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Abstract

We consider the cascade interconnection of two nonlinear time-delay systems, each of which being integral input-to-state
stable (iISS). We provide an explicit growth condition on the dissipation rate of the driving system and the input rate of the
driven system under which the overall cascade is itself iISS. Building upon recent iISS characterizations of time-delay systems,
the method allows to consider Lyapunov-Krasovskii functionals (LKF) that dissipate in a point-wise manner along solutions,
which simplifies its applicability as compared to dissipation rates involving the whole LKF itself. Another key feature of our
approach is that the growth condition is imposed only on the driving state variables that actually appear in the LKF analysis
of the driven subsystem: this feature happens to be new also in a delay-free context and helps reducing the conservatism of
existing approaches.
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1 Introduction

Cascades are a class of interconnected subsystems in
which the influence of one subsystem on the other is uni-
directional: the output of the driving subsystem impacts
the driven subsystem, but the latter has no influence on
the former. Cascades arise in many real-world applica-
tions, either due to their physical structure or as a result
of the chosen feedback law (cascade-based control).

For finite-dimensional systems, local asymptotic stabil-
ity is naturally preserved by cascade interconnection
[34], but this not the case for global asymptotic stabil-
ity [33, 22]. Additional requirements are needed, which
may take the form of solutions’ boundedness [27, 28] or
growth rate conditions [22, 21, 6].

Beyond stability of autonomous cascades, practical ap-
plications often require to guarantee its robustness to
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exogenous disturbances. This can be efficiently achieved
through the framework of input-to-state stability (ISS).
This notion was introduced in [29] and imposes that,
in the absence of disturbances, the dynamical system
evolves properly (namely, its equilibrium is globally
asymptotically stable: 0-GAS) and that, in the presence
of perturbations, this nominal behavior is preserved up
to a steady-state error proportional to the magnitude of
the applied disturbance. ISS is known to be preserved
by cascade interconnection for finite-dimensional sys-
tems [31, 9], but sometimes constitutes a too demanding
requirement.

A weaker robustness property is integral input-to-state
stability (iISS, [30]): instead of measuring the impact of
the input magnitude on the steady-state behavior of the
system, it rather focuses on its energy. Unlike ISS, iISS
is in general not preserved by cascade interconnection
[6, 7]. For finite dimensional systems, iISS of a cascade of
iISS susbsystems can be ensured either under a growth
rate condition [7] or when the dissipation rate of the
driven subsystem is non-vanishing at infinity [15, 9].

All of those results are developed for finite-dimensional
systems. Due to their pervasiveness in control applica-
tions and their possible destablizing impact, there is a
need to provide stability analysis of cascades involving
delays. iISS was extended to time-delay systems (TDS)
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in [25], in which a sufficient condition for iISS is given in
terms of Lyapunov-Krasovskii functionals (LKF). This
sufficient condition was recently slightly simplified in
[20] in the context of integral input-to-output stability,
which allows in particular to consider an iISS-like behav-
ior only part of the state variables. A LKF characteri-
zation of iISS was recently obtained in [18, 10]. Build-
ing up on these results, we provide explicit growth-rate
conditions under which the cascade of two iISS TDS is
itself iISS. Like in the finite-dimensional case [7], these
growth rate conditions require that the dissipation rate
of the driving subsystem has greater growth around zero
than the input rate of the driven subsystem.

When dealing with TDS, a specific care must be taken
on the way the LKF dissipates along solutions as, unlike
for finite-dimensional systems, the LKF cannot always
be interchanged with the state norm [11]. A particularly
appealing feature of the proposed results is that they rely
on LKF that dissipate in a point-wise manner, meaning
solely in terms of the current value of the solution’s norm.
This differs from more stringent LKF conditions for iISS
[25, 18], which require a dissipation rate that involves the
whole LKF itself. We even further relax this requirement,
by imposing merely a KL dissipation rate, thus allowing
for LKF of the form ln(1+V ), which are of common use
in the study of iISS.

Another interesting feature of the results presented
here is that the growth restrictions are imposed only
on the driving state variables that actually appear in
the derivative of the LKF of the driven subsystem. As
we show through an example, this allows to reduce
the conservatism of the existing approaches even in a
finite-dimensional context.

So far, the vast majority of the existing stability results
about cascades of iISS systems are restricted to finite-
dimensional systems. A notable exception is [26], who
extended the results in [22] to TDS by using a Lyapunov-
Razumikin approach. Cascades can be seen as a partic-
ular case of feedback interconnection, thus allowing the
use iISS small-gain results for time-delay systems such
as [16]. However, this approach often leads to overly con-
servative stability conditions in the context of cascades.
We also stress that a preliminary version of this work
was published in [13], but that paper considered only a
single discrete delay between the two subsystems, relied
on a growth condition on all driving state variables, and
was unable to conclude iISS for the cascade.

After recalling some necessary concepts in Section 2, we
provide our main results on cascades of TDS in Section
3. A focus on finite-dimensional cascades is made in Sec-
tion 4 to highlight the results novelty also for delay-free
systems. Two academic examples are provided in Sec-
tion 5. All proofs are given in Section 6 and we provide
some directions for future work in Section 7.

2 Preliminaries

2.1 Notation

A function α : R≥0 → R≥0 is said to be of class PD if
it is continuous, and satisfies α(0) = 0 and α(s) > 0 for
all s > 0. α ∈ K if α ∈ PD and it is increasing. α ∈ K∞
if α ∈ K and it is unbounded. α ∈ L, if it is continu-
ous, non-increasing and tends to zero as its argument
tends to infinity. A function β : R≥0 × R≥0 → R≥0

is of class KL if β(·, t) ∈ K for each t ≥ 0 and
β(s, ·) ∈ L for each s > 0. Given q1, q2 ∈ PD, we
say that q1 has greater growth than q2 in a neighbor-
hood of zero (and we write q2(s) = Os→0+

(
q1(s)

)
) if

lim sups→0+ q2(s)/q1(s) < +∞. Note that this is equiv-
alent to requiring that sups∈[0,1] q2(s)/q1(s) < +∞.

Given x ∈ Rn, |x| denotes its Euclidean norm.
Given δ ≥ 0, X denotes the set of all continuous
functions ϕ : [−δ; 0] → R. Given any φ ∈ Xn,
‖φ‖ := supτ∈[−δ,0] |φ(τ)|. We denote by U the set of all
measurable essentially bounded signals u : R≥0 → R.
Z is the set of integers whereas N is the set of non-
negative integers. Given any a, b ∈ Z with b ≥ a,
Ja, bK := [a, b] ∩ Z. A property is said to hold almost
everywhere (a.e.), if it holds everywhere except possibly
on a set of zero Lebesgue measure zero.

2.2 Definitions

Consider the nonlinear TDS defined as

ẋ(t) = f(xt, u(t)), ∀t ≥ 0 a.e. (1)

where u ∈ Um is the input, x(t) ∈ Rn is the current
value of the solution and xt ∈ Xn is the state history
defined as

xt(s) := x(t+ s), ∀s ∈ [−δ, 0], (2)

where δ ≥ 0 denotes any constant larger than or equal
to the largest delay involved. f : Xn × Rm → Rn is
assumed to be Lipschitz on bounded sets, which ensures
local existence and uniqueness of solutions for any initial
state history x0 ∈ Xn and any input u ∈ Um [14]. We
also assume that f(0, 0) = 0.

We recall the definition of iISS, originally introduced in
a delay-free context [30] and extended to TDS in [25].

Definition 1 (iISS) The system (1) is said to be inte-
gral input-to-state stable (iISS) if there exists β ∈ KL
and ν, σ ∈ K∞ such that, for all x0 ∈ Xn and all u ∈ Um,
its solution satisfies

|x(t)| ≤ β(‖x0‖, t) + ν

(∫ t

0

σ(|u(s)|)ds
)
, ∀t ≥ 0. (3)
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A first consequence of iISS is that, in the absence of
inputs, the system is globally asymptotically stable.

Definition 2 (0-GAS) The TDS (1) is said to be glob-
ally asymptotically stable for zero input (0-GAS) if there
exists β ∈ KL such that, for all x0 ∈ Xn, the solution of
the input-free system ẋ(t) = f(xt, 0) satisfies

|x(t)| ≤ β(‖x0‖, t), ∀t ≥ 0.

Note that, the concept defined above is usually called
0-UGAS in infinite-dimensional ISS literature (see for
instance the survey [19]), whereas 0-GAS is often de-
fined as the combination of stability and global attrac-
tivity. For finite-dimensional systems both properties
are equivalent, but this is not the case for infinite-
dimensional systems. Nevertheless, we decide to stick to
the 0-GAS acronym (without explicitly stressing that
convergence is uniform in the initial state) for the sake
of homogeneity with the finite-dimensional terminology.

iISS actually goes beyond the internal stability property
of 0-GAS, by ensuring a robustness property known as
bounded-energy converging-state. Namely, if solutions of
(1) satisfy the iISS estimate (3), then it holds that∫ ∞

0

σ(|u(s)|)ds <∞ ⇒ lim
t→∞

|x(t)| = 0. (4)

Another robustness property induced by iISS is the fol-
lowing.

Definition 3 (UBEBS) The TDS (1) is said to satisfy
the uniform bounded energy-bounded state property if
there exists α, α, ζ ∈ K∞ and a constant c ≥ 0 such that,
for all x0 ∈ Xn and all u ∈ Um, its solution satisfies

α(|x(t)|) ≤ α(‖x0‖) +

∫ t

0

ζ(|u(s)|)ds+ c, ∀t ≥ 0. (5)

For finite-dimensional systems, it was shown in [5] that
iISS is equivalent to 0-GAS plus UBEBS. This result was
recently extended to TDS in [10], as recalled next.

Proposition 1 (iISS ⇔ 0-GAS + UBEBS, [10])
The TDS (1) is iISS if and only if it is 0-GAS and owns
the UBEBS property.

Remark 1 In a finite-dimensional context, iISS is ac-
tually equivalent to 0-GAS plus the weaker requirement:∫ ∞

0

ζ(|u(s)|)ds <∞ ⇒ lim inf
t→∞

|x(t)| <∞,

as proved in [2]. This property was as at the core of the
stability analysis of iISS finite-dimensional cascades con-
ducted in [7]. No extension of this fact to TDS is yet
available: the proof techniques presented below rather rely
on Proposition 1.

2.3 iISS characterization

Another strength of iISS is that it can be character-
ized using Lyapunov-Krasovskii functionals. We call a
Lyapunov-Krasovskii functional (LKF) candidate any
functional V : Xn → R≥0, Lipschitz on bounded sets,
for which there exist α, α ∈ K∞ such that

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖), ∀φ ∈ Xn. (6)

A LKF candidate is coercive if (6) is replaced by

α(‖φ‖) ≤ V (φ) ≤ α(‖φ‖), ∀φ ∈ Xn.

The use of non-coercive LKF turns out to be useful in
practice, as will be illustrated through an example in
Section 5.1. Nevertheless, this comes at a price: unlike for
finite-dimensional systems, it is often no longer possible
to interchange dissipation rates in terms of |x(t)| and
V (xt). This issue is discussed in more details in [11].

The upper-right Dini derivative of a LKF candidate V
along the solutions of (1) is defined, wherever it exists, as

D+
(1)V (t) := lim sup

h→0+

V (xt+h)− V (xt)

h
. (7)

It is worth stressing that this Dini derivative can be com-
puted without knowing the solutions of (1), for instance
using Driver’s derivative: see [23].

Just like in finite dimension [4], iISS is characterized by
the existence of a LKF whose dissipation rate is a PD
function of the LKF [18, 25]. In the recent paper [10],
it was shown that a KL dissipation rate involving the
solution’s norm |x(t)| and the supremum norm of the
state history ‖xt‖ is actually sufficient to establish iISS.
More precisely, we have the following characterization of
iISS for TDS.

Theorem 1 (iISS LKF, [10, 18]) The following
statements are equivalent:

i) there exist a coercive LKF candidate V , α ∈ PD and
γ ∈ K∞ such that, given any x0 ∈ Xn and any u ∈ Um,
the solution of (1) satisfies

D+
(1)V (t) ≤ −α(‖xt‖) + γ(|u(t)|), ∀t ≥ 0 a.e.

ii) there exists a LKF candidate V , α ∈ PD and γ ∈ K∞
such that, given any x0 ∈ Xn and any u ∈ Um, the
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solution of (1) satisfies

D+
(1)V (t) ≤ −α(V (xt)) + γ(|u(t)|), ∀t ≥ 0 a.e.

iii) there exists a LKF candidate V , σ ∈ KL and γ ∈ K∞
such that, given any x0 ∈ Xn and any u ∈ Um, the
solution of (1) satisfies

D+
(1)V (t) ≤ −σ(|x(t)|, ‖xt‖) + γ(|u(t)|), ∀t ≥ 0 a.e.

iv) (1) is iISS.

Item iii), referred to as a KL dissipation, is often the
most handy way to establish iISS. As will become clear
with Lemma 7 below, it holds readily under a point-wise
dissipation:

D+
(1)V (t) ≤ −α(|x(t)|) + γ(|u(t)|), ∀t ≥ 0 a.e.,

for some α ∈ PD, which is more in line with the clas-
sical iISS characterization of finite-dimensional systems
[4]. The KL nature of the dissipation rate allows in par-
ticular to use a LKF of the form V = ln(1 +W ), where
W denotes another LKF candidate. This common trick
to show iISS turns out to be useful in a range of appli-
cations, as will be illustrated in Section 5.

On the other hand Item i), referred to as a history-wise
dissipation, is probably the most interesting LKF feature
one can derive from the iISS property, as the generated
LKF is not only coercive (thus lower and upper bounded
by K∞ functions of ‖xt‖) but also dissipates in terms of
the supremum norm of the whole state history.

We stress that, since the considered LKFs are Lips-
chitz on bounded sets, [24, Theorem 5] guarantees that
t 7→ V (xt) is locally absolutely continuous on its do-
main of existence, for any continuously differentiable
x0 : [−δ, 0] → Rn and any u ∈ Um. This regularity is
a key requirement to derive qualitative information on
the system’s solutions based on the Dini derivative of its
LKF. On the other hand, proceeding as in [24, Proposi-
tion 3], it can be seen that establishing iISS for all con-
tinuously differentiable initial states x0 is equivalent to
establishing iISS for all x0 ∈ Xn. Based on this obser-
vation, we will directly work with x0 ∈ Xn, without ex-
plicitly invoking this reasoning.

All the above characterizations make use of a single dis-
sipation rate, encompassing all non-positive terms ap-
pearing in the computation of D+

(1)V (t). It is sometimes

useful, especially in the context of cascades as will be-
come clear in the next section, to allow a different dis-
sipation rate for each state variables. This possibility is
offered by the next result.

Proposition 2 (iISS through multiple KL rates)
The system (1) is iISS if and only if there exist a LKF

candidate V , σi ∈ KL, i ∈ J1, nK, and γj ∈ K∞,
j ∈ J1,mK, such that, given any x0 ∈ Xn and any
u ∈ Um, it holds along its solution that

D+
(1)V (t) ≤ −

n∑
i=1

σi
(
|xi(t)|, V (xt)

)
+

m∑
j=1

γj(|uj(t)|),

(8)

for almost all t ≥ 0 in its maximal interval of existence.

Although this result can be obtained using rather stan-
dard manipulations, we provide its proof in Section 6.4
for the sake of completeness.

We stress that if (1) is iISS, then it is forward complete
for any u ∈ Um, meaning that (8) holds for almost all
t ≥ 0.

3 Cascade of TDS

3.1 With inputs

Consider two nonlinear TDS in cascade:

ẋ(t) = f1(xt, zt, u(t)) (9a)

ż(t) = f2(zt, u(t)), (9b)

where x(t) ∈ Rn1 and z(t) ∈ Rn2 are the current val-
ues of the states of the driven and driving systems re-
spectively, xt ∈ Xn1 and zt ∈ Xn2 are the correspond-
ing state histories, and u ∈ Um denotes an exogenous
input. The functions f1 : Xn1 × Xn2 × Rm → Rn1

and f2 : Xn2 × Rm → Rn2 are assumed to be Lips-
chitz on bounded sets and to satisfy f1(0, 0, 0) = 0 and
f2(0, 0) = 0.

Note that a feedthrough term is allowed in (9), meaning
that the exogenous input may affect both the driving
and the driven subsystems. The same input u ∈ Um
is used in both subsystems: different inputs u1 ∈ Um1

and u2 ∈ Um2 can be accounted for by simply letting
u := (uT1 , u

T
2 )T ∈ Um, with m := m1 +m2.

The main purpose of this study is to investigate under
which condition iISS of the cascade (9) can be ensured
based on the assumption that each of the subsystems
(9a) and (9b) is iISS. Our main result, proved in Section
6.5, is the following.

Theorem 2 (Cascade of iISS systems) Let p ∈ N
and I ⊂ J1, n2K. Assume there exist two LKF candidates
V1 : Xn1 → R≥0 and V2 : Xn2 → R≥0, σ ∈ KL, γ ∈ K∞
and, for each i ∈ I and each j ∈ J1, pK, σi ∈ KL,
γij ∈ K∞ and δij ∈ [0, δ], such that, almost everywhere
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in the maximal interval of existence of any solution of
the driven subsystem,

D+
(9a)V1(t) ≤− σ

(
|x(t)|, V1(xt)

)
(10)

+
∑
i∈I

p∑
j=1

γij
(
|zi(t− δij)|

)
+ γ(|u(t)|)

and, almost everywhere in the maximal interval of exis-
tence of any solution of the driving subsystem,

D+
(9b)V2(t) ≤ −

n2∑
i=1

σi
(
|zi(t)|, V2(zt)

)
+ γ(|u(t)|). (11)

Assume further that the following growth condition holds:

γij(s) = Os→0+

(
σi(s, 0)

)
, ∀j ∈ J1, pK, i ∈ I. (12)

Then the cascade (9) is iISS.

In view of Proposition 2, condition (11) is equivalent to
requiring that the driving subsystem is iISS. Similarly,
condition (10) is equivalent to imposing that the driven
subsystem (9a) is iISS with respect to its input vari-
ables u and zt. Note that not all state variables zi of the
driving system (9b) may appear in (10), as allowed by
the fact that I is not necessarily J1, n2K: a typical situ-
ation for this is when the interconnection between the
two subsystem involves only the terms zi(t − δij) with
i ∈ I and j ∈ J1, pK, but this feature may also cover the
case when some variables zi, i /∈ I, happen to have a
stabilizing effect on the driven subsystem (in which case
the corresponding input rate can be picked null).

It is worth stressing that the growth rate condition (12)
involves only the dissipation rates σi corresponding to a
state variable zi appearing explicitly in the dissipation
inequality of the driving subsystem. In other words, if
some variable zi does not appear in (10) (meaning i /∈ I),
then the corresponding dissipation rate σi(·, 0) is allowed
to be arbitrarily flat around zero. This feature seems to
be new even in a finite-dimensional context, as detailed
in Section 4.

In the above statement, no distinction between state
variables is made in the dissipation rate σ in (10). This
choice is motivated by clarity and conciseness concerns
and comes with no loss of generality. For the same reason,
γ was taken identical in both (10) and (11).

It is worth mentioning that small-gain results for iISS
TDS can also be used to study cascade interconnections,
see [16, Remark 13]. However, that result makes use
of Lyapunov-wise dissipation rates for each subsystem,
meaning in the form of Item ii) of Theorem 1. More cru-
cially, that result imposes that these dissipation rates
are of class K, meaning that both systems are required

to have an ISS-like behavior for small inputs (this prop-
erty is referred to Strong iISS in finite-dimensional lit-
erature [8]). In particular, the results in [16] cannot be
used for the examples of Section 5.

The proof of Theorem 2 relies on the following change
of dissipation rate result for input-free systems, whose
proof is provided in Section 6.1.

Lemma 3 (Changing rates for input-free TDS)
Consider an autonomous TDS

ẋ(t) = f(xt), ∀t ≥ 0 a.e., (13)

where f : Xn → Rn is Lipschitz on bounded sets and
f(0) = 0. Let V : Xn → R≥0 be a LKF candidate satis-
fying, along any solution of (13),

D+
(13)V (t) ≤ −

∑n
i=1 αi(|xi(t)|)

1 + η(V (xt))
, ∀t ≥ 0 a.e., (14)

for some αi ∈ PD, i ∈ J1, nK, and some η ∈ K∞. Let
I ⊂ J1, nK and α̃i be any PD functions satisfying

α̃i(s) = Os→0+(αi(s)), ∀i ∈ I. (15)

Then there exists a continuously differentiable function
ρ ∈ K∞ such that the LKF candidate Ṽ := ρ◦V satisfies,
for almost all t ≥ 0,

D+
(13)Ṽ (t) ≤ −

∑
i∈I

α̃i(|xi(t)|)−
∑

i∈J1,nK\I

αi(|xi(t)|).

The above result makes it possible to transform a KL
dissipation rate as in (14) into a point-wise dissipation
rate. It also shows that arbitrary dissipation rates α̃i, i ∈
I, can be assigned provided that they satisfy the growth
condition (15). Unlike similar existing results such as
[31, 7], the assigment of these new dissipation rates can
be made only on part of the state variables xi, i ∈ I,
thus avoiding to impose any growth restrictions on the
dissipation rates that do not need to be modified.

The proof of Theorem 2 also relies on the following tech-
nical lemma, whose proof is provided in Section 6.2.

Lemma 4 (Lower bound on KL function) Given
any σ ∈ KL, there exist α ∈ K, η ∈ K∞ and a constant
c ∈ (0, 1] such that

σ(s, t) ≥ α(s)

1 + η(t)
, ∀s, t ≥ 0,

α(s) = cσ(s, 0), ∀s ∈ [0, 1].

It is worth stressing that a similarKL decomposition was
already presented in [32, Lemma A.2]. Lemma 4 simply
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underlines the fact that α can be picked proportional to
σ(·, 0) on [0, 1].

3.2 Without inputs

A straightforward consequence of Theorem 2 is that, un-
der the above growth-rate condition, the cascade com-
posed of an iISS subsystem driven by a globally asymp-
totically stable (GAS) one is itself GAS. To state this,
consider the following input-free cascade:

ẋ(t) = f1(xt, zt) (16a)

ż(t) = f2(zt), (16b)

under similar regularity assumptions as the ones on (9).
Then we have the following.

Corollary 1 (Cascade GAS + iISS) Let p ∈ N and
I ⊂ J1, n2K. Assume there exist two LKF candidates V1 :
Xn1 → R≥0 and V2 : Xn2 → R≥0, σ ∈ KL and, for
each i ∈ I and each j ∈ J1, pK, σi ∈ KL, γij ∈ K∞
and δij ∈ [0, δ], such that, almost everywhere along any
solution of the driven subsystem (16a),

D+
(16a)V1(t) ≤ −σ

(
|x(t)|, V1(xt)

)
+
∑
i∈I

p∑
j=1

γij
(
zi(t− δij)

)
(17)

and, almost everywhere along any solution of the driving
subsystem (16b),

D+
(16b)V2(t) ≤ −

n2∑
i=1

σi
(
|zi(t)|, V2(zt)

)
. (18)

Assume further that the following growth conditions hold:

γij(s) = Os→0+

(
σi(s, 0)

)
, ∀j ∈ J1, pK, i ∈ I. (19)

Then the cascade (9) is GAS.

This result complements existing delay-free results [22,
6, 1, 7] as well as the Razumikhin approach developed
in [26] for TDS.

4 Delay-free systems

The possibility to impose a growth rate condition only
on the state variables that enter the driven subsystem
appears to be new also for delay-free systems. The follow-
ing statement focuses on this class of systems, namely:

ẋ(t) = f1

(
x(t), z(t), u(t)

)
(20a)

ż(t) = f2

(
z(t), u(t)

)
, (20b)

where x(t) ∈ Rn1 , z(t) ∈ Rn2 , u ∈ Um, and f1 : Rn1 ×
Rn2 × Rm → Rn1 and f2 : Rn2 × Rm → Rn2 are lo-
cally Lipschitz vector fields satisfying f1(0, 0, 0) = 0 and
f2(0, 0) = 0. For such finite-dimensional cascades, a con-
sequence of Theorem 1 is the following.

Theorem 5 (Cascade of iISS delay-free systems)
Let I ⊂ J1, n2K. Consider two continuous positive defi-
nite and radially unbounded functions V1 : Rn1 → R≥0

and V2 : Rn2 → R≥0, continuously differentiable on Rn1

and Rn2 \ {0} respectively. Assume there exist α ∈ PD,
γ ∈ K∞ and, for each i ∈ I, σi ∈ KL and γi ∈ K∞ such
that, for all x ∈ Rn1 , all z ∈ Rn2 and all u ∈ Rm,

∂V1

∂x
(x)f1(x, z, u) ≤ −α(|x|) +

∑
i∈I

γi(|zi|) + γ(|u|)

(21)

z 6= 0 ⇒ ∂V2

∂z
(z)f2(z, u) ≤ −

n2∑
i=1

σi
(
|zi|, |z|

)
+ γ(|u|).

(22)

Assume further that

γi(s) = Os→0+

(
σi(s, 0)

)
, ∀i ∈ I. (23)

Then the delay-free cascade (20) is iISS.

The main difference between this statement and Theo-
rem 2 is that the derivative of the Lyapunov functions
V1 and V2 can be computed using the chain rule, which
allows to get rid of the Dini derivative and gives rise to
a purely algebraic condition. For the sake of generality,
V2 is not requested to be differentiable at 0, which some-
times proves useful to derive a less conservative dissipa-
tion rate (see [7] for an illustration). Also, the second
argument of the KL functions σi is no longer V2, but di-
rectly |z|, which may help simplifying computations. For
the same reason, the function σ ∈ KL has been replaced
here by a PD function α in (21). The proof of this result
is provided in Section 6.6.

The main result in [7] also studied delay-free cascades
of iISS systems. In order to highlight the similarity and
novelty of the present approach with respect to [7], we
state the following consequence of Theorem 5, which
does not make use of KL dissipation rates.

Corollary 6 (Cascade of iISS delay-free systems)
Let I ⊂ J1, n2K. Consider two continuous positive defi-
nite and radially unbounded functions V1 : Rn1 → R≥0

and V2 : Rn2 → R≥0 continuously differentiable on Rn1

and Rn2 \ {0} respectively. Assume there exist α ∈ PD
and γ ∈ K∞ and, for each i ∈ I, αi ∈ PD and γi ∈ K∞
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such that, for all x ∈ Rn1 , all z ∈ Rn2 and all u ∈ Rm,

∂V1

∂x
(x)f1(x, z, u) ≤ −α(|x|) +

∑
i∈I

γi(|zi|) + γ(|u|)

(24)

z 6= 0 ⇒ ∂V2

∂z
(z)f2(z, u) ≤ −

n2∑
i=1

αi(|zi|) + γ(|u|).

(25)

Assume further that

γi(s) = Os→0+

(
αi(s)

)
, ∀i ∈ I. (26)

Then the delay-free cascade (20) is iISS.

Here again, V2 is not requested to be differentiable at
zero: this feature was already present in [7]. The key dif-
ference with the main result in [7] is that the growth rate
condition (26) is imposed only on the variables zi that
are present in the dissipation inequality (24) (meaning
for i ∈ I). We will show through an Example in Section
5.2 that this allows to cover a wider class of cascades.

The proof of Corollary 6 is provided in Section 6.7 and
relies on the following technical lemma.

Lemma 7 (Lower bound on PD function) Given
any α ∈ PD, there exist µ ∈ K∞ and ν ∈ L such that

α(s) ≥ µ(s)ν(s), ∀s ≥ 0 (27)

lim
s→0+

µ(s)

α(s)
= 1. (28)

The lower bound (27) was already established in [4]. The
novelty here is to show that µ can be picked in such a
way that it behaves similarly to α in a neighborhood of
0. The proof of this lemma is provided in Section 6.3.

5 Illustrative examples

The two academic examples presented below illustrate
the applicability of the tools presented here and highlight
their novelty with respect to existing works.

5.1 Time-delay system

Consider the following cascade TDS involving both dis-
crete and distributed delays:

ẋ(t) =− sat
(
x(t)

)
+

1

4
sat
(
x(t− 1)

)
+ x(t)z(t− 2)2

(29a)

ż(t) =− 3

2
z(t) + z(t− 1) + u(t)

∫ t

t−1

z(τ)dτ, (29b)

where sat(s) := sign(s) min{|s|, 1} for all s ∈ R. This
system is in the form (9) with n1 = n2 = 1, m = 1,
and δ = 2. Consider the LKF candidates defined, for all
φ ∈ X , as

V1(φ) := ln

(
1 + φ(0)2 +

1

2

∫ 0

−1

φ(τ)sat(φ(τ))dτ

)
(30a)

V2(φ) := ln

(
1 + φ(0)2 +

∫ 0

−1

φ(τ)2dτ

)
. (30b)

The Dini derivative of V2 along the solutions of the driv-
ing subsystem reads, for almost all t ≥ 0,

D+
(29b)V2(t) ≤ 1

1 + z(t)2 +
∫ 0

−1
z(t+ τ)2dτ

×

[
2z(t)

(
− 3

2
z(t) + z(t− 1) + u(t)

∫ t

t−1

z(τ)dτ

)

+ z(t)2 − z(t− 1)2

]
.

Observe that 2z(t)z(t− 1) ≤ z(t)2 + z(t− 1)2 and that

z(t)

∫ t

t−1

z(τ)dτ ≤ 1

2

(
z(t)2 +

(∫ t

t−1

z(τ)dτ

)2
)

≤ 1

2

(
z(t)2 +

∫ t

t−1

z(τ)2dτ

)
.

Defining η2(s) := es − 1, we get that

D+
(29b)V2(t) ≤

−z(t)2 + u(t)
(
z(t)2 +

∫ 0

−1
z(t+ τ)2dτ

)
1 + z(t)2 +

∫ 0

−1
z(t+ τ)2dτ

≤ − z(t)2

1 + η2(V2(zt))
+ |u(t)|, ∀t ≥ 0 a.e.,

thus making (11) fulfilled with σ1(s, t) = s2

1+η2(t) and

γ(s) = s, for all s, t ≥ 0.

On the other hand, the derivative of V1 along the solu-
tions of the driven subsystem reads almost everywhere

D+
(29a)V1(t) =

1

1 + x(t)2 + 1
2

∫ t
t−1

x(τ)sat(x(τ))dτ

×

[
2x(t)

(
−sat(x(t)) +

1

4
sat(x(t− 1)) + x(t)z(t− 2)2

)

+
1

2

(
x(t)sat

(
x(t)

)
− x(t− 1)sat

(
x(t− 1)

))]
.

Observing that x(t)sat(x(t− 1)) ≤ x(t)sat(x(t)) +x(t−
1)sat(x(t−1)) (as can be seen by considering separately
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the cases when |x(t)| ≤ |x(t−1)| and |x(t)| ≥ |x(t−1)|)
and defining η1(s) := es − 1, we obtain that

D+V1(t) ≤ − x(t)sat(x(t))

1 + η1(V1(xt))
+ 2z(t− 2)2, ∀t ≥ 0 a.e.,

thus fulfilling (10) with σ(s, t) = ssat(s)
1+η2(t) , I = {1}, δ11 =

2 and γ11(s) = 2s2. Observing that σ1(s, 0) = s2 =
γ11(s)/2, the growth condition (12) is satisfied and we
conclude with Theorem 2 that the cascade (29) is iISS.

It is worth mentioning that this conclusion cannot be
derived with the results in [16] as no class K dissipation
rate can be obtained for the driven subsystem (29a). It
can also be seen that no linear combination of V1 and
V2 results in an iISS LKF for the overall cascade, thus
illustrating the benefits of the cascade analysis in terms
of analysis complexity.

5.2 Delay-free system

Consider the following delay-free cascade system:

ẋ(t) = −sat
(
x(t)

)
+ x(t)

(
z1(t)2 + u1(t)

)
(31a)

ż1(t) = −z1(t) + u2(t) (31b)

ż2(t) = −z2(t)3, (31c)

where x(t) ∈ R is the state of the driven subsystem,
z(t) := (z1(t), z2(t))T ∈ R2 is the state of the driving
subsystem and u := (u1, u2)T ∈ U2 is the input. We let
f(x, z, u) = (f1(x, z1, u1), f2(z, u2))T denote the right-
hand side of (31). Let V1(x) := 1

2 ln(1 + x2). Then, for
all x, z1, u1 ∈ R, it holds that

∂V1

∂x
(x)f1(x, z1, u1) ≤

x
(
−sat(x) + x(z2

1 + u1)
)

1 + x2

≤ −|x|sat(|x|)
1 + x2

+ |z1|2 + |u1|,

meaning that (24) is satisfied with α(s) = s sat(s)
1+s2 , I =

{1}, γ1(s) = s2 and γ(s) = s. Moreover, letting V2(z) :=
1
2 (z2

1 + z2
2), it holds that, for all z ∈ R2 and all u2 ∈ R,

∂V2

∂z
(z)f2(z, u2) = −z2

1 + z1u2 − z4
2

≤ −1

2
z2

1 − z4
2 +

1

2
u2

2. (32)

This makes (25) satisfied with α1(s) = s2

2 and α2(s) =

s4. For these particular functions, it clearly holds that
γ1(s) = Os→0+

(
α1(s)

)
, thus making the growth condi-

tion (26) fulfilled. iISS of (31) follows from Corollary 6.

It is worth mentioning that this academic example can-
not be treated by the results in [7] (at least not with

the proposed Lyapunov functions) since they impose a
growth condition on a PD dissipation rate that involves
the whole state z of the driving subsystem. In our case,
(32) indicates that such a dissipation rate would neces-
sarily be smaller than a function in s4, which does not
dominate γ1(s) = s2 when s → 0+. We thus believe
that this example illustrates the benefits of imposing a
growth conditions only on the variables zi actually ap-
pearing in the computation of the derivative of V1.

6 Proofs

6.1 Proof of Lemma 3

First recall that, since V is a LKF candidate, there exist
α, α ∈ K∞ such that, for all φ ∈ Xn,

α(|φ(0)|) ≤ V (φ) ≤ α(‖φ‖). (33)

We will show that there exists a continuous non-
decreasing function q : R≥0 → R≥0 satisfying q(s) > 0
for all s > 0 such that the sought function ρ reads

ρ(s) =

∫ s

0

q(r)dr, ∀s ≥ 0.

Note that, with this choice, ρ is a continuously differen-
tiable K∞ function and the function Ṽ = ρ ◦ V is then
Lipschitz on bounded sets. Moreover, in view of (33), it
holds that

ρ ◦ α(|φ(0)|) ≤ Ṽ (φ) ≤ ρ ◦ α(‖φ‖), ∀φ ∈ Xn,

meaning that Ṽ is a LKF candidate. Furthermore, its
Dini derivative along the solutions of (13) reads, in view
of (14) and [16, Lemma 7],

D+
(13)Ṽ (t) ≤ q(V (xt))D

+
(13)V (t)

≤ −q(V (xt))

∑n
i=1 αi(|xi(t)|)

1 + η(V (xt))
,

for almost all t ≥ 0. So we need to find a continuous non-
decreasing function q satisfying q(s) > 0 for all s > 0
such that

q(V )

∑n
i=1 αi(|xi|)
1 + η(V )

≥
∑
i∈I

α̃i(|xi|) +
∑

i∈J1,nK\I

αi(|xi|), (34)

where we omitted some arguments for brevity. Let µ :
R≥0 → R≥0 be defined for each s > 0 as

µ(s) := 1 + sup
r∈[0,s]

(
max
i∈I

α̃i(r)

αi(r)

)
. (35)
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For each i ∈ I, the function s 7→ α̃i(s)/αi(s) is contin-
uous on R>0. In addition, condition (15) ensures that
it is bounded on any interval of the form [0, s], s ≥ 0.
µ being clearly non-decreasing, it follows that it admits
a limit at zero. Hence, µ can be extended at zero to be
continuous and non-decreasing on R≥0. We claim that a
possible choice of q to fulfill (34) is then

q(s) := µ ◦ α−1(s)
(
1 + η(s)

)
, ∀s ≥ 0.

This function q is indeed a continuous positive non-
decreasing function. With this choice, and invoking (33)
and (35), we have that, for all i ∈ I and almost all t ≥ 0,

q(V (xt))
αi(|xi(t)|)

1 + η(V (xt))
≥ µ ◦ α−1(V (xt))αi(|xi(t)|)

≥ µ(|x(t)|)αi(|xi(t)|)
≥ α̃i(|xi(t)|). (36)

For all i ∈ J1, nK \ I, since µ(s) ≥ 1, we get that

q(V (xt))
αi(|xi(t)|)

1 + η(V (xt))
≥ µ(|x(t)|)αi(|xi(t)|)

≥ αi(|xi(t)|). (37)

Summing (36)-(37) over i ∈ J1, nK thus establishes (34).

6.2 Proof of Lemma 4

Given any σ ∈ KL, let

σ̃(s, t) :=
σ(s, t)

1 + t
, ∀s, t ≥ 0.

Then σ̃ ∈ KL,

σ(s, t) ≥ σ̃(s, t), ∀s, t ≥ 0, (38)

and, possibly unlike σ, σ̃ is decreasing in its second argu-
ment for each fixed positive value of its first argument.
Let η̄1 : R≥0 → R be defined as

η̄1(t) := max
s∈[0,1]

σ̃(s, 0)

σ̃(s, t)
− 1, ∀t ≥ 0. (39)

Then η̄1(t) is finite for all t ≥ 0 as the maximum of a
continuous function over a closed interval, η̄1(0) = 0,
and η̄1(t) > 0 for all t > 0 since t 7→ σ̃(s, t) is decreasing
for any fixed s > 0. In addition, η̄1 is continuous at zero.
To see this, observe that given ε > 0, there exists h > 0

such that σ̃(s,0)
σ̃(s,h) − 1 ≤ ε for all s ∈ [0, 1], as results from

the continuity of σ̃. It follows that

max
s∈[0,1]

σ̃(s, 0)

σ̃(s, t)
− 1 ≤ ε, ∀t ∈ [0, h],

meaning that η̄1 is indeed continuous at zero. Observing
that limt→∞ η̄1(t) = ∞, we conclude with [12, Lemma
2.5] that there exists η1 ∈ K∞ such that η̄1(t) ≥ η1(t)
for all t ≥ 0 and it holds from (38) and (39) that

σ̃(s, 0)

1 + η1(t)
≤ σ̃(s, 0)

1 + η̄1(t)
≤ σ(s, t), ∀s ∈ [0, 1]. (40)

Furthermore, we know by [32, Lemma A.2] that there
exists α2 ∈ K and η2 ∈ K∞ such that

σ(s, t) ≥ α2(s)

1 + η2(t)
, ∀s, t ≥ 0. (41)

Note that, in this expression, α2 can be picked in such
a way that α2(s) ≤ σ(s, 0) for all s ≥ 0 (if not, just
replace it by min{α2(·);σ(·, 0)}). In particular, letting

c := α2(1)
σ(1,0) , it holds that c ∈ (0, 1].

Let η ∈ K∞ be defined as η(t) := max{η1(t), η2(t)} for
all t ≥ 0 and

α(s) :=

{
cσ(s, 0) if s ∈ [0, 1]

α2(s) if s > 1.

It can easily be checked that α ∈ K and it holds from
(40)-(41) that

σ(s, t) ≥ α(s)

1 + η(t)
, ∀s, t ≥ 0.

6.3 Proof of Lemma 7

If α ∈ K, then the lemma trivially holds by picking
µ(s) = α(s) and ν(s) = 1

1+s for all s ≥ 0. So we now

consider that α ∈ PD \ K. In that case, α reaches its
maximum αM on R>0. Let sM > 0 be any number such
that α(sM ) = αM and define µ̂, ν̂ : R≥0 → R≥0 as

µ̂(s) :=

{
minr∈[s,sM ] α(r), if s ∈ [0, sM ]

αM , if s > sM

ν̂(s) :=

{
αM , if s ∈ [0, sM ]

minr∈[sM ,s] α(r), if s > sM .

These functions are continuous and satisfy

µ̂(s)ν̂(s) ≤ αMα(s), ∀s ≥ 0. (42)

Moreover, µ̂ is positive definite and non-decreasing,
whereas ν̂ is non-increasing and tends to zero as its
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argument tends to infinity. Now let

µ(s) := (1 + s)µ̂(s)

ν(s) :=
1

αM (1 + s)
ν̂(s),

for all s ≥ 0. Then µ ∈ K∞ and ν ∈ L. Furthermore, µ
satisfies

lim
s→0+

µ(s)

α(s)
= lim
s→0+

(1 + s)µ̂(s)

α(s)

= lim
s→0+

minr∈[s,sM ] α(r)

α(s)

= 1,

thus establishing (28). Finally, using (42), we get

α(s) ≥ µ̂(s)ν̂(s)

αM
=

µ(s)
1+sαM (1 + s)ν(s)

αM
= µ(s)ν(s),

which establishes (27).

6.4 Proof of Proposition 2

We start by establishing the sufficiency part of this state-
ment. To that aim, assume that (8) holds almost every-
where on the maximal interval of existence of any solu-
tion of (1). If this maximal interval of existence [0, T ) was
finite for some initial state x0 ∈ Xn and some u ∈ Um,
then we would have lim supt→T− |x(t)| = +∞ (see for
instance [14, Theorem 3.2, p.43]), which contradicts the
fact that

V (xt) ≤ V (x0) +

m∑
j=1

∫ t

0

γj(|ui(τ)|)dτ, ∀t ∈ [0, T ),

as obtained by the integration of (8). Hence, the system
is forward complete and (8) holds for almost all t ≥ 0.

We first invoke Lemma 4, which asserts that there exist
αi ∈ K and ηi ∈ K∞, i ∈ J1, nK, such that

D+
(1)V (t) ≤ −

n∑
i=1

αi(|xi(t)|)
1 + ηi(V (xt))

+

m∑
j=1

γj(|uj(t)|),

for almost all t ≥ 0. Let η ∈ K∞ be defined as η(s) :=
maxi∈J1,nK ηi(s). Then it holds that

D+
(1)V (t) ≤ −

n∑
i=1

αi(|xi(t)|)
1 + η(V (xt))

+

m∑
j=1

γj(|u(t)|).

The function a : Rn≥0 → R≥0 defined as a(r) :=∑n
i=1 αi(ri) is continuous, positive definite, and satisfies

lim|r|→∞ a(r) > 0. It follows that there exist a function
α ∈ K such that a(r) ≥ α(|r|). Letting γ ∈ K∞ be de-
fined as γ(s) :=

∑m
j=1 γj(s) for all s ≥ 0, it follows that

D+
(1)V (t) ≤ − α(|x(t)|)

1 + η(V (xt))
+ γ(|u(t)|), ∀t ≥ 0 a.e.,

and iISS follows from Item iii) of Theorem 1 by observing

that (s, t) 7→ α(s)
1+η(t) is of class KL.

Conversely, assume that (1) is iISS. Then Theorem 1
ensures that there there exist a LKF V , σ ∈ KL and
γ ∈ K∞ such that

D+
(1)V (t) ≤ −σ

(
|x(t)|, V (xt)

)
+ γ(|u(t)|), ∀t ≥ 0 a.e.

Observing that γ
(∑m

j=1 rj

)
≤
∑m
j=1 γ (2mrj) for all

r1, . . . , rm ≥ 0 (as can be seen by iteratively using the
fact that γ(a + b) ≤ γ(2a) + γ(2b) for all a, b ≥ 0), it
follows that, for almost all t ≥ 0,

D+
(1)V (t) ≤ − 1

n

n∑
i=1

σ
(
|x(t)|, V (xt)

)
+ γ

 m∑
j=1

|uj(t)|


≤ − 1

n

n∑
i=1

σ
(
|xi(t)|, V (xt)

)
+

m∑
j=1

γ
(
2m|uj(t)|

)
.

The conclusion follows by letting σi := 1
nσ ∈ KL for

all i ∈ J1, nK and γj(s) := γ(2ms) for all s ≥ 0 and all
j ∈ J1,mK.

6.5 Proof of Theorem 2

The proof consists in showing first that the cascade is
forward complete, and then in showing that it is 0-GAS
and owns the UBEBS property. iISS then follows from
Proposition 1.

To that aim, first observe that Lemma 4 ensures that,
for each i ∈ J1, n2K, there exist ηi ∈ K∞

σi(s, t) ≥
αi(s)

1 + ηi(t)
, ∀s, t ≥ 0

αi(s) = ciσi(s, 0), ∀s ∈ [0, 1]. (43)

Let η ∈ K∞ be defined as

η(s) := max
i∈J1,n2K

ηi(s), ∀s ≥ 0. (44)

In view of (11), it follows that

D+
(9b)V2(t) ≤ −

∑n2

i=1 αi(|zi(t)|)
1 + η(V2(zt))

+ γ(|u(t)|) (45)
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for almost all t ≥ 0 in the maximal interval of existence
of z(·). And, in view of (12) and (43), the functions αi
satisfy the growth rate condition

γij(s) = Os→0+(αi(s)), ∀i ∈ I. (46)

6.5.1 Forward completeness

We start by showing that solutions of the cascade (9)
exist at all positive times. This is rather straightforward
for the driving subsystem as the assumptions of Theorem
2 readily ensure that (9b) is iISS by Theorem 1 (hence,
forward complete). This in turn implies that t 7→ zt is
continuous on R≥0 as the solution of a forward complete
TDS. In particular, it is measurable and locally bounded
on R≥0, meaning that it belongs to Un2 . Observe that
Proposition 2 also ensures that the driven subsystem is
iISS with u and t 7→ zt seen as inputs. It follows that
(9a) is forward complete. In particular, (10) and (45)
hold for almost all t ≥ 0.

6.5.2 0-GAS

We next show that the cascade (9) is 0-GAS, meaning
that the input-free system

ẋ(t) = f1(xt, zt, 0) (47a)

ż(t) = f2(zt, 0) (47b)

is globally asymptotically stable. Note that, in view of
(45), the LKF V2 satisfies

D+
(47b)V2(t) ≤ −

∑n2

i=1 αi(|zi(t)|)
1 + η2(V2(zt))

, ∀t ≥ 0 a.e.

Observe that the growth rate condition (46) ensures that

2

p∑
j=1

γij(s) = Os→0+(αi(s)), ∀i ∈ I.

It follows from Lemma 3 that there exists a continuously
differentiable function ρ ∈ K∞ such that the functional

Ṽ2 := ρ ◦ V2 (48)

satisfies

D+
(47b)Ṽ2(t) ≤ −2

∑
i∈I

p∑
j=1

γij(|zi(t)|)−
∑

i∈J1,n2K\I

αi(|zi(t)|),

(49)

for almost all t ≥ 0. We next modify the LKF Ṽ2 in
such a way that its dissipation rate involves not only the
current value of the driving state variables zi(t) but also

its delayed values zi(t − δij), i ∈ I, j ∈ J1, pK. To that
aim, consider the LKF defined for all ϕ ∈ Xn2 as

V2(ϕ) := Ṽ2(ϕ) +
∑
i∈I

p∑
j=1

∫ 0

−δij
γij(|ϕi(τ)|)dτ.

Since V2 is a LKF candidate, there exist α2, α2 ∈ K∞
such that

α2(|ϕ(0)|) ≤ V2(ϕ) ≤ α2(‖ϕ‖), ∀ϕ ∈ Xn2 . (50)

In view of this and (48), it holds that

α̃2(|ϕ(0)|) ≤ V2(ϕ) ≤ α̃2(‖ϕ‖), (51)

where α̃2 := ρ ◦ α2 ∈ K∞ and α̃2 := ρ ◦ α2 +
δ
∑
i∈I
∑p
j=1 γij ∈ K∞. Moreover, along the solutions

of (47b), it holds that

V2(zt) = Ṽ2(zt) +
∑
i∈I

p∑
j=1

∫ t

t−δij
γij(|zi(τ)|)dτ.

In view of (49), its Dini derivative therefore reads

D+
(47b)V2(t) =D+

(47b)Ṽ2(t)

+
∑
i∈I

p∑
j=1

γij(|zi(t)|)− γij(|zi(t− δij)|)

≤−
∑
i∈I

p∑
j=1

γij(|zi(t)|) + γij(|z(t− δij)|)

−
∑

i∈J1,n2K\I

αi(|zi(t)|), ∀t ≥ 0 a.e.

For all Φ := (φT , ϕT )T ∈ Xn1+n2 , let

V(Φ) := V1(φ) + V2(ϕ). (52)

Then it can easily be checked from (51) that V is a LKF
candidate for the cascade (9) and, summing the above
inequality with (10), we get that, for almost all t ≥ 0,

D+
(47a)V(t) ≤− σ

(
|x(t)|, V1(xt)

)
−
∑
i∈I

p∑
j=1

γij(|zi(t)|)

−
∑

i∈J1,n2K\I

αi(|zi(t)|).

Since σ ∈ KL, Lemma 4 ensures that there exist α ∈ K
and η̄ ∈ K∞ such that σ(s, t) ≥ α(s)

1+η̄(t) for all s, t ≥ 0. It

11



follows that

D+
(47a)V(t) ≤− 1

1 + η̄(V(Xt))

(
α(|x(t)|)

+
∑
i∈I

p∑
j=1

γij(|zi(t)|) +
∑

i∈J1,n2K\I

αi(|zi(t)|)
)
,

where Xt := (xTt , z
T
t )T ∈ Xn1+n2 denotes the state his-

tory of the whole cascade. Let γ̃ ∈ K be defined as

γ̃(s) := min

{
min

i∈I,j∈J1,pK
γij(s) ; min

i∈J1,n2K\I
αi(s)

}
,

for all s ≥ 0. Then it holds that

D+
(47a)V(t) ≤ − 1

1 + η̄(V(Xt))

(
α(|x(t)|) +

n2∑
i=1

γ̃(|zi(t)|)

)

for almost all t ≥ 0. The function X = (xT , zT )T 7→
α(|x|) +

∑n2

i=1 γ̃(|zi|) being continuous, positive definite
on Rn1+n2 , and non-vanishing as |X| → ∞, there exists
α̃ ∈ K such that α(|x|) +

∑n2

i=1 γ̃(|zi|) ≥ α̃(|X|) for all
X ∈ Rn1+n2 : see [17, Lemma 4.3]. Therefore

D+
(9)V(t) ≤ − α̃(|X(t)|)

1 + η̄(V(Xt))
, ∀t ≥ 0 a.e. (53)

GAS of (47) (hence, 0-GAS of (9)) then follows by in-
voking Item iii) of Theorem 1 with u ≡ 0 (or [10, Propo-
sition 1]).

6.5.3 UBEBS

We finally proceed to establishing the UBEBS property.
To that end, first observe that (46) ensures the existence
of a positive constant k such that

αi(s) ≥ kγij(s), ∀s ∈ [0, 1], (54)

for all i ∈ I and all j ∈ J1, pK. Consider the function
α2, η ∈ K∞ in (44) and (50) and let η̃ be defined as

η̃(s) := s+ η(s) + max
i∈I,j∈J1,pK

k

αi(1)
γij ◦ α−1

2 (s)
(
1 + η(s)

)
,

for all s ≥ 0. It can easily be checked that η̃ ∈ K∞. We
claim that this function satisfies, for all ϕ ∈ Xn2 ,

αi(|ϕi(0)|)
1 + η(V2(ϕ))

≥ k γij(|ϕi(0)|)
1 + η̃(V2(ϕ))

, ∀i ∈ I, j ∈ J1, pK.

(55)

To see this, pick any i ∈ I and first consider the case
when |ϕi(0)| ≤ 1. Since η̃(s) ≥ η(s), (55) readily follows

from (54). On the other hand, if |ϕi(0)| ≥ 1, then using
(50) it holds that

1 + η̃(V2(ϕ)) ≥ k

αi(1)
γij ◦ α−1

2 (V2(ϕ))
(
1 + η(V2(ϕ))

)
≥ k

αi(|ϕi(0)|)
γij(|ϕ(0)|)

(
1 + η(V2(ϕ))

)
,

and (55) follows. Combining (55) with (45), the driving
system satisfies the following dissipation inequality:

D+
(9b)V2(t) ≤ −k

∑
i∈I

p∑
j=1

γij(|zi(t)|)
1 + η̃(V2(zt))

+ γ(|u(t)|),

(56)

for almost all t ≥ 0. This ensures in particular that
D+

(9b)V2(t) ≤ γ(|u(t)|) for almost all t ≥ 0, which in turn

implies that

V2(zt) ≤ V2(z0) +

∫ t

0

γ(|u(τ)|)dτ, ∀t ≥ 0. (57)

For notation conciseness, let

Eγu(t) :=

∫ t

0

γ(|u(τ)|)dτ, ∀t ≥ 0.

Observe that Eγu is a non-decreasing continuous func-
tion. Integrating (56) and using (57), it follows that

V2(zt)−V2(z0) ≤ −k
∫ t

0

∑
i∈I
∑p
j=1 γij(|zi(τ)|)

1 + η̃(V2(zτ ))
dτ + Eγu(t)

≤−
k
∑
i∈I
∑p
j=1

∫ t
0
γij(|zi(τ)|)dτ

1 + η̃
(
V2(z0) + Eγu(t)

) + Eγu(t).

This ensures that

k
∑
i∈I

p∑
j=1

∫ t

0

γij(|zi(τ)|)dτ

≤
(

1 + η̃
(
V2(z0) + Eγu(t)

))(
V2(z0) + Eγu(t)

)
≤
(

1 + η̃
(
V2(z0) + Eγu(t)

))
η̃
(
V2(z0) + Eγu(t)

)
,

where we used the fact that η̃2(s) ≥ s for all s ≥ 0.
Recalling that (a+b)2 ≤ 2(a2 +b2) and using η̃(a+b) ≤
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η̃(2a) + η̃(2b) for all a, b ≥ 0, we get that

k
∑
i∈I

p∑
j=1

∫ t

0

γij(|zi(τ)|)dτ ≤ η̃(2V2(z0)) + η̃(2Eγu(t))

+
(
η̃
(
2V2(z0)

)
+ η̃
(
2Eγu(t)

))2

≤ η̃
(
2V2(z0)

)
+ 2η̃

(
2V2(z0)

)2
+ η̃
(
2Eγu(t)

)
+ 2η̃

(
2Eγu(t)

)2
≤ η̃ ◦ 2α2(‖z0‖) + 2η̃2 ◦ 2α2(‖z0‖)

+ η̃
(
2Eγu(t)

)
+ 2η̃

(
2Eγu(t)

)2
,

where α2 ∈ K∞ comes from (50). Let ξ ∈ K∞ be defined
as ξ(s) := 1

k

(
η̃ ◦ 2α2(s) + 2η̃2 ◦ 2α2(s)

)
for all s ≥ 0.

Then ξ ∈ K∞ and it holds that

∑
i∈I

p∑
j=1

∫ t

0

γij(|zi(τ)|)dτ ≤ ξ(‖z0‖) + ξ(Eγu(t)), (58)

for all t ≥ 0. Since V1 is a LKF candidate for the driven
subsystem, there exist α1, α1 ∈ K∞ such that

α1(|φ(0)|) ≤ V1(φ) ≤ α1(‖φ‖), ∀φ ∈ Xn1 . (59)

Based on this, integrating (10) yields

α1(|x(t)|) ≤ α1(‖x0‖)−
∫ t

0

σ
(
|x(τ)|, V (xt)

)
dτ

+
∑
i∈I

p∑
j=1

∫ t

0

γij(|zi(τ − δij)|)dτ + Eγu(t)

≤ α1(‖x10‖) +
∑
i∈I

p∑
j=1

∫ t−δij

−δij
γij(|zi(τ)|)dτ + Eγu(t)

≤ α1(‖x0‖) +
∑
i∈I

p∑
j=1

∫ t

−δij
γij(|zi(τ)|)dτ + Eγu(t)

≤ α1(‖x0‖) + n2pδγ̄(‖z0‖) +
∑
i∈I

p∑
j=1

∫ t

0

γij(|zi(τ)|)dτ

+ Eγu(t),

where γ̄ ∈ K∞ is defined as γ̄(s) := maxi∈I,j∈J1,pK γij(s)
for all s ≥ 0. Using (58) and replacing Eγu by its expres-
sion, we finally obtain that

α1(|x(t)|) ≤α1(‖x0‖) + n2pδγ̄(‖z0‖) + ξ(‖z0‖) (60)

+ ξ

(∫ t

0

γ(|u(τ)|)dτ
)

+

∫ t

0

γ(|u(τ)|)dτ.

Finally, observe that (11) and (50) readily ensure that

α2(|z(t)|) ≤ α2(‖z0‖) +

∫ t

0

γ(|u(τ)|)dτ. (61)

Combining (60) and (61), we conclude that the cascade
(9) owns the UBEBS property. Since we have already
shown that it is 0-GAS, iISS follows from Proposition 1.

6.6 Proof of Theorem 5

Proceeding as in the proof of Theorem 1, the cascade
can be shown to be forward complete (see also [3]). We
start by recalling the technical result [7, Proposition 12]:
if a locally Lipschitz function y : R≥0 → R≥0 satisfies,
for all t ≥ 0,

y(t) > 0 ⇒ ẏ(t) ≤ w(t)

y(t) = 0 ⇒ w(t) ≥ 0,

for some w ∈ U , then ẏ(t) ≤ w(t) for almost all t ≥
0. Considering any x0 ∈ Rn1 , any z0 ∈ Rn2 and any
u ∈ Um, observe that

∑n2

i=1 σi(|zi|, |z|) = 0 whenever
V2(z(t)) = 0 (due to the fact that V2 is positive definite).
Picking w(t) = −

∑n2

i=1 σi(|zi(t)|, |z(t)|) + γ(|u(t)|) and
y(t) = V2(z(t)), the two above implications hold, and we
conclude from (22) that

V̇2(z(t)) ≤ −
n2∑
i=1

σi(|zi(t)|, |z(t)|) + γ(|u(t)|), ∀t ≥ 0 a.e.

Since V2 is a continuous positive definite radially un-
bounded function, there exist α2, α2 ∈ K∞ such that

α2(|z|) ≤ V2(z) ≤ α2(|z|), ∀z ∈ Rn2 .

It follows that

V̇2(z(t)) ≤ −
n2∑
i=1

σ̃i

(
|zi(t)|, V2

(
z(t)

))
+ γ(|u(t)|), (62)

for almost all t ≥ 0, where σ̃i ∈ KL is defined as
σ̃i(s, t) := σi

(
s, α−1

2 (t)
)

for all s, t ≥ 0. Notice that, in
view of the growth condition (23), it holds that

γi(s) = Os→0+

(
σ̃i(s, 0)

)
, ∀i ∈ I. (63)

Finally, (21) readily ensures that

V̇1(x(t)) ≤ − α(|x(t)|)
1 + V1(x(t))

+
∑
i∈I

γi(|zi(t)|) + γ(|u(t)|)

(64)

for all t ≥ 0. With (62), (63) and (64), all the assump-
tions of Theorem 1 are fulfilled with δ = 0 and we con-
clude that the cascade (20) is iISS.
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6.7 Proof of Corollary 6

Invoking Lemma 7, there exist µi ∈ K∞ and νi ∈ L,
i ∈ J1, n2K, such that

αi(s) ≥ µi(s)νi(s), ∀s ≥ 0

lim
s→0+

µi(s)

αi(s)
= 1. (65)

It follows in particular that, for all x ∈ Rn1 , all z ∈
Rn2 \ {0} and all u ∈ Rm,

∂V2

∂z
(z)f2(x, z, u) ≤ −

n2∑
i=1

µi(|zi|)νi(|zi|) + γ(|u|).

Since V2 is a continuous positive finite radially un-
bounded function, there exist α2, α2 ∈ K∞ such that

α2(|z|) ≤ V2(z) ≤ α2(|z|), ∀z ∈ Rn2 .

Thus,

∂V2

∂z
f2(x, z, u) ≤ −

n2∑
i=1

µi(|zi|)νi ◦ α−1
2

(
V2(z)

)
+ γ(|u|).

For each i ∈ J1, n2K, define σi : R≥0 × R≥0 → R≥0 as

σi(s, t) := µi(s)νi ◦ α2(t), ∀s, t ≥ 0.

Then each σi is a KL function and it holds that

∂V2

∂z
(z)f2(x, z, u) ≤ −

n2∑
i=1

σi
(
|zi|, V2(z)

)
+ γ(|u|). (66)

Furthermore, we have from (26) and (65) that

γi(s) = Os→0+

(
σi(s, 0)

)
, ∀i ∈ I. (67)

Thus, we get from (24), (66) and (67) that all the as-
sumptions of Theorem 5 are fulfilled and iISS of the cas-
cade (20) follows.

7 Conclusion

We have provided a testable condition under which the
cascade of two iISS time-delay systems is iISS. Like in
the finite-dimensional case, this condition imposes that
the input rate of the driven subsystem be dominated by
the dissipation rate of the driving one in a neighborhood
of zero. Beyond its applicability to time-delay systems,
a key novelty of the results presented here is that this
growth condition is imposed only on the driving state
variables that actually appear in the Lyapunov analysis
of the driven subsystem. This feature allows to cover

a wider class of cascades, as illustrated by an example
involving delay-free dynamics.

A limitation of our main result lies in the way the two
subsystems are interconnected: although discrete delays
between the two subsystems are allowed in our analysis,
condition (10) is unlikely to be fulfilled for more generic
interconnections, such as distributed delays or other pro-
cesses that would generate non-discrete delayed terms
of zi in the dynamics of the driven subsystem. Further
work is needed in that direction, possibly relying on the
Ma functions introduced in [25]. Notice however that, if
a class K LKF-wise dissipation rate can be obtained for
the driven subsystem, then this class of cascade TDS can
be treated by [16, Remark 13]. Nevertheless, some fur-
ther work is needed in that direction to allow for merely
PD (or KL) dissipation rates.

Finally, an interesting compromise between iISS and ISS
is the Strong iISS property [8], which is known to be pre-
served by cascade interconnection for finite-dimensional
systems [9]. Further investigations are needed to extend
this result to time-delay systems.
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