assess how well a stochastic system can remain within a desired operating region with respect to a range of worst-case perspectives. We call this method risk-sensitive safety analysis (Fig. 2). Its foundation is a non-standard optimal control problem that evaluates a random maximum cost via CVaR. The objective function represents the maximum extent of constraint violation of the state trajectory, averaged over the α • 100% worst cases, where α ∈ (0, 1] is a risk-sensitivity level. This problem is difficult to solve tractably because the temporal decomposition for CVaR is history-dependent [START_REF] Pflug | Time-inconsistent multistage stochastic programs: Martingale bounds[END_REF], [START_REF] Pflug | Time-consistent decisions and temporal decomposition of coherent risk functionals[END_REF]. We define risk-sensitive safe sets as sub-level sets of the solution to this non-standard problem. These sets are powerful tools for safety analysis. Indeed, they assess system behavior on a spectrum of worst cases, while being sensitive to the possibility and severity of rare harmful outcomes.

Our primary theoretical contribution is to derive computationally tractable under-approximations to risk-sensitive safe sets. We derive these under-approximations by proving the following: for any control policy and any initial state, the CVaR of a maximum cost is upper bounded by a scaled logarithm of an expected cumulative cost, where the stage cost has a specific analytical form. For this proof, we use various properties of CVaR and the log-sum-exponential approximation to the maximum. The latter approximation depends on a parameter, γ ∈ R. For a fixed γ, the solution to one MDP problem is required to obtain the under-approximations for any family of risk-sensitivity levels. We provide practical insights on how to choose such a parameter in the experimental section.

Our method provides a novel, theoretically guaranteed upper bound to the CVaR of a maximum cost for the purpose of safety analysis without the need to augment the state space. (Augmenting the state space may be less tractable in some settings, e.g., when the range of the augmented state is large.) In contrast, existing methods aim to compute the CVaR of a cumulative cost via state-space augmentation. By taking different approaches to augment the state space, Refs. [START_REF] Bäuerle | Markov decision processes with Average-Valueat-Risk criteria[END_REF] and [START_REF] Haskell | A convex analytic approach to risk-aware Markov decision processes[END_REF] minimize the CVaR of a cumulative cost, and Ref. [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF] minimizes the CVaR of a cumulative cost approximately. These related works are focused on controller synthesis but are not focused on safety analysis.

Our secondary theoretical contribution is to propose a second definition for risk-sensitive safe sets and provide a tractable method for their estimation without using a parameter-dependent upper bound. The second definition is expressed in terms of a new risk functional, which is inspired by CVaR and has certain desirable properties. In particular, we prove that this risk functional admits an upper bound that can be computed via DP (on the original state space and without an additional parameter that requires tuning). This result forges a new path to estimate risk-sensitive safety criteria with desirable computational attributes.

Organization. We present notation and background on CVaR in Sec. II. Our primary and secondary theoretical contributions are provided in Sec. III and Sec. IV, respectively. We develop computational examples of a temperature system and a stormwater system to demonstrate our primary theoretical contribution in Sec. V. Sec. VI presents conclusions and directions for future work.

II. BACKGROUND ON CONDITIONAL VALUE-AT-RISK

We use the following notation. If S is a metrizable space, B(S) is the Borel sigma algebra on S. If (Ω, F, µ) is a probability space and 1 ≤ p ≤ ∞, L p (Ω, F, µ) is the associated L p space, and || • || p is the associated norm. Typically, we use upper-case letters to denote random variables or sets, whereas lower-case letters denote deterministic quantities, including parameters. Exceptions are the length of a time horizon is expressed in terms of T ∈ N and E(•) denotes expectation.

Next, we present a standard definition for CVaR and facts about CVaR that are relevant to this work. 3 Let Y be a random variable with finite first moment, representing a cost, defined on a probability space (Ω, F, µ). That is, let

Y ∈ L 1 (Ω, F, µ),
where smaller realizations of Y are preferred. The Conditional Value-at-Risk of Y ∈ L 1 (Ω, F, µ) at the risk-sensitivity level α ∈ (0, 1] is defined by

CVaR α (Y ) := inf s∈R s + 1 α E(max(Y -s, 0)) , (1) 
where E(•) is the expectation with respect to (w.r.t.) µ. We note the following consequences of the Definition (1):

1) CVaR 1 (Y ) = E(Y ). 2) If 0 < α 1 ≤ α 2 ≤ 1, then CVaR α1 (Y ) ≥ CVaR α2 (Y )
and CVaR αi (Y ) ∈ R for i = 1, 2. Definition (1) is not the most intuitive, so we present an alternative definition that explains the names Conditional Valueat-Risk and Average Value-at-Risk. The alternative definition is written in terms of the Value-at-Risk of Y ∈ L 1 (Ω, F, µ) at level α ∈ (0, 1), which is given by

VaR α (Y ) := inf y ∈ R : µ({Y ≤ y}) ≥ 1 -α , (2)
where µ({Y ≤ y}) is the probability of the event {Y ≤ y} := {ω ∈ Ω : Y (ω) ≤ y} ∈ F. In other words, VaR α (Y ) is the generalized inverse cumulative distribution function of Y at level 1 -α, or equivalently, the left-side (1 -α)-quantile of the distribution of Y [START_REF] Shapiro | Minimax and risk averse multistage stochastic programming[END_REF]. The CVaR of Y ∈ L 1 (Ω, F, µ) at level α ∈ (0, 1) is equivalent to an average of the Value-at-Risk [37, Thm. 6.2]:

CVaR α (Y ) = 1 α 1 1-α VaR 1-p (Y ) dp. (3) 
The above equation explains the commonly used name Average Value-at-Risk. Now, to explain the name Conditional Value-at-Risk, suppose that the cumulative distribution function F Y (y) := µ({Y ≤ y}) is continuous at y = VaR α (Y ).

Continue to assume that Y ∈ L 1 (Ω, F, µ) and α ∈ (0, 1). Then, CVaR α (Y ) is a conditional expectation that is expressed in terms of the Value-at-Risk [37, Thm. 6.2]:

CVaR α (Y ) = E(Y | Y ≥ VaR α (Y )). (4) 
Equation ( 4) means that CVaR α (Y ) represents the expected value of Y in the α • 100% worst cases.

CVaR is a commonly cited example of a coherent risk functional [START_REF] Shapiro | Minimax and risk averse multistage stochastic programming[END_REF], [START_REF] Shapiro | Lectures on Stochastic Programming: Modeling and Theory[END_REF]. Coherent risk functionals are a class of risk functionals, first proposed by Artzner et al. [START_REF] Artzner | Coherent measures of risk[END_REF], that satisfy four properties, which are particularly meaningful in applications where sensitivity to risk is critical. We present these properties in the context of CVaR at level α ∈ (0, 1], where

Y i ∈ L 1 (Ω, F, µ) below. 1) Monotonicity. If Y 1 (ω) ≤ Y 2 (ω) for almost every (a.e.) ω ∈ Ω, then CVaR α (Y 1 ) ≤ CVaR α (Y 2 ).
That is, a random cost that is larger than another almost everywhere incurs a larger risk. 2)

Subadditivity. CVaR α (Y 1 + Y 2 ) ≤ CVaR α (Y 1 ) + CVaR α (Y 2 )
. If Y i is the (random) stage cost of a control system at time i, then the risk of the cumulative cost over a finite horizon is at most the sum of the risks of the stage costs.

3) Translation equivariance. If a ∈ R, then CVaR α (Y 1 + a) = CVaR α (Y 1 ) + a. 4) Positive homogeneity. If 0 ≤ λ < ∞, then CVaR α (λY 1 ) = λCVaR α (Y 1
). The last two properties ensure that shifting or scaling a random variable provides an analogous transformation to the risk of the random variable. In particular, the expectation operator satisfies the four properties above and thus is a coherent risk functional. We use some of these properties in our proofs. We also use the fact that a real-valued coherent risk functional can be represented in terms of a supremum over a family of expectations. 4 This representation takes the following form for CVaR at level α ∈ (0, 1] [10]: for any Y ∈ L 1 (Ω, F, µ),

CVaR α (Y ) = sup Q∈Qα Ω Y dQ = sup ξ∈Aα Ω Y ξ dµ, (5a) 
where the definitions of Q α and A α follow. Q ∈ Q α if and only if Q is a probability measure that is absolutely continuous with respect to µ, i.e., of the form Q(B) = B ξdµ, where B ∈ F and ξ ∈ A α . A α is a set of densities defined by

A α := ξ ∈ L ∞ (Ω, F, µ) : 0 ≤ ξ ≤ 1 α a.e., Ω ξ dµ = 1 . (5b) 

III. CVAR-BASED RISK-SENSITIVE SAFETY ANALYSIS

We use the CVaR functional to pose a safety analysis problem. We consider a stochastic system evolving on a discrete, finite-time horizon and start with the standard set-up for this setting. Let S and A be Borel spaces, representing the set of states and the set of controls of the system, respectively. Define the sample space Ω := (S × A) T × S, where ω := (x 0 , u 0 , . . . , x T -1 , u T -1 , x T ) ∈ Ω is a finite sequence of states and controls that may be realized on a time horizon of length T +1 and T ∈ N is given. The random state X t : Ω → S and the random control U t : Ω → A are projections. That is, for any ω ∈ Ω of the form above, define X t (ω) := x t and U t (ω) := u t , where the coordinates of ω have casual dependencies, to be described. The initial state X 0 is fixed arbitrarily at x ∈ S. The system's evolution is affected by W -valued random disturbances (D 0 , D 1 , . . . , D T -1 ) with a common distribution P D , where W is a Borel space. D t is independent of the states, controls, and D s for any

s = t. The distribution of X t+1 conditioned on (X t , U t ) = (x t , u t ) ∈ S × A is defined as follows: for any B ∈ B(S), Q(B|x t , u t ) := P D {d t ∈ W : f (x t , u t , d t ) ∈ B} , (6)
where f : S × A × W → S is a Borel-measurable map that models the system dynamics. We use the typical class of random, history-dependent policies Π. Each π ∈ Π takes the form π = (π 0 , π 1 , . . . , π T -1 ), where each π t is a Borelmeasurable stochastic kernel on A given H t := (S × A) t × S.

The above set-up is standard in discrete-time stochastic control. One reason is that, given x ∈ S and π ∈ Π, the set-up allows the construction of a unique probability measure P π

x that characterizes the system's evolution, provided that the system is initialized at x and uses the policy π (Ionescu-Tulcea Theorem). The measure P π

x permits the prediction of the system's performance over time under uncertainty. Random costs incurred by the system are defined on (Ω, B(Ω), P π x ), a probability space parametrized by x and π. The notation E π x (•) is the expectation operator with respect to P π x .

A. On Evaluating a Random Cost via CVaR

We use (Ω, B(Ω), P π x ) to define a random cost for the system and to evaluate this cost via CVaR. Suppose that there is a constraint set K ∈ B(S), where the state trajectory (X 0 , X 1 , . . . , X T ) of the system should remain inside. It may be impossible for the system to remain inside K always due to random disturbances in the environment. Let g K : S → R be a bounded Borel-measurable function that represents a notion of distance between a state realization and the boundary of K. Specifically, g K (x t ) is the extent of constraint violation of x t , a realization of the random state X t . More specifically, if x t is outside of K and far from the boundary of K, then g K (x t ) has a large positive value. However, if x t is inside of K, then g K (x t ) may be 1) zero, if one does not favor certain trajectories inside of K, or 2) a more negative value when x t is more deeply inside of K, if one favors trajectories that remain deeply inside of K. Using g K , we define a random R-valued cost that quantifies the maximum extent of constraint violation of the state trajectory:

for any ω = (x 0 , u 0 , . . . , x T -1 , u T -1 , x T ) ∈ Ω, G(ω) := max t=0,1,...,T g K (X t (ω)) = max t=0,1,...,T g K (x t ). (7)
In other words, G quantifies how well the random state trajectory satisfies the safety criterion to remain inside of K. Hence, G quantifies the safety of the random state trajectory, which is defined with respect to the constraint set K via the function g K . A deterministic (and continuous-time) version of ( 7) is used in Hamilton-Jacobi reachability analysis, a robust safety analysis method for (non-stochastic) uncertain systems, which has been established over the past 15 years; e.g., see [START_REF] Mitchell | A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games[END_REF], [START_REF] Chen | Hamilton-Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management[END_REF], [START_REF] Akametalu | A learning-based approach to safety for uncertain robotic systems[END_REF], and the references therein. A standard choice for g K is a clipped signed distance function with respect to K [43, p. 8]. In our numerical example of a thermostatically controlled load, we use g K (x t ) = max(x t -21, 20 -x t ) to quantify how far a state realization x t can be inside or outside

of K = [20, 21] • C (Sec. V-A). It holds that G ∈ L ∞ := L ∞ (Ω, B(Ω), P π x ) and G ∈ L 1 := L 1 (Ω, B(Ω), P π
x ). The function g K composed with X t is an element of L ∞ because g K : S → R is bounded and Borel measurable and X t : Ω → S is Borel measurable. Thus, G is a point-wise maximum of finitely many functions in L ∞ . Therefore, G inherits the measurability properties of these functions and is essentially bounded. Since (Ω, B(Ω), P π

x ) is a probability space, L ∞ is a subset of L 1 , and it follows that G ∈ L 1 as well. Now, we express the CVaR of G.

The CVaR of G ∈ L 1 (Ω, B(Ω), P π x ) at level α ∈ (0, 1] is given by CVaR π α,x (G) := inf s∈R s + 1 α E π x (max(G -s, 0)) . ( 8a 
)
By using [START_REF] Shapiro | On a time consistency concept in risk averse multistage stochastic programming[END_REF], it holds that

CVaR π α,x (G) = sup ξ∈A π α,x Ω Gξ dP π x , (8b) 
where A π α,x is a set of densities defined by

A π α,x := ξ ∈ L ∞ (Ω, B(Ω), P π x ) : 0 ≤ ξ ≤ 1 α a.e., E π x (ξ) = 1 .
(8c) We use [START_REF] Kreps | Decision problems with expected utility critera, I: Upper and lower convergent utility[END_REF] and ( 8) to define risk-sensitive safe sets next.

B. Risk-Sensitive Safe Sets

Definition 1 (Risk-Sensitive Safe Sets): Let α ∈ (0, 1] and r ∈ R be given. The (α, r)-risk-sensitive safe set for a given policy π ∈ Π is defined by

S r,π α := x ∈ S : CVaR π α,x max t=0,1,...,T g K (X t ) ≤ r . (9) 
The (α, r)-risk-sensitive safe set is defined by

S r α := x ∈ S : inf π∈Π CVaR π α,x max t=0,1,...,T g K (X t ) ≤ r .
(10) We denote the infimum in ( 10) by W * α (x). Risk-sensitive safe sets are well-motivated. These sets represent the sets of initial states from which the maximum extent of constraint violation of the state trajectory, averaged over the α • 100% worst cases, can be made sufficiently small. The maximum extent of constraint violation of the state trajectory is the real-valued random variable G := max t=0,1,...,T g K (X t ). We allow g K to be negative so that decision-makers can encode preferences for trajectories remaining deeper inside of K over trajectories near the boundary of K, if desired. In our numerical example of a thermostatically controlled load, we allow g K to take on both negative and non-negative values to express a preference for trajectories that remain closer to 20.5 • C (Sec. V-A). In our numerical example of a stormwater system, however, we choose a non-negative g K to utilize all capacity in the water storage tanks without penalty (Sec. V-B).

Using CVaR to define risk-sensitive safe sets is well-justified from a decision-theoretic point of view because CVaR is a coherent risk measure. That is, CVaR satisfies the axioms of monotonicity, subadditivity, positive homogeneity, and translation equivariance. Sec. II provides intuitive interpretations for these axioms. Besides having an axiomatic justification, CVaR has the useful interpretation of quantifying the upper tail of a distribution. Indeed, CVaR provides a quantitative characterization of risk aversion by representing the expected cost in the α•100% worst cases, where α ∈ (0, 1] is selected by the decision-maker. This interpretation is exact if continuous random variables in L 1 are evaluated.

Risk-sensitive safe sets generalize probabilistic safe sets [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF] by quantifying the maximal extent of constraint violation at a given risk-sensitivity level rather than the probability of constraint violation. Risk-sensitive safe sets quantify how much constraint violation occurs on average in the α • 100% worst cases, whereas probabilistic safe sets [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF] quantify whether or not constraint violation occurs with some probability. Indeed, let ∈ [0, 1] be a maximum tolerable probability of constraint violation. Choose α = 1, r = , and g K = I K , where

I K (x) = 1 if x / ∈ K and I K (x) = 0 if x ∈ K. Then, the (1, )-risk-sensitive safe set is S 1 = x ∈ S : inf π∈Π E π x max t=0,1,...,T I K (X t ) ≤ , (11) 
which is the maximal probabilistic safe set at the -safety level [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF] for the system of Sec. III. (Ref. [START_REF] Abate | Probabilistic reachability and safety for controlled discrete time stochastic hybrid systems[END_REF] considers discretetime stochastic hybrid systems that evolve under Markov policies.) Risk-sensitive safe sets indicate higher degrees of safety as α decreases and r decreases. We state this fact formally next.

Lemma 1:

Suppose that 1 ≥ α 1 ≥ α 2 > 0 and r 1 ≥ r 2 . Then, S r2 α2 ⊆ S r1 α1 . If π ∈ Π, then S r2,π α2 ⊆ S r1,π α1 . Proof: Let x ∈ S and π ∈ Π. Since 1 ≥ α 1 ≥ α 2 > 0 and G ∈ L 1 (Ω, B(Ω), P π x ), CVaR π α2,x (G) ≥ CVaR π α1,x (G). Since G = max t=0,1,...,T g K (X t ) and g K is bounded, there exists a b ∈ R such that G(ω) ≥ b for almost every ω ∈ Ω. Since CVaR is monotonic and b ∈ R, CVaR π α1,x (G) ≥ b. Take the infimum over π ∈ Π to obtain inf π∈Π CVaR π α2,x (G) ≥ inf π∈Π CVaR π α1,x (G) ≥ b, which holds for any x ∈ S. Now, suppose x ∈ S r2 α2 . Then, r 2 ≥ inf π∈Π CVaR π α2,x (G) ≥ inf π∈Π CVaR π α1,x (G). Since r 1 ≥ r 2 , we have r 1 ≥ inf π∈Π CVaR π α1,x (G), which shows that x ∈ S r1
α1 . The proof for the last statement is similar. The risk-sensitive safe set S r α specifies that the CVaR α of the worst constraint violation of the state trajectory must be below a given threshold. In contrast, the safe set in [START_REF] Samuelson | Safety-aware optimal control of stochastic systems using Conditional Value-at-Risk[END_REF] specifies that for each t the CVaR α of the constraint violation of the state at time t must be below a given threshold. Hence, S r α assesses the risk of the entire trajectory, whereas the safe set in [START_REF] Samuelson | Safety-aware optimal control of stochastic systems using Conditional Value-at-Risk[END_REF] is concerned with the risk of each state in the trajectory separately. A specification that assesses the risk of the entire trajectory may be preferable in certain applications because this approach treats the trajectory as a unified entity representing the behavior of a control system.

C. Under-Approximation Method

Risk-sensitive safe sets are well-motivated but difficult to compute due to the presence of the CVaR and the maximum. Before presenting our approach to estimate risk-sensitive safe sets, we describe related methods in further detail.

Several methods in the literature apply state-space augmentation techniques to estimate the risk of a random cost incurred by a MDP. 5 Bäuerle and Ott use dynamic programming (DP) to minimize the CVaR of a sum of stage costs by defining an augmented state space [START_REF] Bäuerle | Markov decision processes with Average-Valueat-Risk criteria[END_REF]. The range of the second state is [0, ess sup T t=0 C t ], where C t is the stage cost at time t [16, Remark 5.1]. This state-space augmentation approach has been extended to optimize certainty equivalent risk functionals for MDPs [START_REF] Bäuerle | More risk-sensitive Markov decision processes[END_REF]. A certainty equivalent approximates the sum of the expectation and a function of the variance under particular conditions [START_REF] Bäuerle | More risk-sensitive Markov decision processes[END_REF], and more generally, characterizes risk aversion in terms of functions of moments. However, CVaR provides a quantitative characterization of risk aversion by penalizing a random cost in a given fraction of the worst cases.

Chow et al. proposed a DP algorithm to minimize approximately the CVaR of a cumulative cost via state-space augmentation, where the additional state ranges from 0 to 1 [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF]. This approach is expected to be more tractable than the approach in [START_REF] Bäuerle | Markov decision processes with Average-Valueat-Risk criteria[END_REF]; compare the ranges of the additional states. However, it is not known if the algorithm in [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF] provides an upper bound or a lower bound to the solution to a CVaR-MDP problem. The algorithm in [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF] is based on a CVaR Decomposition Theorem [START_REF] Pflug | Time-inconsistent multistage stochastic programs: Martingale bounds[END_REF]Thm. 6] [41, Thm. 21, Lemma 22], which requires knowledge of the history of a stochastic process. How to remove the history dependence and apply the Decomposition Theorem to derive the algorithm in [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF] is still an open research question.

The algorithms invented by [START_REF] Bäuerle | Markov decision processes with Average-Valueat-Risk criteria[END_REF], [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF] aim to minimize the CVaR of a cumulative cost subject to the dynamics of a MDP. The algorithm proposed by [START_REF] Pflug | Time-inconsistent multistage stochastic programs: Martingale bounds[END_REF] aims to minimize the CVaR of a more general cost (not necessarily a sum) but is history-dependent, which limits its computational tractability. The proof of the DP algorithm in [START_REF] Pflug | Time-inconsistent multistage stochastic programs: Martingale bounds[END_REF] requires an exchange between an essential supremum and an expectation, whose validity in multi-stage settings for MDPs with Borel state and control spaces is not known.

Here, we propose a method to provide tractable, theoretically guaranteed under-approximations to risk-sensitive safe sets, which we define via CVaR. We focus on CVaR due to its quantitative characterization of risk aversion and since we aim to assess the degree of safety of a control system in terms of rarer, higher-consequence outcomes. In contrast, a certainty equivalent assesses risk in terms of functions of variance and other moments. In particular, variance does not distinguish between rarer, higher-consequence outcomes in the upper tail and rarer, lower-consequence outcomes in the lower tail. Unlike the methods [START_REF] Bäuerle | Markov decision processes with Average-Valueat-Risk criteria[END_REF], [START_REF] Bäuerle | More risk-sensitive Markov decision processes[END_REF], [START_REF] Chow | Risk-sensitive and robust decision-making: A CVaR optimization approach[END_REF], our method does not use state-space augmentation because this technique typically reduces computational tractability. For this reason, we do not augment the state space with the running maximum over each time period Z t := max i=0,1,...,t g K (X i ). The range of Z t may be large since the bounds of g K may be large. Instead of using state-space augmentation to handle the CVaR and the maximum, we use a scaled expectation to upper bound the CVaR and a log-sum-exponential function to upper bound the maximum, G := max t=0,1,...,T g K (X t ). Our first main result is below.

Theorem 1 (Upper Bound for CVaR of G): For any π ∈ Π, x ∈ S, α ∈ (0, 1], and γ ≥ 1, it holds that

W α (x, π) := CVaR π α,x (G) ≤ 1 γ log 1 α E π x T t=0 e γg K (Xt) . ( 12 
)
The quantity W α (x, π) represents the maximum extent of constraint violation of the state trajectory, averaged over the α • 100% worst cases, when the system uses the policy π and starts from the state x. The right-hand-side of ( 12) can be estimated more readily than W α (x, π) for small α and provides a conservative approximation to W α (x, π). If α is small, more samples of G are required to estimate W α (x, π) = CVaR π α,x (G) since small α corresponds to rarer larger realizations of G. (We are more interested in using small α for safety-critical applications.) Theorem 1 is powerful because it can be used to estimate the performance of any control policy π ∈ Π with respect to W α (x, π). Policies may be designed for different objectives, e.g., efficiency in power or fuel consumption, robustness to bounded adversarial disturbances, robustness to bounded non-linearities, etc. It may be beneficial to estimate their performance with respect to a risk-sensitive safety criterion, such as W α (x, π), efficiently.

The proof of Theorem 1 requires two lemmas. Lemma 2 (CVaR-Expectation Inequality): Let (Ω, F, µ) be a probability space, Y ∈ L 1 (Ω, F, µ) such that Y ≥ 0 a.e. w.r.t. µ, and α

∈ (0, 1]. Then, CVaR α (Y ) ≤ 1 α E(Y ).
A version of the inequality is stated without proof in [START_REF] Shapiro | Minimax and risk averse multistage stochastic programming[END_REF]. We provide a short proof below.

Proof: Start from the CVaR definition (1), and select

s = 0. Then, CVaR α (Y ) ≤ 1 α E(max(Y, 0)). Since Y ≥ 0 a.e., max(Y, 0) = Y a.e., so CVaR α (Y ) ≤ 1 α E(Y )
. Lemma 2 provides an upper bound for CVaR in terms of the expectation and the risk-sensitivity level α when non-negative random variables are evaluated. In addition to Lemma 2, the proof of Theorem 1 requires the following result, which relates the CVaR of the logarithm to the logarithm of the CVaR.

Lemma 3 (CVaR-Log Inequality):

Let α ∈ (0, 1] and Y ∈ L ∞ (Ω, F, µ). Suppose that there are real numbers b ≥ b > 0 such that b ≥ Y (ω) ≥ b for every ω ∈ Ω. Then, CVaR α (log(Y )) ≤ log(CVaR α (Y )).
Proof: Let α ∈ (0, 1] and ξ ∈ A α (5b). Define µ ξ (B) := B ξdµ, where B ∈ F. (Ω, F, µ ξ ) is a probability space, and Ω Y dµ ξ is finite. View Y as a random variable on (Ω, F, µ ξ ). It holds that Y (ω) ∈ (0, ∞) for all ω ∈ Ω, and -log is a convex function from (0, ∞) to R. Thus, by Jensen's Inequality, Ω -log(Y ) dµ ξ ≥ -log Ω Y dµ ξ . Moreover, since Y is non-negative and bounded everywhere, ξ is nonnegative and bounded a.e., and by using the definition of µ ξ , it follows that

log Ω Y ξ dµ ≥ Ω log(Y )ξ dµ. (13) 
Since ξ ∈ A α is arbitrary in the analysis above, the inequality (13) holds for all ξ ∈ A α . In addition, we have CVaR

α (Y ) = sup ξ∈Aα Ω Y ξdµ by (5), CVaR α (Y ) ∈ R because Y ∈ L 1 (Ω, F, µ), and Ω Y dµ ξ = Ω Y ξdµ ≥ b > 0 for all ξ ∈ A α . Thus, log CVaR α (Y ) = log sup ξ∈Aα Ω Y ξdµ ∈ R.
Since the natural logarithm is increasing,

log CVaR α (Y ) ≥ log Ω Y ξ dµ ∀ξ ∈ A α . (14) 
By ( 13) and ( 14 

y i + log(p) γ . ( 15 
)
Let π ∈ Π, x ∈ S, α ∈ (0, 1], and γ ≥ 1. Recall that G = max t=0,1,...,T g K (X t ) ∈ L ∞ (Ω, B(Ω), P π x ), where we have presented Ω and P π

x at the start of Sec. III. Since 

g K is R- valued, Y (ω) := T t=0 e γg K (Xt(ω)) > 0 ∀ω ∈ Ω. (16 
By the inequality (a) in [START_REF] Bertsekas | Stochastic Optimal Control: The Discrete-Time Case[END_REF] and by the definitions of G and Y , the inequality G ≤ 1 γ log T t=0 e γg K (Xt) = 1 γ log(Y ) holds a.e. w.r.t. P π

x . Since CVaR is monotonic and positively homogeneous, and since 1 γ > 0,

CVaR π α,x (G) ≤ CVaR π α,x 1 γ log(Y ) = 1 γ CVaR π α,x (log(Y )). (18) 
We use ( 17) and ( 18) to find that

CVaR π α,x (G) ≤ 1 γ log(CVaR π α,x (Y )). ( 19 
) Note that CVaR π α,x (Y ) ∈ R such that CVaR π α,x (Y ) > 0. Indeed, Y ∈ L ∞ (Ω, B(Ω), P π
x ) and so is also an element of L 1 (Ω, B(Ω), P π x ), hence CVaR π α,x (Y ) ∈ R. Y is bounded everywhere, and in particular, from below by a real number b > 0. Therefore, CVaR π α,x (Y ) ≥ CVaR π α,x (b) = b > 0. Consequently, log(CVaR π α,x (Y )) ∈ R. In addition, the assumptions of Lemma 2 are satisfied, and therefore,

CVaR π α,x (Y ) ≤ 1 α E π x (Y ). (20) 
Use [START_REF] Forsyth | Multiperiod mean Conditional Value at Risk asset allocation: Is it advantageous to be time consistent?[END_REF], [START_REF] Bertsekas | On the minimax reachability of target sets and target tubes[END_REF], and log being increasing to derive that CVaR

π α,x (G) ≤ 1 γ log(CVaR π α,x (Y )) ≤ 1 γ log 1 α E π x (Y )
. We use the conclusion of Theorem 1 to define particular subsets of the state space. First, we call these sets approximations, and then, we prove that they are under-approximations to risk-sensitive safe sets in Theorem 2.

Definition 2 (Approximations to Risk-Sensitive Safe Sets): Let α ∈ (0, 1], r ∈ R, and γ ≥ 1 be given. The (α, r, γ)approximation set for a given policy π ∈ Π is defined by

U r,π α,γ := x ∈ S : 1 α E π x T t=0 e γg K (Xt) ≤ e γr . (21) 
The (α, r, γ)-approximation set is defined by

U r α,γ := x ∈ S : inf π∈Π 1 α E π x T t=0 e γg K (Xt) ≤ e γr . ( 22 
)
We denote the infimum in [START_REF] Margellos | Hamilton-Jacobi formulation for reachavoid differential games[END_REF] by

J * α,γ (x) := inf π∈Π J α,γ (x, π) := inf π∈Π 1 α E π x T t=0 e γg K (Xt) , (23) 
where Π is the set of randomized history-dependent policies, which also includes deterministic Markov policies. Estimating J * α,γ is the critical step for estimating the sets U r α,γ . The problem of estimating J * α,γ is a Markov decision process problem.

Thus, J * α,γ and a deterministic Markov policy π γ ∈ Π such that J α,γ (x, π γ ) = J * α,γ (x) for all x ∈ S can be computed via dynamic programming, in principle, if a measurable selection condition holds. 6 Therefore, for a fixed γ ≥ 1, an algorithm to estimate {J * α,γ : α ∈ Λ}, where Λ ⊆ (0, 1] is a family of risk-sensitivity levels, exists and is tractable. The next theorem shows that the sets in Definition 2 are under-approximations to risk-sensitive safe sets (Definition 1).

Theorem 2: (Under-Approximations to Risk-Sensitive Safe Sets) Let α ∈ (0, 1], r ∈ R, and γ ≥ 1. For any policy π ∈ Π, it holds that U r,π α,γ ⊆ S r,π α ,

where U r,π α,γ is defined by ( 21) and S r,π α is defined by [START_REF] Xin | Bounds for nested law invariant coherent risk measures[END_REF]. Moreover, the (α, r, γ)-approximation set is a subset of the (α, r)-risk-sensitive safe set, i.e.,

U r α,γ ⊆ S r α , (25) 
where U r α,γ is defined by ( 22) and S r α is defined by [START_REF] Shapiro | Minimax and risk averse multistage stochastic programming[END_REF]. Proof: Eq. ( 24) follows from Theorem 1. Let α ∈ (0, 1], r ∈ R, γ ≥ 1, and π ∈ Π be given. Let x ∈ U r,π α,γ . Then,

1 α E π x T t=0 e γg K (Xt) ≤ e γr , (26) 
where the left-hand-side is bounded below by a positive real number since Y := T t=0 e γg K (Xt) is as well. It follows that log 1 α E π x T t=0 e γg K (Xt) is finite. Since the natural logarithm is increasing and γ ≥ 1, we have

1 γ log 1 α E π x T t=0 e γg K (Xt) ≤ r. (27) 
By Theorem 1, it holds that

CVaR π α,x (G) ≤ 1 γ log 1 α E π x T t=0 e γg K (Xt) . (28) 
Combine ( 27) and ( 28) to find that CVaR π α,x (G) ≤ r, which shows that x ∈ S r,π α and proves [START_REF] Chen | Hamilton-Jacobi reachability: Some recent theoretical advances and applications in unmanned airspace management[END_REF]. Now, to prove (25), let x ∈ U r α,γ , which implies that

inf π∈Π 1 α E π x T t=0 e γg K (Xt) ≤ e γr . (29) 
Let > 0 be given. Since the left-hand-side of ( 29) is finite, there is a π ∈ Π such that

1 α E π x T t=0 e γg K (Xt) ≤ + inf π∈Π 1 α E π x T t=0 e γg K (Xt) ≤ + e γr , (30) 
where the second line holds by [START_REF] Yang | A dynamic game approach to distributionally robust safety specifications for stochastic systems[END_REF]. Note that the quantity log 1 α E π x T t=0 e γg K (Xt) is finite. Take the logarithm of (30) and then divide by γ ≥ 1 to obtain

1 γ log 1 α E π x T t=0 e γg K (Xt) ≤ 1 γ log ( + e γr ) . (31) 
By Theorem 1, it holds that

CVaR π α,x (G) ≤ 1 γ log 1 α E π x T t=0 e γg K (Xt) . ( 32 
)
Therefore, CVaR π α,x (G) ≤ 1 γ log ( + e γr ). Since π ∈ Π, it follows that

W * α (x) := inf π∈Π CVaR π α,x (G) ≤ CVaR π α,x (G). (33) 
Consequently, we have

W * α (x) ≤ 1 γ log ( + e γr ) . (34) 
This analysis holds for any > 0. Let → 0, and use the continuity of the logarithm to obtain α (x) ≤ r, we conclude that x ∈ S r α . Since any x ∈ U r α,γ is also an element of S r α , it holds that U r α,γ ⊆ S r α . Since we have shown that U r,π α,γ and U r α,γ are subsets of the risk-sensitive safe sets, S r,π α and S r α , respectively, we now refer to U r,π α,γ and U r α,γ as under-approximations. Remark 1 (Assessment of Approximation Errors): Three approximations are required for the proof above. First, we use a soft-maximum, under which we have

W * α (x) ≤ lim
0 ≤ 1 γ CVaR π α,x (log(Y )) -CVaR π α,x (G) ≤ log(T +1) γ , (36) 
where Y = T t=0 e γg K (Xt) , and there are positive constants b and b (which depend on T , γ, and the bounds of g K ) such that Y ∈ [b, b] everywhere. The inequality [START_REF] Rockafellar | Conditional Value-at-Risk for general loss distributions[END_REF] implies an improved approximation with larger values of γ or smaller values of T . However, since it is not feasible to optimize 1 γ CVaR π α,x (log(Y )) directly, our next step is to leverage the CVaR-log inequality provided by Lemma 3. The associated error is given by

η π,γ α,x := 1 γ log(CVaR π α,x (Y ))-1 γ CVaR π α,x (log(Y )) ≥ 0. ( 37 
)
Since the range of Y is [b, b], it follows that η π,γ α,x ≤ 1 γ log( b/b). Therefore, we anticipate a smaller error η π,γ α,x when Y has a smaller range, which occurs when T is smaller, for example.

The last approximation is log(CVaR

π α,x (Y )) ≤ log 1 α E π x (Y )
, which of course is poor as α → 0. However, for a fixed α ∈ (0, 1), we anticipate that this approximation performs well when P π

x has a fat (upper) tail, which we state formally in the following lemma.

Lemma 4 (Tightness of log(CVaR α (Y )) ≤ log( 1 α E(Y ))): Assume the conditions of Lemma 3, and let α ∈ (0, 1). Suppose that for some finite m > 0, it holds that [START_REF] Chapman | A risk-sensitive finitetime reachability approach for safety of stochastic dynamic systems[END_REF]): The second inequality in [START_REF] Chapman | A risk-sensitive finitetime reachability approach for safety of stochastic dynamic systems[END_REF] means that the cumulative VaR in the upper αfraction of the distribution of Y , VaR1-p(Y )dp , which gives a measure of tail "fatness." For example, if the distribution of Y is a standard log-normal with parameters µ = 0 and σ = 1, and if α = 0.05, then numerical integration yields m ≈ 0.42 1.2 ≈ 0.35. If σ is increased to 2 under the same conditions, then m ≈ 4.7 2.7 ≈ 1.7. Next, we prove Lemma 4. Proof: [Lemma 4] The representation of CVaR in (3) and the inequality [START_REF] Chapman | A risk-sensitive finitetime reachability approach for safety of stochastic dynamic systems[END_REF] imply that

0 < m 1-α 0 VaR 1-p (Y ) dp ≤ 1 1-α VaR 1-p (Y ) dp. (38) Then, 0 ≤ log 1 α E(Y ) -log(CVaR α (Y )) ≤ log 1 m + 1 . Remark 2 (Fat tail condition
1 α 1-α 0 VaR 1-p (Y )dp ≤ CVaR α (Y ) m . ( 39 
)
The expectation and the VaR are related by

E(Y ) = CVaR 1 (Y ) = 1 0 VaR 1-p (Y )dp. It follows that 1 α E(Y ) ≤ 1 m + 1 CVaR α (Y ).
From this and Lemma 2, we have

CVaR α (Y ) ≤ 1 α E(Y ) ≤ 1 m + 1 CVaR α (Y ). ( 40 
)
Then, take the logarithm of ( 40) and subtract log(CVaR α (Y )) ∈ R to complete the derivation.

From Theorem 2, we obtain tractable under-approximations to risk-sensitive safe sets. In practice, one selects γ ≥ 1 manually and then estimates J * α,γ [START_REF] Chen | Decomposition of reachable sets and tubes for a class of nonlinear systems[END_REF] for a family of risksensitivity levels. For a fixed γ, only one MDP problem on the original state space needs to be solved for any family of risk-sensitivity levels because J * α,γ is a standard MDP problem scaled by α. In Sec. V, which presents numerical examples, we take one approach to choose a suitable value of γ manually by visual inspection. Before proceeding to the numerical examples, we present one additional theoretical contribution.

IV. TOWARD A PARAMETER-INDEPENDENT SAFETY ANALYSIS FRAMEWORK

Previously, we have defined risk-sensitive safe sets in terms of the CVaR of a maximum random cost. However, this risksensitive safety criterion is difficult to optimize exactly without using state-space augmentation, which motivated us to derive a parameter-dependent upper bound. One may wonder whether there is another coherent risk functional (ideally related to CVaR) that admits an upper bound, which can be computed via DP on the original state space without an additional parameter that requires tuning. The answer is indeed positive, as presented below.

Definition 3 (Proposed Risk Functional): andY ∈ L ∞ (Ω, B(Ω), P π x ) be given. Let D α be a set of tuples of densities. Each tuple ζ ∈ D α takes the form ζ = (ξ 0 , ξ 1 , . . . , ξ T -1 ), where the properties of the densities follow. For each t, ξ t (•|•, •) : S × S × A → R is Borel measurable, and for every (x, u) ∈ S × A, it holds that ξ t (•|x, u) ∈ R α (x, u). Here, R α (x, u) is the set of Borelmeasurable functions of the form ν :

Let α ∈ (0, 1], x ∈ S, π ∈ Π,
S → R such that ν ∈ [0, α -1/T ] a.e. w.r.t. Q(•|x, u) and S ν dQ(•|x, u) = 1. We define ρ π α,x (Y ) by ρ π α,x (Y ) := sup (ξ0,ξ1,...,ξ T -1 )∈Dα Ω Y T -1 t=0 ξ t (x t+1 |x t , u t ) dP π x .
(41) Remark 3 (Interpretation for R α (x, u)): R α (x, u) is related to the set of densities in the CVaR representation given by ( 5). If the probability space is (S, B(S),

Q(•|x, u)), then A α = R α (x, u), where α = α 1/T .
Remark 4 (Interpretation for ρ π α,x ): Although we do not yet have an exact interpretation for ρ π α,x , we provide a preliminary interpretation here. The quantity ρ π α,x (Y ) is a distributionally robust expectation of Y , such that an uncertainty ξ t perturbs the system's nominal transition law Q at each time t. ξ t may depend on the current time, state, and control. Moreover, ρ π α,x (Y ) strikes a balance between the expectation and CVaR, as formalized below.

Lemma 5 (Coherence of ρ π α,x , relation to CVaR): The risk functional ρ π α,x : L ∞ (Ω, B(Ω), P π x ) → R is coherent. In addition, for any Y ∈ L ∞ (Ω, B(Ω), P π

x ), the inequality

E π x (Y ) ≤ ρ π α,x (Y ) ≤ CVaR π α,x ( 
Y ) holds. Proof: The first step is to verify the properties of monotonicity, subadditivity, translation equivariance, and positive homogeneity, which we omit in the interest of space. To show that 

E π x (Y ) ≤ ρ π α,x (Y ), note that ζ = (ξ 0 , ξ 1 , . . . , ξ T -1 ) such that ξ t equals 1 for each t is an element of D α . The inequality ρ π α,x (Y ) ≤ CVaR π α,x ( 
is inspired by the representation for CVaR in (8b)-(8c). We emphasize a key distinction. In [START_REF] Pflug | Time-consistent decisions and temporal decomposition of coherent risk functionals[END_REF], there is a function ξ t for each t that depends on the current state and control. In (8b)-(8c), however, each function in A π α,x depends on the entire history. The "separable" structure of (41) allows us to derive a DP algorithm on the original state space to upper bound inf π∈Π ρ π α,x (Y ) without using a parameter that requires tuning. In this section, we make two assumptions.

Assumption 1 (Properties of Y ): We consider the case when Y := c T (X T ) + T -1 t=0 c t (X t , U t ) is cumulative. The functions c t : S × A → R for all t ∈ {0, 1, . . . , T -1} and c T : S → R are bounded and upper semi-continuous (usc).

Assumption 2 (Continuity property of Q): The transition kernel Q (6) is continuous in total variation; that is, if

(x n , u n ) → (x, u), then |Q(•|x n , u n ) -Q(•|x, u)|(S) → 0.
Remark 5 (Example that satisfies Assumption 2): Suppose that P D has a continuous non-negative density and f in (6) has the form f (x, u, d) = f 1 (x, u) + d • f 2 (x, u), where W = S is a vector space with field R, f 1 : S × A → S and f 2 : S × A → R are continuous, and f 2 is non-zero. Then, by Scheffé's Lemma, Assumption 2 is satisfied. We note that continuity of f is a typical condition in stochastic control, e.g., see [15, p. 209], and requiring additional structure on the dynamics to achieve tractable algorithms is standard. For example, under some assumptions the dynamics may be decomposed into overlapping systems, to obtain conservative under-approximations to reachable sets for continuous-time, non-stochastic systems [START_REF] Chen | Decomposition of reachable sets and tubes for a class of nonlinear systems[END_REF], [START_REF] Chen | Exact and efficient Hamilton-Jacobi guaranteed safety analysis via system decomposition[END_REF]. A mixed monotone structure has been assumed to approximate reachable sets for discrete-time non-stochastic systems, with applications to traffic safety [START_REF] Coogan | Efficient finite abstraction of mixed monotone systems[END_REF], [START_REF] Coogan | Formal methods for control of traffic flow: Automated control synthesis from finite-state transition models[END_REF]. More broadly, additive continuous noise is a realistic assumption in many domains, e.g., additive Gaussian noise in information theory and control (classical references include [START_REF] Whittle | Risk-sensitive linear/quadratic/Gaussian control[END_REF], [START_REF] Sinopoli | Kalman filtering with intermittent observations[END_REF]) and additive Brownian motion in continuous-time epidemiological modeling [START_REF] Lefebvre | Optimally ending an epidemic[END_REF], [START_REF] Lefebvre | Computer virus propagation modelled as a stochastic differential game[END_REF].

Boundedness and upper semi-continuity of c t for all t ensures that Y ∈ L ∞ (Ω, B(Ω), P π x ) for any x ∈ S and π ∈ Π. Also, boundedness of c t ensures that the iterates of a DP recursion are bounded, which we use to show that a supremum over R α (x, u) of the form φ(x, u) := sup ξ∈Rα(x,u) S Jξ dQ(•|x, u) is attained (Lemma 6, Appendix). This attainment and Assumption 2 together guarantee that the supremum is usc in (x, u) (Lemma 8, Appendix). The upper semi-continuity of the supremum permits the derivation of an upper bound for inf π∈Π ρ π α,x (Y ) via DP. Theorem 3 (DP to Upper Bound inf π∈Π ρ π α,x (Y )): Let Assumptions 1-2 hold, and let α ∈ (0, 1] be given. Define

J α T := c T , (42a) 
and for t = T -1, . . . , 1, 0, define

J α t (x) := inf u∈A v α t (x, u) ∀x ∈ S, (42b) 
where v α t := c t + ϕ α t and

ϕ α t (x, u) := sup ξ∈Rα(x,u) S J α t+1 ξ dQ(•|x, u) (42c) 
for all (x, u) ∈ S × A. Then, J α t is usc and bounded for all t = 0, 1, . . . , T . For all > 0, there is a deterministic Markov policy π * ∈ Π such that ρ π * α,x (Y ) ≤ J α 0 (x) + for all x ∈ S. In particular, inf π∈Π ρ π α,x (Y ) ≤ J α 0 (x) for all x ∈ S. The proof of Theorem 3 is in the Appendix, where we include supporting results as well. The inequality of Theorem 3 could be strengthened as J α 0 (x) = inf π∈Π ρ π α,x (Y ) for all x ∈ S, where Π is the class of randomized Markov policies, when there exists a (ξ * 0 , ξ * 1 , . . . , ξ * T -1 ) ∈ D α such that ξ * t (•|x, u) maximizes ϕ α t (x, u) for all (x, u) ∈ S × A. Theorem 3 is exciting for two main reasons: 1) it provides a more numerically tractable way to estimate safe sets (the upper bound does not have a parameter that requires tuning, and the algorithm does not require an augmented state space); and 2) more broadly, the result initiates new avenues for tractable solutions to risk-sensitive safety analysis problems.

V. NUMERICAL EXAMPLES

Here, we present examples of risk-sensitive safe sets and their under-approximations as in Definition 1 for a temperature system and a stormwater system. 7 For each example, we have chosen a value of γ by exploring increasing integer values and then stopping the exploration when improvements in the estimates of U r α,γ were no longer apparent.

A. Temperature System

Consider a thermostatically controlled load evolving on a finite-time horizon t = 0, 1, . . . , T -1 via a deterministic Markov policy π = (π 0 , π 1 , . . . , π T -1 ),

X t+1 = aX t + (1 -a)(b -ηr pπ t (X t )) + D t .
This model is from [START_REF] Yang | A dynamic game approach to distributionally robust safety specifications for stochastic systems[END_REF], [START_REF] Mortensen | A stochastic computer model for heating and cooling loads[END_REF]. X t is the R-valued random temperature ( • C) of a thermal mass at time t. π t (X t ) is the [0, 1]-valued control at time t. The amount of power supplied to the system decreases as the value of the control increases from 0 to 1. (D 0 , D 1 , . . . , D T -1 ) is a R-valued, iid stochastic process that arises due to environmental uncertainties. We consider three discrete distributions for the disturbance process, where each distribution has a distinct skew (left skew, no skew, or right skew). In each distribution, the minimum disturbance value is -0.5 • C, and the maximum disturbance value is 0.5 We have chosen g K (X t ) = max(X t -21, 20 -X t ) to quantify the extent of constraint violation of the state X t with respect to the constraint set K = [START_REF] Bertsekas | On the minimax reachability of target sets and target tubes[END_REF][START_REF] Mitchell | A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games[END_REF] • C. K is a temperature range, where the state trajectory should remain inside whenever possible. For different values of γ (see next paragraph), we have implemented classical DP with linear interpolation to estimate

J * γ (x) := inf π∈Π J γ (x, π) := inf π∈Π E π x T t=0 e γg K (Xt) (43) 
and a deterministic Markov policy π γ ∈ Π such that J * γ (x) = J γ (x, π γ ) for all x ∈ S. DP on continuous state and control spaces is implemented typically via discretization and interpolation. In particular, we have discretized the set of controls A = [0, 1] and the set of states S = [START_REF] Rudloff | Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences[END_REF][START_REF] Chen | Decomposition of reachable sets and tubes for a class of nonlinear systems[END_REF] • C uniformly at a resolution of 0.1. To improve efficiency of DP, approximate DP methods are being developed, e.g., see [START_REF] Esfahani | From infinite to finite programs: Explicit error bounds with applications to approximate dynamic programming[END_REF], [START_REF] Bertsekas | Reinforcement Learning and Optimal Control[END_REF], and the references therein. While these methods are exciting, we leave investigations of their applicability to risk-sensitive safety analysis for future work.

We have used γ ∈ Γ := {3, 4, . . . , 20} because for all y ∈ S and γ ∈ Γ, the stage cost e γg K (y) is at most e 20•2 , a large number that a personal computer can handle. We have considered risk-sensitivity levels from nearly risk-neutral (α = 0.99) to more risk-averse (α near 0). Specifically, we have chosen α ∈ Λ := {0.99, 0.05, 0.01, 0.005, 0.001}. A typical risk-sensitivity level is α = 0.05 or α = 0.01, and we have considered smaller values of α as well. For γ ∈ Γ and α ∈ Λ, we have estimated J * α,γ (23) by dividing our estimate of J * γ (43) by α. Let Ŝ denote the state space grid. By using our estimate of π γ , we have simulated 100,000 trajectories from each initial state x ∈ Ŝ to generate an empirical distribution of G := max t=0,1,...,T g K (X t ). Then, for each α ∈ Λ, we have used a consistent CVaR estimator [37, p. 300] to estimate CVaR πγ α,x (G). Fig. 3 provides a visual summary of the inequality that we have proved in Theorem 1: Xt) . (44) Each plot in Fig. 3 shows estimates of the right-hand-side of (44) on the vertical axis versus estimates of the left-hand-side of (44) on the horizontal axis for the 5 values of α in Λ. In each plot, each solid colored line consists of 5 points, one for each α ∈ Λ. Points associated with smaller values of α (more risk-averse) are positioned farther away from the origin. In each plot, there are three solid colored lines, one for each distribution of the disturbance process. In each plot, γ ∈ Γ and an initial state x ∈ Ŝ are fixed. We have chosen initial states inside or on the boundary of the constraint set K = [START_REF] Bertsekas | On the minimax reachability of target sets and target tubes[END_REF][START_REF] Mitchell | A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games[END_REF] • C. Fig. 3 is consistent with the inequality that we have proved in Theorem 1 since the solid colored lines are located above the gray line of slope 1. Fig. 3 suggests that there is no unique value of γ that provides the best approximation for all initial states x, risk-sensitivity levels α, and disturbance distributions.

CVaR πγ α,x max t=0,1,...,T g K (X t ) ≤ 1 γ log 1 α E πγ x T t=0 e γg K (
However, by Theorem 2, we have flexibility in choosing the value of γ. In particular, we favor the quality of the approximations for small values of α due to our focus on safety and present sets using γ = 14 as an example of a value that reflects this preference (Fig. 4). 8 

B. Stormwater System

Next, we illustrate risk-sensitive safety analysis using a gravity-driven stormwater system with an automated valve. Consider a two-tank stormwater system evolving on a finitetime horizon t = 0, 1, . . . , T -1 using a deterministic Markov policy π = (π 0 , π 1 , . . . , π T -1 ), 

X t+1 = X t + f (X t , π t (X t ), D t ) • τ . Let R n + := {y = (y 1 , . . . , y n ) T ∈
+ × [0, 1] × R + → R 2 + is given by f (x, u, d) := d -q valve (x, u) a 1 , d + q valve (x, u) -q drain (x) a 2 T q valve (x, u) := u • πr 2 v • sgn h(x) • 2ḡ|h(x)| h(x) := max(x 1 -z 1 , 0) -max(x 2 -z 1,in , 0) q drain (x) := c d πr 2 d 2ḡ(x 2 -z 2 ) if x 2 ≥ z 2 0 otherwise. Model parameters are in Table II. The constraint set K = [0, k 1 ] × [0, k 2 ]
specifies the maximum water elevations that the tanks can hold without surcharge. The stage cost g K (x) = max(x 1 -k 1 , x 2 -k 2 , 0) is the maximum surcharged water level when the system occupies the state x ∈ R 2 + . We have identified a discrete distribution for the disturbance process with the approximate statistics, mean (12.2 cfs), variance (9.9 cfs 2 ), and skew (0.74), where cfs is cubic feet per second. In previous work, we obtained runoff samples by simulating a design storm in PCSWMM (Computational Hydraulics International), which extends the US Environmental Protection Agency's Stormwater Management Model [START_REF] Chapman | Reachability analysis as a design tool for stormwater systems[END_REF], [START_REF] Rossman | Storm Water Management Model User's Manual[END_REF]. In this previous work, the empirical distribution had positive skew, and the mean was about 12.2 cfs [START_REF] Chapman | Reachability analysis as a design tool for stormwater systems[END_REF], which are reflected in the current distribution (not shown in the interest of space).

In Fig. 5, we show estimates of risk-sensitive safe sets and their under-approximations using γ = 22 for 5 risksensitivity levels (see also Table III). The shape of the contour of S r,πγ α indicates a critical trade-off between the maximum initial water elevations in the two tanks from which the system meets a desired degree of safety. The similarity in the shapes of S r,πγ α and U r α,γ is notable, suggesting that U r α,γ may be a useful tool for inferring these critical trade-offs in networked water systems. • 100% indicate the estimated quality of the under-approximations. We list these percentages for the plots in this figure in Table III.

VI. CONCLUDING REMARKS

This paper develops trajectory-wise safety specifications for control systems that quantify the severity of random harmful outcomes and thereby generalize classical stochastic safety analysis. Our primary contribution is to develop a tractable, interpretable safety analysis method with theoretical guarantees that assesses the upper tail of a cost distribution by using CVaR. It is notable that our method provides a parameterdependent upper bound to the CVaR of a maximum cost without augmenting the state space. We have developed com-pelling numerical examples, which demonstrate the utility and tractability of our under-approximation approach. Moreover, we have proposed a risk-sensitive safe set definition in terms of a new coherent risk functional, inspired by CVaR, that admits a parameter-independent upper bound. We show that this upper bound can be computed via DP on the original state space by proving the regularity of a supremum over a function space for a class of transition kernels. Numerical investigations of leveraging our approximation to provide an efficient preliminary estimate to the exact CVaR is an exciting future direction. For instance, we have recently demonstrated the usefulness of efficient approximate "warm-start" computations to examine the effect of different design changes to stormwater infrastructure [START_REF] Chapman | Risk-sensitive safety analysis via state-space augmentation[END_REF]. More broadly, combining techniques from approximate dynamic programming, stochastic rollout, and risk-sensitive safety analysis could lead to novel controller synthesis algorithms for higher-dimensional systems. 

Let > 0 be given. Then, for each t = 0, 1, . . . , T -1, there exists a Borel-measurable function µ α, t : S → A such that

J α t (x) ≤ v α t (x, µ α, t (x)) ≤ J α t (x) + T ∀x ∈ S. (50) 
Define π * := (µ α, 0 , . . . , µ α, T -1 ) ∈ Π , which is a deterministic Markov policy and thus is an element of Π (the class of randomized history-dependent policies) as well. Hence,

inf π∈Π ρ π α,x (Y ) ≤ ρ π * α,x (Y ) (49) 
= sup α,x (Y ) ≤ J α 0 (x) + ∀x ∈ S. Since > 0 is arbitrary, the desired statement would be shown. The sufficient condition [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] holds by an inductive argument. 11 
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 1 Fig. 1. The Conditional Value-at-Risk (CVaR) quantifies the upper tail of a cost distribution. For an absolutely continuous, bounded random variable Y representing a cost and α ∈ (0, 1], we illustrate the expected cost in the α • 100% worst cases, which is CVaRα(Y ) in this setting. The area of the shaded region is α. The expectation of Y , the Value-at-Risk of Y at level α (the lowest cost in the α • 100% worst cases), and the essential supremum of Y are also shown.

Fig.

  Fig.2. We develop a safety analysis method that generalizes stochastic safety analysis by assessing the severity of random harmful outcomes. We define the risk-sensitive safe set S r α in terms of CVaR and derive an under-approximation U r α,γ that is computationally tractable. S r

  ), it holds that log CVaR α (Y ) ≥ Ω log(Y )ξdµ for all ξ ∈ A α . Since the supremum is the least upper bound, we conclude that log CVaR α (Y ) ≥ sup ξ∈Aα Ω log(Y )ξdµ = CVaR α log(Y ) . We use Lemma 2 and Lemma 3 to prove Theorem 1. Proof: [Theorem 1] Note the log-sum-exp approximation for the maximum [44, Sec. 3.1.5, p. 72]: If y ∈ R p and γ ≥ 1,

)

  Since g K is bounded and Y is a sum of finitely many exponential functions of g K , there exist real numbers b ≥ b > 0 such that b ≥ Y (ω) ≥ b for every ω ∈ Ω. It follows that Y ∈ L ∞ (Ω, B(Ω), P π x ) satisfies the assumptions of Lemma 3, and thus, CVaR π α,x (log(Y )) ≤ log(CVaR π α,x (Y )).

→0 1 γ

 1 log ( + e γr ) = 1 γ log lim →0 + e γr = r. (35) Since W *

1 1 -

 1 α VaR 1-p (Y )dp, is at least m times greater than the cumulative VaR in the lower (1 -α)-fraction of the distribution of Y , 1-α 0 VaR 1-p (Y )dp. The maximum value of m that satisfies (38) is m = 1 1-α VaR1-p(Y )dp 1-α 0

  Y ) follows from (8b)-(8c). We use the risk functional (41) to define a safe set. Definition 4 ( Sr α -Risk-Sensitive Safe Set): For any α ∈ (0, 1] and r ∈ R, define Sr α := {x ∈ S : inf π∈Π ρ π α,x (Y ) ≤ r}. Definition 4 is inspired by Definition 1, and the form of ρ π α,x

Fig. 4

 4 provides estimates of the (α, r)-risk-sensitive safe set for π γ ∈ Π (9) S r,πγ α := x ∈ S : CVaR πγ α,x max t=0,1,...,T g K (X t ) ≤ r and the (α, r, γ)-under-approximation set (22)U r α,γ = x ∈ S : 1 α E πγ x T t=0 e γg K (Xt) ≤ e γr = x ∈ S : 1 γ log 1 α E πγ x T t=0 e γg K (Xt) ≤ r .Note that U r α,γ = U r,πγ α,γ .9 In Fig.4, estimates of U r,πγ α,γ (solid red) and S r,πγ α (white circles with blue boundary) are shown for the risk-sensitivity levels α ∈ Λ and various r ∈ R with γ = 14. The estimates of U r,πγ α,γ are subsets of the estimates of S r,πγ α , which we expect by Theorem 2. The estimates of S r,πγ α form an increasing sequence of subsets as α increases and r increases, which is consistent with Lemma 1.

Fig. 3 .

 3 Fig.3. Computations of the inequality that we have proved in Theorem 1 are shown for the temperature system. In each plot, the horizontal axis provides estimates of CVaR πγ α,x (max t=0,1,...,T g K (Xt)), and the vertical axis provides estimates of1 γ log 1 α E πγ x T t=0 e γg K (X t )for 5 different risk-sensitivity levels α ∈ Λ := {0.99, 0.05, 0.01, 0.005, 0.001}. Points associated with smaller values of α (more risk-averse) are positioned farther away from the origin. For a fixed γ, πγ is an optimal (deterministic, Markov) policy for the MDP problem[START_REF] Chen | Decomposition of reachable sets and tubes for a class of nonlinear systems[END_REF]. In each plot, there are three solid colored lines, one for each distribution of the disturbance process (green = no skew, yellow = left skew, blue = right skew). In each plot, γ ∈ {10, 14, 18} and an initial state x ∈ {20, 20.2, . . . , 21} are fixed. The value of γ varies along the rows, and the value of x varies along the columns. A dotted gray line of slope 1 is shown for visual comparison.

R

  n : y i ≥ 0 ∀i}. The state X t is the R 2 + -valued random water elevations in the tanks at time t (ft, ft). π t (X t ) is the [0, 1]-valued valve setting at time t (closed to open). (D 0 , D 1 , . . . , D T -1 ) is a R + -valued, iid stochastic process of surface runoff. τ is the duration of [t, t + 1). The function f : R 2

Fig. 4 .

 4 Fig. 4. For the temperature system with γ = 14, estimates of the (α, r, γ)-under-approximation set U r α,γ = U r,πγ α,γ are shown (solid red circles). Estimates of the (α, r)-risk-sensitive safe set for the control policy πγ ∈ Π, S r,πγ α , are shown (white circles with blue boundary). Each plot presents the estimated sets for the different disturbance distributions (top interval: right skew (RS), middle interval: left skew (LS), and bottom interval: no skew (NS); see the labels in the first plot). Each percentage Number of states in estimate of U r α,γ

Fig. 5 .

 5 Fig. 5. For the stormwater system with γ = 22, estimates of the boundary of the (α, r, γ)-under-approximation set U r α,γ = U r,πγ α,γ are shown (solid pink). Estimates of the boundary of the (α, r)-risk-sensitive safe set for the control policy πγ ∈ Π, S r,πγ α , are shown (dotted blue). We

  and note that Y = Y 0 . For any π ∈ Π and ζ ∈ D α , we denote the(π, ζ)-conditional expectation of Y t given X t by W π,ζ t (x t ) := E π,ζ (Y t |X t = x t ), where x t ∈ S. For any π = (π 0 , π 1 , . . . , π T -1 ) ∈ Π and ζ = (ξ 0 , ξ 1 , . . . , ξ T -1 ) ∈ D α , the following recursion ("law of iterated expectations") holds: for t = 0, 1, . . . , T -1 and x ∈ S,W π,ζ t (x) = A c t (x, u) + ψ π,ζ t (x, u) π t (du|x), (48a)where ψ π,ζ t is defined byψ π,ζ t (x, u) := S W π,ζ t+1 (y) ξ t (y|x, u) Q(dy|x, u) (48b) with ξ t (•|x, u) ∈ R α (x, u) for each (x, u) ∈ S × A.For any policy π ∈ Π , we haveρ π α,x (Y ) = sup ζ∈Dα W π,ζ 0 (x) ∀x ∈ S.

  x ∈ S, ζ ∈ D α , and t ∈ {0, 1, . . . , T }. Indeed, by setting t = 0 in (51) and taking the supremum over D α , we would derive ρ π *

π

  * ,ζ T = c T = J α T for all ζ ∈ Dα. Now, assume that for some t ∈ {0, 1, . . . , T -1}, it holds that W π * ,ζ t+1 (x) ≤ J α t+1 (x) + (T -t-1) T for all x ∈ S and ζ ∈ Dα. Let x ∈ S and ζ = (ξ 0 , ξ 1 , . . . , ξ T -1 ) ∈ Dα be given. Since π * is a deterministic Markov policy, we have W

  • C. Table I provides the model parameters.

  • C h = hours, kW = kilowatts, • C = degrees Celsius.

			TABLE I		
			TEMPERATURE SYSTEM PARAMETERS
	Symbol Description	Value
	a		time delay	e	-τ cr	(no units)
	b		temperature shift	32 • C
	c η		thermal capacitance control efficiency	2 kWh • C 0.7 (no units)
	K		constraint set	[20, 21] • C
	p		range of energy transfer to/from thermal	14 kW
			mass		
	r T	τ	thermal resistance duration of [t, t + 1) length of discrete time horizon	• C kW 60 h 2 5 12 (= 1 h)
	A		control space	[0, 1] (no units)
	S		state space	[18, 23]

Different meanings for time consistency have been proposed, e.g., see[START_REF] Shapiro | On a time consistency concept in risk averse multistage stochastic programming[END_REF],[START_REF] Boda | Time consistent dynamic risk measures[END_REF],[START_REF] Ruszczyński | Risk-averse dynamic programming for Markov decision processes[END_REF]. We refer to the meaning for time consistency from[START_REF] Boda | Time consistent dynamic risk measures[END_REF].

Additional names for CVaR include Average Value-at-Risk, Expected Shortfall, and Expected Tail Loss. We present the definition for CVaR that is used by Shapiro and colleagues, e.g.,[START_REF] Xin | Bounds for nested law invariant coherent risk measures[END_REF],[START_REF] Shapiro | Minimax and risk averse multistage stochastic programming[END_REF],[START_REF] Shapiro | Lectures on Stochastic Programming: Modeling and Theory[END_REF].

The family of expectations has specific properties that are out of the scope of this paper. The representation was developed over several years, e.g., see[START_REF] Shapiro | Minimax and risk averse multistage stochastic programming[END_REF],[START_REF] Artzner | Coherent measures of risk[END_REF],[START_REF] Follmer | Stochastic Finance: An Introduction in Discrete Time[END_REF],[START_REF] Ruszczyński | Optimization of convex risk functions[END_REF].

An approach that does not require state-space augmentation is to evaluate a cumulative cost via a composition of risk functionals[START_REF] Ruszczyński | Risk-averse dynamic programming for Markov decision processes[END_REF]. We take inspiration from this idea in Sec. IV.

Measurable selection conditions, e.g., see[START_REF] Hernández-Lerma | Discrete-Time Markov Control Processes: Basic Optimality Criteria[END_REF] Chapter 3.3] or[START_REF] Bertsekas | Stochastic Optimal Control: The Discrete-Time Case[END_REF], are commonly invoked to guarantee the existence of a policy that optimizes or nearly optimizes an expected cumulative cost subject to a MDP.

We used the Tufts Linux Research Cluster (Medford, MA) with MATLAB (The Mathworks, Inc.). Our code is available from https://github. com/risk-sensitive-reachability/IEEE-TAC-2021.

Higher-quality approximations are those in which the estimates of the under-approximations are generally closer to the estimates of the risk-sensitive safe sets when considering all three disturbance distributions. We suggest an approach to quantify the quality of the approximations in Fig.4.

Recall that πγ ∈ Π is a policy that satisfies J * γ (x) = Jγ (x, πγ ) ∀x ∈ S.That is, πγ is an optimal policy for the MDP problem that defines U r α,γ .
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Proof: Let (x, u) ∈ S × A, and fix the probability space (S, B(S), Q(•|x, u)). Denote L p x,u := L p (S, B(S), Q(•|x, u)) for brevity, and view R α (x, u) as a subset of L 2

x,u with the weak topology. Define the functional ψ : L 2

x,u → R by

It suffices to show that ψ is weakly continuous and R α (x, u) is weakly compact. Weak continuity follows from two wellknown facts: x,u is reflexive, and hence, the weak and weak* topologies of L 2 x,u are the same. We provide details about weak closedness in a footnote. 10 We use similar techniques to prove Lemma 7. Lemma 7 is needed to guarantee that a supremum over R α (x, u) (45) is upper semi-continuous in (x, u).

Lemma 7 (Existence of weakly convergent subsequence): Let µ be a probability measure on (S, B(S)), G α (µ) the set of functions ξ ∈ L 2 µ := L 2 (S, B(S), µ) such that ξ ∈ [0, α -1/T ] a.e. w.r.t. µ, and (ξ n ) n∈N ⊆ G α (µ). Then, there exist (ξ n k ) k∈N ⊆ (ξ n ) n∈N and ξ * ∈ G α (µ) such that (ξ n k ) k∈N converges to ξ * in the weak topology of L 2 µ . Proof: The proof requires two facts. The first fact is [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Thm. 3.18]: Assume that E is a reflexive Banach space, and let (x n ) be a (uniformly) bounded sequence in E. Then, there is a subsequence (x n k ) ⊆ (x n ) that converges in the weak topology. L 2 µ is a reflexive Banach space, and

µ such that (ξ n k ) k∈N converges weakly to ξ * . Moreover, it holds that ξ * ∈ G α (µ) using [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Thm. 3.7] (Footnote 10). Indeed, G α (µ) is a convex subset of L 2 µ , and

µ , which implies that ξ * ∈ G α (µ). We use Lemma 7 to prove the next supporting result. Lemma 8 (Properties of φ): Let J : S → R be Borel measurable and bounded and α ∈ (0, 1]. Under Assumption 2, φ (45) is upper semi-continuous (usc) and bounded.

Proof:

C a converging to (x, u) ∈ S × A be given, and we shall show that (x, u) ∈ C a . It suffices to show that there exist

Denote z n := (x n , u n ) and z := (x, u) for brevity. By Lemma 6, for every n ∈ N, 10 For weak closedness, recall the fact [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Thm. 3.7]: Let E be a Banach space, and let C be a convex subset of E. Then, C is closed in the weak topology if and only if it is closed in the strong topology. Since Rα(x, u) ⊆ L 2

x,u is convex, to show that Rα(x, u) is weakly closed, it suffices to show that Rα(x, u) is strongly closed. Strong closedness of Rα(x, u) follows from 1) strong convergence implying weak convergence and 2) strong convergence implying the existence of a subsequence that converges a.e. to the same limit function [46, Thms. 2.5.

x,u . The first fact ensures that S ξ * dQ(•|x, u) = 1, and the second fact ensures that 0 ≤ ξ * ≤ α -1/T a.e., and thus, ξ * ∈ Rα(x, u).

where

. By Lemma 7, there exist ( ξn k ) k∈N ⊆ ( ξn ) n∈N and ξ † ∈ G α (Q(•|z)) such that ( ξn k ) k∈N converges to ξ † in the weak topology of L 2 z . It holds that ξ † ∈ R α (z), and we explain why S ξ † dQ(•|z) = 1 next. For any k ∈ N, it holds that | ξn k | ≤ α -1/T everywhere, and it follows that

where

Now, for every k ∈ N, we use the triangle inequality and everywhere boundedness of J ξn k to find that By the weak convergence of ( ξn k ) k∈N to ξ † in L 2 z , Term4(k) → 0 as k → ∞, and by Assumption 2, Term3(k) → 0 as k → ∞. We choose

and it follows that φ is usc.

We use the upper semi-continuity of φ to prove Theorem 3.

Proof: [Theorem 3] Proceed by induction. J α T = c T is usc and bounded. Now, assume that for some t = T -1, . . . , 1, 0, J α t+1 is usc and bounded. Then, J α t+1 is Borel measurable and bounded, which implies that ϕ α t is usc and bounded by Lemma 8. Since v α t = c t + ϕ α t is a sum of usc and bounded functions, v α t is usc and bounded. By [START_REF] Bertsekas | Stochastic Optimal Control: The Discrete-Time Case[END_REF]Prop. 7.34], we conclude that J α t is usc and bounded, and for every > 0, there is a Borel-measurable function κ α, t : S → A such that J α t (x) ≤ v α t (x, κ α, t (x)) ≤ J α t (x) + for all x ∈ S. A DP argument completes the proof, which we outline below. Let Π be the set of randomized Markov policies. For t = 0, 1, . . . , T , define the random cost-to-go by