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Abstract 
Asymptotic output stability (AOS) is an interesting property when 

addressing control applications in which not all state variables are 

requested to converge to the origin. AOS is often established by invoking 

classical tools such as Barbashin-Krasovskii-LaSalle’s invariance 

principle or Barbălat’s lemma. Nevertheless, none of these tools allow to 

predict whether the output convergence is uniform on bounded sets of 

initial conditions, which may lead to practical issues related to 

convergence speed and robustness. The contribution of this paper is 

twofold. First, we provide a testable sufficient condition under which this 

uniform convergence holds. Second, we provide an extension of 

Barbălat’s lemma, which relaxes the uniform continuity requirement. 

Both these results are first stated in a finite-dimensional context and then 

extended to infinite-dimensional systems. We provide academic 

examples to illustrate the usefulness of these results and show that they 

can be invoked to establish uniform AOS for systems under adaptive 

control.  
 
 

Keywords: Lyapunov functions, Output Stability, Input-to-Output Stability, nonlinear systems. 
 

 

1. Introduction 
 

Several control applications require to impose a prescribed behavior not necessarily to the whole 

state, but only to specific state variables or some output of interest. A typical example is that of 

adaptive control, in which it is not necessary to impose a zero steady-state error on the parameter 

estimation to get a proper behavior of the closed-loop system. Many notions are available for the 

description of such a property, including partial stability [22], which specifically addresses the case 

when only part of the variables are requested to have a stable behavior, and output stability [6,17], 

which considers stability of a specific targeted output. 

   Beyond convergence of the output to the origin, a desirable additional property is that the rate at 

which this convergence is achieved is uniform on bounded sets of initial states. This leads to the 

notion of Uniform Asymptotic Output Stability (UAOS). This uniformity in initial states comes for 

free in the full-state stability analysis of finite-dimensional systems (in the sense that stability and 
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attractivity imply uniform convergence rate, [8]), but is not guaranteed in the context of output 

stability [14]. 

 

   UAOS can be casted in the more general framework of stability with respect to two measures 

[10,13], meaning a KL  estimate in which the left-hand side measure is the output norm and the 

right-hand side measure is the full state norm. This expression captures the fact that transient 

behavior of the output usually depends on the full initial state, and not only on the initial value of 

the considered output. UAOS is then fully characterized in terms of Lyapunov functions [6,11,21], 

which allows in turn to analyze robustness to exogenous inputs [18]. 

   From an application perspective, uniformity is a desirable property as it precludes the possibility 

to have arbitrarily slow convergence of the output from a bounded set of initial states. But, perhaps 

more importantly, lack of uniformity may have detrimental consequences on the robustness to 

exogenous inputs or model uncertainties. For instance, an example was given in [14] of a (non-

uniformly) asymptotically output-stable system whose output does not converge to zero in the 

presence of an arbitrarily small vanishing input (although the system evolves on a bounded set). 

Due to the above-mentioned Lyapunov characterizations, such lack of robustness is precluded by 

UAOS. Indeed, Theorem 1 in [21] indicates that a KL  stability estimate (i.e., UAOS) holds if and 

only if there exists a Lyapunov function. 

   Classical tools to establish that a specific output converges to zero are the well-known Barbashin-

Krasovskii-LaSalle’s invariance principle and Barbălat’s lemma [8]. Both these results help 

guaranteeing that the output ( )y t  converges to zero under the assumption that a Lyapunov-like 

function V  satisfies, along the system’s solutions, 
 

 ( ) ( )V x W x  , with  ( )W x a y                                          (1.1) 

 

where   is a continuous positive definite function and a  is a function of class K . Nevertheless, 

none of these two results guarantees that the output convergence is indeed uniform. An example 

was actually given in [14] of a system satisfying (1.1) but whose solutions do not uniformly 

converge to the origin. 

   Our first main result in this paper is to show that condition (1.1) does ensure UAOS provided that 

W  does not increase along the system’s solution (Theorem 1). We show how this result can be 

useful to establish semiglobal uniform asymptotic output stability through adaptive control for 

systems satisfying the matching condition [9]. More precisely we show that, given any compact set 

of initial conditions, there exists an adaptive control law that makes the closed-loop system UAOS 

from this set (Theorem 3). 

   We also provide novel conditions to ensure (possibly non-uniform) asymptotic output stability by 

relaxing the uniform continuity requirement imposed by Barbălat’s lemma to merely uniform upper 

semi-continuity from the right and uniform lower semi-continuity from the left (Theorem 2). We 

also provide a testable criterion to ensure this “quasi-uniform continuity” property in practice. 

While other extensions of Barbălat’s lemma were already given the literature [4,19,20], we are not 

aware of any existing results allowing to relax the uniform continuity requirement. A consequence 

of the two main contributions can be roughly summarized as follows: the differential inequality 

(1.1) ensures asymptotic output stability if W  does not increase or decrease more than linearly in 

time along the system's solutions and the convergence rate is uniform if W  does not increase along 

solutions.  

   We then extend all these results in an infinite-dimensional setup that allows the study of partial 

differential equations and time-delay systems. In the particular case of time-delays systems, our 

results generalize Lyapunov-Krasovskii conditions for UAOS presented in [5] as they do not 

require a dissipation rate involving the whole Lyapunov-Krasovskii functional itself, which often 

proves hard to show in practice. 
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Notation. Throughout this paper, we adopt the following notation.  

  : [0, )   .  

  Let 
nS   be an open set and let 

nA  be a set that satisfies ( )S A cl S  , where ( )cl S  is 

the closure of 
nS  . By );(0 AC , we denote the class of continuous functions on A , which 

take values in m . By );( ACk , where 1k   is an integer, we denote the class of functions 

on nA , which takes values in m  and has continuous derivatives of order k . In other 

words, the functions of class ( ; )kC A   are the functions which have continuous derivatives of 

order k  in int( )S A  that can be continued continuously to all points in S A  .  When   

then we write 0( )C A  or ( )kC A .  

  By K  we denote the class of strictly increasing 0C  functions :a     with (0) 0a  . By 

K  we denote the class of strictly increasing  0C  functions :a     with (0) 0a   and 

lim ( )
s

a s


  . By KL  we denote the set of all continuous functions :       with the 

properties: (i) for each 0t   the mapping ( , )t   is of class K ; (ii) for each 0s  , the mapping 

( , )s    is non-increasing with lim ( , ) 0
s

s t


 . 

  For a vector nx , x  denotes its Euclidean norm and x  denotes its transpose. 

  Let 
nS   be a non-empty set with 0 S . We say that a function :V S   is positive 

definite if ( ) 0V x   for all x S  with 0x   and (0) 0V  . We say that a continuous function 

:V S   is radially unbounded if the following property holds: “for every 0M   the set 

{ : ( ) }x S V x M   is compact”. For 1( ; )V C S    we define 




















 )(,...,)()(

1

x
x
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x
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2. Output Stability for Finite-Dimensional Systems  
 

2.1. Definitions 

 

We start by introducing the class of dynamical system considered here and by recalling notions of 

output stability. Let 
nS   be a non-empty set with 0 S , : nf S   be a locally Lipschitz 

vector field with (0) 0f   and : kh S   be a continuous mapping with (0) 0h  . Consider the 

dynamical system 

( )x f x

x S




                                                                   (2.1) 

with output  

( )y h x                                                                     (2.2) 
 

We assume that the dynamical system (2.1) is forward complete, i.e., for every 0x S  the unique 

solution 0( ) ( , )x t t x  of the initial-value problem (2.1) with initial condition 0(0)x x S   exists 

for all 0t   and satisfies 0( , )t x S   for all 0t  .  
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   We use the notation 0 0( , ) ( ( , ))y t x h t x  for all 0t  , 0x S  and  :n

RB x x R    for all 

0R  . The following properties are standard in the analysis of output stability: see for instance 

[6,18,21,22]. 

 

Definition 1 (Output Stability Notions): Let S  be a positively invariant set for (2.1) with 

0 . We say that system (2.1), (2.2) is 

i) Lagrange output stable on   if for every 0R   the set  0 0( , ) : , 0Ry t x x B t    is 

bounded.  

ii) Lyapunov output stable on   if for every 0   there exists ( ) 0    such that for all 

0 ( )x B   , it holds that 0( , )y t x   for all 0t  .   

iii) Asymptotically Output Stable (AOS) on   if system (2.1), (2.2) is Lagrange and Lyapunov 

output stable on   and  0lim ( , ) 0
t

y t x


  for all 0x  .  

iv) Uniformly Asymptotically Output Stable (UAOS) on   if system (2.1), (2.2) is Lagrange 

and Lyapunov output stable on   and for every , 0R   there exists ( , ) 0T R   such that 

for all 0 Rx B  , it holds that 0( , )y t x   for all ( , )t T R . 

 

The following two lemmas provide characterizations of the stability notions of Definition 1 in terms 

of comparison functions. Since Lemmas 1 and 2 are special cases of Lemmas 4 and 5 (given below) 

their proofs are omitted.  

 

Lemma 1 (Output stability through a K  estimate): Let S  be a positively invariant set for 

(2.1) with 0 . System (2.1), (2.2) is Lagrange output stable on   and Lyapunov output stable 

on   if and only if there exists a function K   such that the following estimate holds for all 

0x   and 0t  : 

 0 0( , )y t x x  

 

Lemma 2 (UAOS through a KL  estimate): Let S  be a positively invariant set for (2.1) with 

0 . System (2.1), (2.2) is UAOS on   if and only if there exists a function KL   such that the 

following estimate holds for all 0x   and 0t  : 

 

 0 0( , ) ,y t x x t  

 

 

2.2. Problem Statement 

 

   Powerful mathematical results to establish AOS are Barbălat’s Lemma (Lemma 4.2 on page 192 

in [8]) or Barbashin-Krasovskii-LaSalle’s theorem (Theorem 3.4 on page 115 in [8]). However, 

these tools cannot guarantee uniform attractivity and therefore these tools cannot be used for the 

verification of UAOS.  

   The counterexample in [14] showed that the existence of functions 1( ; )V C     with (0) 0V  , 

, ,a b c K  for which 

   ( ) ( )a h x V x b x  , for all x                                           (2.3) 
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 ( ) ( ) ( )V x f x c h x   , for all x                                         (2.4) 

 

does not guarantee UAOS on   even if in addition we assume that 1( ; )kh C    and there exists 

a constant 0M   with ( ) ( )h x f x M   for all x .  

    On the other hand, it is known that the existence of functions 1( ; )V C     with (0) 0V  , 

,a b K  and a continuous, positive definite function :     for which (2.3) holds and for 

which 

 ( ) ( ) ( )V x f x V x   , for all x                                             (2.5) 

 

does guarantee UAOS on   without any further assumption (see for instance [18,22] as well as 

Theorem 2.4 on page 90 in [6]). The key difference between (2.4) and (2.5) is that the dissipation 

rate in the former involves only the output norm, whereas the latter involves the Lyapunov function 

itself. 

   However, in practice it is difficult to obtain a dissipation rate, like in (2.5), that depends on the 

Lyapunov function itself. It is therefore reasonable to ask the following question: 
 

“Assume that there exist functions 1( ; )V C    , 0( ; )W C     and a continuous, 

positive definite function :     for which the following inequality holds: 
 

 ( ) ( ) ( )V x f x W x   , for all x                                        (2.6) 

 

What additional conditions on V  and W  can guarantee UAOS for (2.1), (2.2)?” 
 

It is reasonable to expect that the dissipation rate will at least depend on the norm of the output, i.e., 

assume the existence of a K  such that  

 ( ) ( )a h x W x , for all x                                               (2.7) 

 

Inequalities (2.6) and (2.7) guarantee that the dissipation rate is not zero when the output is non-

zero (similarly to (2.4)). However, as recalled above, such an assumption is not sufficient for UOAS 

on  .  

 

 

2.3. Uniform Results 

 

   The following theorem provides sufficient Lyapunov-like conditions for UAOS of system (2.1), 

(2.2) without requiring a dissipation rate that involves the Lyapunov function and shows the 

missing link between AOS and UAOS in terms of the dissipation rate. Its proof is provided in 

Section 5.4. 

 

Theorem 1 (Lyapunov conditions for UAOS): Let S  be a positively invariant set for (2.1) 

with 0 . Suppose that there exist functions a K , 1, ( ; )V W C     with 

 sup ( ) ( ): ,V x W x x x s      for all 0s  , and a continuous, positive definite function 

:     such that inequalities (2.6), (2.7) hold as well as the following inequality: 
 

( ) ( ) 0W x f x  , for all x                                                 (2.8) 
 

Then system (2.1), (2.2) is UAOS on  .  
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The above statement shows that a sufficient additional requirement in order for (2.6) and (2.7) to 

ensure UAOS is that the dissipation rate W  does not increase along the system’s solutions. 
 

Remark 2.1: Theorem 1 does not assume that (2.3) holds. Moreover, it is not assumed in Theorem 

1 that (0) 0V  . The condition  sup ( ) ( ): ,V x W x x x s      for all 0s   is automatically 

satisfied when 
n  is a closed set. Notice that if (2.3) holds then the condition 

 sup ( ): ,V x x x s     holds for all 0s  . Finally, notice that if (2.3) and (2.5) hold then 

all assumptions of Theorem 1 are valid with W V , in which case we recover a classical sufficient 

condition for UAOS [6,18,22].  

 

The use of Theorem 1 is illustrated in Section 3 by studying the stability properties of systems 

under adaptive control.  

    The following theorem provides sufficient Lyapunov-like conditions for Lagrange output 

stability and Lyapunov output stability of system (2.1), (2.2). 

 

Proposition 1 (Lyapunov conditions for Lagrange and Lyapunov output stability): Let S  

be a positively invariant set for (2.1) with 0 . Suppose that there exist functions a K , 

1( ; )W C     with (0) 0W  ,  sup ( ): ,W x x x s     for all 0s  , such that inequalities 

(2.7), (2.8) hold. Then system (2.1), (2.2) is Lagrange output stable on   and Lyapunov output 

stable on  .  

 

Proposition 1 is nothing new; it is a classical Lyapunov result. The only new thing in Proposition 1 

is the use of the positively invariant set S . However, we have included Proposition 1 in the 

paper for completeness and its proof is given in Section 5.3.  
 

 

 

2.4. Non-Uniform Results 

 

The main requirement in the previous section is (2.8), which imposes the requirement that W  does 

not increase along solutions. In case this condition is not satisfied, it is still possible to establish 

AOS using Barbălat’s Lemma, which states that any integrable uniformly continuous function 

converges to zero. It has been observed in [20] that uniform continuity can be established under a 

uniform local integrability assumption. Here we show that uniform continuity is actually not 

required to conclude convergence to zero and that this requirement can be advantageously replaced 

by the following (less conservative) regularity property. 

 

Definition 2 (Quasi-uniform continuity): A function :f    is said to be quasi-uniformly 

continuous if for every 0   there exists ( ) 0    such that 0( ) ( )f t f t    for all 0 0t t   with 

0 ( )t t    .  

 

Notice that any uniformly continuous function is quasi-uniformly continuous. Loosely speaking one 

could say that a function is quasi-uniformly continuous if it is “uniformly upper semi-continuous 

from the right” and “uniformly lower semi-continuous from the left”. It is also worth stressing that 

any quasi-uniformly continuous function is Lebesgue measurable (see Fact 1 in [3]). Quasi-uniform 

continuity can be easily shown in practice using the following. 
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Proposition 2 (Sufficient condition for quasi-uniform continuity): If for a function :f    

there exists a constant 0M   such that the function :g    defined by ( ) ( )g t f t M t   for 

all 0t   is non-increasing then :f    is quasi-uniformly continuous. In particular, if 

1( )f C    and there exists 0M   such that ( )f t M  for all 0t  , then f  is quasi-uniformly 

continuous. 
 

Proposition 2 highlights the difference between uniform continuity and quasi-uniform continuity. 

Indeed, a sufficient condition for uniform continuity is that ( )f t M   for all 0t  , which is 

commonly used in the application of Barbălat’s lemma. As we will see below, requiring ( )f t  to be 

upper bounded (rather than both upper and lower bounded) sometimes proves useful. Proposition 2 

is an immediate consequence of the definition of quasi-uniform continuity and its proof is therefore 

omitted. 
 

We are now in position to present the following extension of Barbălat’s Lemma, which does not 

require uniform continuity. Its proof is provided in Section 5.5. 
 

Lemma 3 (Extension of Barbălat’s Lemma): Let :     be a continuous, positive definite 

function and let :f     be a given function for which one of the following regularity 

requirements holds: either f  is quasi-uniformly continuous or f  is quasi-uniformly continuous. 

Furthermore, suppose that  
0

( )f t dt


  . Finally, suppose that either :     is non-

decreasing or that :f     is bounded. Then  lim ( ) 0
t

f t


 .  

 

Lemma 3 is less conservative than Barbălat’s Lemma. Indeed, under the assumption that 

 
0

( )f t dt


  , Barbălat’s Lemma would allow us to conclude that   lim ( ) 0
t

f t


  only if 

the mapping ( ( ))t f t  were uniformly continuous. On the other hand, Lemma 3 allows us to 

conclude that  lim ( ) 0
t

f t


  (a stronger conclusion) if one of the functions f  or f  is merely 

quasi-uniformly continuous.  
 

Based on this extension, we have the following relaxed condition for AOS. 

 

Theorem 2 (Lyapunov conditions for AOS): Let S  be a positively invariant set for (2.1) with 

0 . Suppose that there exist functions ,a b K , 1, ( ; )V W C     and a continuous, positive 

definite function :     for which inequalities (2.3), (2.6), (2.7) hold. Moreover, suppose that 

there exists a continuous function :     such that one of the following inequalities hold: 
 

 ( ) ( ) ( )W x f x V x  , for all x                                             (2.9) 

or 

 ( ) ( ) ( )W x f x V x   , for all x                                         (2.10) 

 

Finally, suppose that either :     is non-decreasing or that there exists a continuous 

function :     such that the following inequality holds: 
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 ( ) ( )W x V x , for all x                                              (2.11) 

 

Then system (2.1), (2.2) is AOS on  . 

 

The proof of Theorem 2 is provided in Section 5.6. 

 

Remark 2.2: (i) The proof of Theorem 2 uses Lemma 3 in an instrumental way. Notice that the 

assumptions of Theorem 2 guarantee that 0( ( , ))t V t x  is bounded for every 0x   and therefore 

that for every 0x    there exists a constant 0( ) 0M x   such that either 
0 0( ( , )) ( )

d
W t x M x

d t
   

holds for all 0t   or 
0 0( ( , )) ( )

d
W t x M x

d t
    holds for all 0t  . By virtue of Proposition 2 either 

the function 0( ( , ))t W t x  is quasi-uniformly continuous or the function 0( ( , ))t W t x   is 

quasi-uniformly continuous. No bound on 0( ( , ))
d

W t x
d t

  is requested in the above statement, thus 

allowing to consider cases when 0( ( , ))t W t x  is not uniformly continuous. This observation 

allows us to highlight a key difference between Theorems 1 and 2: the key assumption for UAOS is 

that W does not increase along solutions, whereas AOS requires that it does not increase or decrease 

more than linearly in time. 

(ii) If one of the following conditions holds: (a)   is a compact set, or (b) 1( ; )V C     is a 

radially unbounded function, then there exist continuous functions , :      such that (2.9), 

(2.10) and (2.11) hold. This observation shows why Theorem 2 is less demanding than Barbashin-

Krasovskii-LaSalle’s theorem.  

 

The following example illustrates the use of Theorem 2.  

 

Example 1 (Verification of AOS): Consider the following 3-dimensional system 

 

 
 

2

2
2

3

2 ( , )
1

1

( , )

( , , )

zg z w
y w y

z

z g z w y

w w y

x y z w

   



 

 

 

                                                      (2.12) 

 

where 2:g    is a bounded locally Lipschitz function. System (2.12) on 3  is forward 

complete. This can be shown by using the function 
2 2 21 1 1

( )
2 2 2

U x y z w     which satisfies the 

following inequalities for all 3( , , )x y z w   
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2 2 2

2
2

2 2

2 2 2 2

2 ( , )
( ) 1 ( , )

1

3 ( , )

3
9 18 3 ( )

2

zg z w
U x x w y y zg z w y w w y

z

y g z w z y w w y

R z w R U x

       



    

   

                        (2.13) 

 

where  2: sup ( , ) :( , )R g z w z w  . It follows from (2.13) and Theorem 2 in [1] that system 

(2.12) on 3  is forward complete. Next we define the function 
2

2

2

1
( )

2 1

z
V x y

z
 


, which 

satisfies (2.3) with 
21

( )
2

a s s  and 2( )b s s  for all 0s  . Moreover, V  satisfies the following 

inequality for all 3( , , )x y z w    

 

 2 2 2( ) 1V x x w y y                                                         (2.14) 

 

Inequality (2.14) shows that (2.6) holds with ( ) 2s s   for all 0s   (a non-decreasing function) 

and 
21

( )
2

W x y . Furthermore, (2.7) holds with 
21

( )
2

a s s  for all 0s  . Finally, we show that 

(2.9) holds. Indeed, by using the fact that  2: sup ( , ) :( , )R g z w z w  , we obtain for all 

3( , , )x y z w   

 

 
 

2
2 2 2

2
2

2 ( , )
( ) 1

41

zg z w R
W x x w y y y R y

z

        



                        (2.15) 

 

Inequality (2.15) shows that (2.9) holds with 2( ) / 4s R  . Notice that since   is non-decreasing, 

we do not have to show (2.11) (although it happens to hold with ( )s s   for all 0s  ). Therefore 

Theorem 2 guarantees that system (2.12) is AOS on 3 .  

 

   Barbashin-Krasovskii-LaSalle’s theorem could not have been used in order to prove AOS on 
3  for (2.11), because it admits unbounded solutions. To see this notice that the differential 

inequality w w  holds for all 3( , , )x y z w  . Thus we get ( ) exp( ) (0)w t t w  for all 0t  , and 

consequently, when (0) 0w   the solutions of (2.11) are unbounded.   

 

   In the same way, Barbălat’s Lemma could not have been easily used in order to prove AOS on 
3  for (2.11), because (2.14) shows that ( )W x  is bounded from above but not necessarily 

bounded from below. In other words, we cannot (easily) prove that the mapping ( ( , ))t W t x  is 

uniformly continuous.      
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3. Application to Adaptive Control  
 

Adaptive control is a particularly relevant situation in which AOS is useful. Such control strategies 

rely on a state extension to provide a dynamical estimate of unknown parameters. In this context, it 

is not always necessary to precisely estimate these unknown parameters to get a satisfactory 

behavior of the system's solutions. In other words, only part of the state variables of the closed-loop 

system are requested to converge to zero, which can be rephrased as an AOS objective. In 

most adaptive control literature (e.g. [9]), convergence of this state variables is concluded through 

Barbălat’s lemma or Barbashin-Krasovskii-LaSalle arguments, thus impeding to show UAOS and 

generating potential robustness issues. We show below how Theorem 1 can be employed to 

guarantee UAOS under adaptive control. To that aim, consider the following finite-dimensional 

control system 
 

 ( ) ( ) ( ) ( )

, ,n p

y f y g y u g y y

y u

 



  

  

                                     (3.1) 

 

where , : n nf g   , : n p    are locally Lipschitz vector fields with (0) 0f   and (0) 0  , 
ny  denotes the state, u  is the control input and p   is the constant vector of unknown 

parameters. The control system (3.1) satisfies the “matching condition” (following the terminology 

in [9]) since the uncertain parameters are in the span of the control.  
 

The following assumption is used for the control system (3.1).  

 

(H) There exist functions 2( ; )nP C     being positive definite and radially unbounded, 

1( ; )nQ C     being positive definite and a locally Lipschitz function  0 ;nk C    with 

(0) 0k   such that 

( ) ( ) ( ) ( ) ( ) ( )P y f y P y g y k y Q y    , for all 
ny                             (3.2) 

 

When Assumption (H) holds then it is possible to regulate the state to zero by applying a standard 

adaptive control scheme. To see this, consider the adaptive controller 
 

 

1

ˆ( ) ( )

ˆ
( ) ( ) ( )

u k y y

d
P y g y y

d t

 


 

 

 
                                                 (3.3) 

 

where 0   is a constant parameter of the controller. System (3.1) in closed loop with (3.3) then 

reads:  

  
1

( ) ( ) ( ) ( )

( ) ( ) ( )

( , ) n p

y f y g y k y y z

z P y g y y

x y z



 

  

 

  

                                     (3.4) 

 

with ˆz     and output map defined by 

( )h x y                                                                    (3.5) 
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The closed-loop system (3.4)-(3.5) is AOS on n p  . The proof of this fact follows the analysis 

given in [9] using the Lyapunov function 
2

( ) : ( )
2

V x P y z


  , which (by virtue of (3.2), (3.4)) 

satisfies the following differential inequality 
 

( ) ( )
d

V x Q y
d t

  , for all ( , ) n px y z                                   (3.6) 

However, the convergence rate of 
ny  to zero is not necessarily uniform with respect to the 

initial condition, even considering initial states in a bounded neighborhood of the origin.  
 

In order to be able to guarantee UAOS on a prescribed set 
n p   we need an additional 

assumption.  
 

(A) There exists a locally Lipschitz, positive function  0 ;(0, )nC    such that the following 

inequality holds: 
2

( ) ( ) ( )y y Q y  , for all 
ny                                          (3.7) 

 

Assumption (A) is automatically guaranteed if there exists a constant 0q   such that the inequality 
2

( )Q y q y  holds for all 
ny  in a neighborhood of 0 n . Both Assumptions (H) and (A) are 

automatically guaranteed if the feedback law ( )u k y  achieves global asymptotic stabilization and 

local exponential stabilization of 0 n  for the control system ( ) ( )y f y g y u   (recall 

Proposition 4.4 in [7]).  

   When Assumptions (H) and (A) hold then it is possible to slightly modify the adaptive control 

scheme (3.3) in the following way: 

 

1

ˆ( ) ( ) ( ) ( ) ( )

ˆ
( ) ( ) ( )

u k y y L y P y g y

d
P y g y y

d t

  


 

   

 
                                  (3.8) 

where , 0L   are constant parameters of the controller. With this new adaptive strategy, the 

system (3.1) in closed loop with (3.8) reads: 

  
1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( , ) n p

y f y g y k y L y P y g y y z

z P y g y y

x y z

 

 

    

 

  

                      (3.9) 

with ˆz     and output map defined by (3.5). The result below states that the closed-loop system 

(3.9) is UAOS on the set 

2
: ( , ) : ( ) ( )

2

n px y z V x P y z L



 

        
 

                            (3.10) 

Notice that the size of the set 
n p   is determined by the controller parameters and can be 

made as large as desired (by picking sufficiently large constants , 0L  ).  

 

Theorem 3 (Semiglobal UAOS through adaptive control): Suppose that Assumptions (H) and 

(A) hold. Then for every , 0L   system (3.9) with output (3.5) is AOS on n p   and UAOS on 
n p  , where   is defined by (3.10). 
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The proof of Theorem 3 is provided in Section 5.7. When Assumptions (H) and (A) hold and the 

vector of unknown parameters p   belongs to a known bounded set p  then it is possible 

to achieve robust global asymptotic stabilization (even when p   is time-varying; see [6]) of the 

equilibrium point 0y   of system (3.1) by using the feedback law 
 

( ) ( ) ( ) ( )u k y L y P y g y    

where 0L   is a sufficiently large constant (that depends on the “size” of the set p ). It is 

clear that the adaptive controller (3.8) is a combination of the above feedback law and the adaptive 

controller (3.3). When 0L  then the controller (3.8) “tends” to the adaptive controller (3.3).  

   Theorem 3 is important because Theorem 1 in conjunction with Lemma 1 and Lemma 2 

guarantees that there exist functions KL  , K   such that the following estimates hold for the 

solution closed-loop system (3.1) with (3.8): 

 ˆ( ) (0) (0)y t y     , for all 0t  , ˆ( (0), (0)) n py     and 
p         (3.11) 

 

 lim ( ) 0
t

y t


 , for all ˆ( (0), (0)) n py     and 
p                     (3.12) 

 ˆ( ) (0) (0) ,y t y t     , 

for all 0t  , 
p   and ˆ( (0), (0)) n py     with ˆ( (0), (0) )y            (3.13) 

 

It should be noticed that the functions KL  , K   are independent of 
p   (since system 

(3.9) does not depend on 
p  ), thus guaranteeing the same qualitative behavior of solutions 

regardless of the actual value of the parameters. Moreover, it should be noticed that estimate (3.13) 

can be used in conjunction with Lemma 9 in [14] in order to establish an Input-to-Output Stability 

(IOS) estimate for the closed-loop system (3.1) with (3.8) under the effect of possible modeling 

errors. Therefore, the “Lyapunov redesign” procedure described above enhances the robustness 

properties of the closed-loop system. Finally, it should be noticed that a KL  estimate like (3.13) is 

rarely available in the literature for systems under adaptive control, in which no uniform 

convergence to the origin is usually ensured.   

 

 

4. Output Stability for Abstract Systems  
 

We now investigate on how the results of Section 2, developed in a finite-dimensional context, can 

be extended to more general classes of dynamical systems. 

 

4.1. Definitions 
 

We start by providing the definition of an abstract, continuous-time, deterministic, autonomous, 

dynamical system with output.  
 

Definition 3 (Abstract dynamical system): Let ,X Y  be normed linear spaces with norms 
X

 , 

Y
 , respectively. A (continuous-time, deterministic, autonomous) dynamical system with output is 

a triplet ( , , )S h    that consists of a non-empty set S X  (the state space), a mapping 

:h S Y  (the output map) and a mapping : S S     that satisfies: (i) the identity property, 

i.e., (0, )x x   for all x S , and (ii) the semigroup property, i.e.,  , ( , ) ( , )t s x t s x     for all 

x S  and , 0t s  .  



13 

 

Definition 3 is a specialization of the more general definitions of abstract control systems given in 

[6,12] and [16]. It can be used for the study of finite-dimensional systems (when nX   ), delay 

systems (where  0 [ ,0]; nX C r   ) or systems described by Partial Differential Equations (where 

X  is an appropriate functional space; see [12]).  
 

Throughout this section, we assume the following. 
 

Standing Assumption 1: S  is a non-empty set for which ( , )t     for all 0t  . Moreover, 

0 , (0) 0h   and ( ,0) 0t   for all 0t  . 
 

The notions of output stability can be extended to such general dynamical systems with outputs. In 

what follows, we use the notation 0 0( , ) ( ( , ))y t x h t x  for all 0t  , 0x S  and 

 :R X
B x X x R    for all 0R  .  

 

Definition 4 (Output stability properties): Let ( , , )S h    be a dynamical system with output 

and let S  be a set satisfying Standing Assumption 1. We say that system   is 

i) Lagrange output stable on   if for every 0R   the set  0 0( , ) : , 0RY
y t x x B t    is 

bounded.  

ii) Lyapunov output stable on   if for every 0   there exists ( ) 0    such that for all 

0 ( )x B    it holds that 0( , )
Y

y t x   for all  0t  .  

iii) Asymptotically Output Stable (AOS) on   if system (2.1), (2.2) is Lagrange and Lyapunov 

output stable on   and  0lim ( , ) 0
t

y t x


  for all 0x  .  

iv) Uniformly Asymptotically Output Stable (UAOS) on   if system (2.1), (2.2) is Lagrange 

and Lyapunov output stable on   and for every , 0R   there exists ( , ) 0T R   such that 

for all 0 Rx B   it holds that 0( , )
Y

y t x   for all ( , )t T R . 

 

 

The following two lemmas are similar to Lemmas 1 and 2 and provide characterizations of the 

stability notions of Definition 3 in terms of comparison functions. These two results are respectively 

established in Sections 5.1 and 5.2. 

 
 

Lemma 4 (Output stability through K  estimate): Let ( , , )S h    be a dynamical system with 

output and let S  be a set satisfying Standing Assumption 1. System   is Lagrange output 

stable on   and Lyapunov output stable on   if and only if there exists a function K   such 

that the following estimate holds for all 0x   and 0t  : 
 

 0 0( , )
Y X

y t x x  

 

 

Lemma 5 (UAOS through KL  estimate): Let ( , , )S h    be a dynamical system with output and 

let S  be a set satisfying Standing Assumption 1. System   is UAOS on   if and only if there 

exists a function KL   such that the following estimate holds for all 0x   and 0t  : 
 

 0 0( , ) ,
Y X

y t x x t  
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4.2. Uniform Results 
 

The following theorem is similar to Theorem 1 and provides sufficient conditions for UAOS of an 

abstract dynamical system   with output. The proof of Theorem 4 is exactly the same as the proof 

of Theorem 1 and is omitted. 
 

Theorem 4 (Lyapunov conditions for UAOS): Let ( , , )S h    be a dynamical system with 

output and let S  be a set satisfying Standing Assumption 1. Suppose that there exist a function 

a K , continuous functionals , :V W   with  sup ( ) ( ): ,
X

V x W x x x s      for all 

0s  , and a continuous, positive definite function :     such that  
 

 ( ) ( )
Y

a h x W x , for all x                                             (4.1) 

 

 
0

( ( , )) ( ) ( ( , ))

t

V t x V x W s x ds     , for all x , 0t                        (4.2) 

 

Moreover, suppose that for every x  the mapping ( ( , ))t W t x  is non-increasing. Then 

system   is UAOS on  .  

 
 

The following statement is the analogue of Proposition 1. Its proof is similar to the proof of 

Proposition 1 and is omitted.  
 

Proposition 3 (Lyapunov conditions for Lagrange and Lyapunov output stability): Let 

( , , )S h    be a dynamical system with output and let S  be a set satisfying Standing 

Assumption 1. Suppose that there exist functions ,a b K  and a functional :V   for which 

the following property holds: 

   ( ) ( )
Y X

a h x V x b x  , for all x                                    (4.3) 

 

Moreover, suppose that for every x  the mapping ( ( , ))t V t x  is non-increasing. Then system 

  is Lagrange output stable on   and Lyapunov output stable on  .  

 

 

4.3. Non-Uniform Results 
 

The following theorem is similar to Theorem 2 and provides sufficient conditions for AOS of an 

abstract dynamical system   with output. The proof of Theorem 5 is exactly the same as the proof 

of Theorem 2 and is omitted.  
 

Theorem 5 (Lyapunov conditions for AOS): Let ( , , )S h    be a dynamical system with output 

and let S  be a set satisfying Standing Assumption 1. Suppose that there exist a continuous, 

positive definite function :    , functions ,a b K  and functionals , :V W   for 

which inequalities (4.1), (4.2), (4.3) hold. Moreover, suppose that either for every x  the 

mapping ( ( , ))t W t x  is quasi-uniformly continuous or that for every x  the mapping 

( ( , ))t W t x   is quasi-uniformly continuous. Finally, suppose that either :     is non-

decreasing or that for every x  the mapping ( ( , ))t W t x  is bounded. Then system   is AOS 

on  .  
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Remark 3.1: Lemma 6.3 on page 186 in [2] in conjunction with the semigroup property implies 

that a necessary and sufficient condition for the integral inequality (4.2) under the assumption that 

the mapping ( ( , ))t V t x  is lower semi-continuous and the mapping ( ( , ))t W t x  is 

continuous, is the following differential inequality: 
 

 
0

( ( , )) ( )
limsup ( )

t

V t x V x
W x

t






 
  

 
, for all x  

 

which allows to test assumption (4.2) using the upper-right Dini derivative of V  along the system's 

solutions. 

 

4.4. Output Stability for Delay Systems  

 

We next show how to use the proposed result in the context of time-delay systems 
 

( ) ( )

( )

t

n

x t f x

x t




                                                                (4.4) 

 

where  0: [ ,0]; n nf X C r    , with 0r   being a constant, is a Lipschitz mapping on 

bounded sets of X  with (0) 0f   and tx X  is the state defined by ( )( ) ( )tx s x t s   for all 

[ ,0]s r  . The constant r can be picked as any constant greater than or equal to the maximal delay 

involved in the system dynamics. Let : kh X   be a continuous mapping with (0) 0h  . We 

consider system (4.4) with output given by the following equation: 

 

( ) ( )ty t h x                                                              (4.5) 

 

The following corollaries are direct consequences of Theorem 3 and Theorem 4. In what follows for 

every x X , the norm of x  is given by  
[ ,0]

max ( )
s r

x x s
 

 .  

 

Corollary 1 (UAOS for time-delay systems): Let X  with 0  be a positively invariant set 

for system (4.4), (4.5) and suppose that there exist a function a K , continuous functionals 

, :V W   with  sup ( ) ( ): ,V x W x x x s      for all 0s  , and a continuous, positive 

definite function :     such that the following inequalities hold for all 0x  : 
 

 0 0( ) ( )a h x W x                                                         (4.6) 

 

 0 0
0

0

( ( , )) ( )
limsup ( )

t

V t x V x
W x

t






 
  

 
                                   (4.7) 

 

0 0

0

( ( , )) ( )
limsup 0

t

W t x W x

t





 
 

 
                                            (4.8) 

 

where 0( , )t x   denotes the solution tx   of (4.5) with initial condition 0x  . Then system 

(4.4), (4.5) is UAOS on  .  
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It is worth stressing that the upper-right Dini derivatives appearing in (4.7) and (4.8) can be 

computed with no knowledge of the system’s solutions, for instance using Driver’s derivative: see 

for instance [15]. 

 

Corollary 2 (AOS for time-delay systems): Let X  with 0  be a positively invariant set 

for system (4.4), (4.5) and suppose that there exist a continuous, positive definite function 

:    , a continuous function :    , functions ,a b K  and functionals 

, :V W X   for which inequalities (4.6), (4.7) hold as well as the following inequality: 
 

   ( ) ( )a h x V x b x  , for all x                                          (4.9) 

 

Furthermore, assume that one of the following inequalities holds: 
 

 0 0
0

0

( ( , )) ( )
limsup ( )

t

W t x W x
V x

t






 
 

 
, for all 0x                             (4.10) 

or 

 0 0
0

0

( ) ( ( , ))
limsup ( )

t

W x W t x
V x

t






 
 

 
, for all 0x                             (4.11) 

 

where 0( , )t x   denotes the solution tx   of (4.5) with initial condition 0x  . Finally, 

suppose that either :     is non-decreasing or that there exists a continuous function 

:     such that the following inequality holds: 
 

 ( ) ( )W x V x , for all x                                              (4.12) 

Then system (4.4), (4.5) is AOS on  .  

 

 

The following example illustrates the use of Corollary 1.  

 

Example 2 (Verification of UAOS): Consider the time-delay system 

 

1 1 1 1 2

2

1

2

1 2

( ) ( ) ( ) ( ( )) ( ) ( )

( ) ( ( )) ( )

( ) ( ( ), ( ))

x t px t qx t r g x t x t x t

z t g x t x t

x t x t x t

    



 

                               (4.13) 

 

where 0r  , 0p  , q  are constants and 2:g    is a locally Lipschitz function. We 

assume that there exist constants , , 0R Q   such that the following inequalities hold: 

 

 

 

2 24
( )

2

p Q Q
p g x z

p Q

  

 

  
 

 
, for all 

2x  with x R                 (4.14) 

where  
2 exp( )

:
4

q r
p Q

Q


                                                              (4.15) 
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Consider the continuous functionals  0 2: [ ,0];V C r X     , :W X   defined by the 

following equations for all x X : 

 
0

2 2 2

1 1 2

1 1
( ) : (0) exp( ) ( ) (0)

2 2
r

V x x Q x d x  


                                       (4.16) 

 
0

2 2

1 1

1
( ) : (0) exp( ) ( )

2
r

W x x K x d  


                                              (4.17) 

where 

 
:

2

Q
K

p Q






 
                                                              (4.18) 

Moreover, define the set 
2

: : ( )
2

R
x X V x

 
    

 
                                                      (4.19) 

 

and the output map for all x X : 

1( ) (0)h x x                                                                  (4.20) 

 

Definitions (4.16), (4.17) and assumption (4.15) imply that inequalities (4.6), (4.9) hold with 

2( ) / 2a s s  and 21
( )

2
b s Q s

 
  
 

 for 0s  . Notice that the derivative of V  along the solutions of 

(4.13) satisfies the following inequalities for all x X : 

 

 

2

1 1 1
0

0

2 2

1 1

( ( , )) ( )
limsup ( ) (0) ( ) (0)

exp( ) ( ) exp( ) ( )

2 ( )

t

r

V t x V x
p Q x qx r x

t

Q s x s ds Q r x r

p Q W x



  







 
     

 

   

   

                  (4.21) 

 

For the derivation of (4.21) we have used definitions (4.15), (4.16), (4.17), (4.18) and the fact that 
2

2 2

1 1 1 1( ) (0) (0) exp( ) ( )
4 exp( )

q
qx r x x Q r x r

Q r



    


 for all 1 1(0), ( )x x r  . Inequality (4.21) 

and standard arguments allow us to conclude that X  is a positively invariant set for system 

(4.13). Moreover, inequality (4.21) shows that (4.7) holds with 
2

( ) 2
4 exp( )

q
s p Q s

Q r




 
   

 
 

for 0s  . 

 

Finally, we notice that the derivative of W  along the solutions of (4.13) satisfies the following 

inequalities for all x : 
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  2

2 1
0

0

2 2

1 1 1 1

( ( , )) ( )
limsup ( (0)) (0) (0)

( ) (0) exp( ) ( ) exp( ) ( ) 0

t

r

W t x W x
p K g x x x

t

qx r x K s x s ds K r x r



  





 
    

 

      

                 (4.22) 

 

For the derivation of (4.22) we have used definitions (4.17), (4.18), the fact that 
2

2 2

1 1 1 1( ) (0) exp( ) ( ) (0)
4 exp( )

q
qx r x K r x r x

K r



    


 for all 1 1(0), ( )x x r  , inequality (4.14) 

and the fact that for all x  it holds that (0)x R  (a direct consequence of definitions (4.16), 

(4.19)).   

 

It follows from Corollary 1 that system (4.13) is UAOS on  .       

 

 

5. Proofs  
 

5.1. Proof of Lemma 4 

 

If   is Lagrange output stable on   and Lyapunov output stable on   then we define 

 ( ) : sup ( , ) : 0, ,
Y X

a s y t x t x x s     for all 0s  . The function :a     is well-defined 

by virtue of Lagrange output stability on   with (0) 0a  . Moreover, :a     is continuous at 

0s   by virtue of Lyapunov output stability on  . Finally, we notice that :a     is non-

decreasing. The existence of a function K   such that the estimate  ( , )
Y X

y t x x  holds for 

all x  and 0t   is a direct consequence of Lemma 2.4 on page 65 in [6].  

   If there exists a function K   such that the estimate  ( , )
Y X

y t x x  holds for all x  

and 0t   then we can verify in a straightforward way Lagrange output stability on   and 

Lyapunov output stability on  . The proof is complete.      

 

 

5.2. Proof of Lemma 5 

 

If system   is UAOS on   then we can define the functions :a     and :M       

by means of the formulae 
 

 ( ) : sup ( , ) : 0, ,
Y X

a s y t x t x x s     for 0s   

 

 ( , ) : sup ( , ) : ,
Y X

M t s y t x x x s    for 0s  . 

 

Working with :a     and :M      , we can show the existence of a function 

KL   such that the estimate  ( , ) ,
Y X

y t x x t  holds for all x  and 0t   by following 

exactly the same steps of the proof of Lemma 2.6 in [6].  

   If there exists a function KL   such that the estimate  ( , ) ,
Y X

y t x x t  holds for all x  

and 0t   then we can verify in a straightforward way UAOS on  . The proof is complete.      
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5.3. Proof of Proposition 1 

 

There exists a function b K  such that 
 

 ( )W x b x , for all x                                                     (5.1) 

 

To see this, we may define the non-decreasing, non-negative function 

 ( ) : sup ( ): ,b s W x x x s    for all 0s  . By continuity of W  and the fact that (0) 0W  , it 

follows that  
0

lim ( ) (0) 0
s

b s b


  . Moreover, the definition of ( )b s  guarantees that  ( )W x b x  

for all x . The existence of b K  for which inequality (5.1) holds is a direct consequence of 

Lemma 2.4 on page 65 in [6]. 

    Let (arbitrary) 0x   be given. It follows from (2.8) that  

 0( , ) 0
d

W t x
dt

  , for all 0t                                                   (5.2) 

 

Therefore, by virtue of (5.2) and since 0 0(0, )x x  , the following estimate holds for all 0t  : 

 

   0 0( , )W t x W x                                                                (5.3) 

 

Using (5.3) in conjunction with (2.7), (5.1), we obtain the estimate: 
 

   0 0( , )a y t x b x                                                              (5.4) 

 

By virtue of Lemma 1, estimate (5.4) shows Lagrange output stability on   and Lyapunov output 

stability on  .      

 

 

5.4. Proof of Theorem 1 

 

Notice that inequality (2.6) for 0x   implies that (0) 0W  . Therefore, Proposition 1 implies 

Lagrange output stability on   and Lyapunov output stability on  .  

   Notice that (2.6) implies the following differential inequality for all 0x  :   
 

    0 0( , ) ( , )
d

V t x W t x
dt

    , for all 0t                                       (5.5) 

 

Moreover, (2.8) implies that the following estimate holds for all 0x  , 0t   and 0 [0, ]t t : 
 

   0 0 0( , ) ( , )W t x W t x                                                             (5.6) 

 

Let (arbitrary) , 0R   be given. Define: 
 

  ( , ) : min ( ): ( ) ( ) sup ( ): ,R s a s a W x x x R                               (5.7) 

 

 1 sup ( ): ,
( , ) :

( , )

V x x x R
T R

R


 

  
                                                (5.8) 
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We next prove by contradiction that  0 0sup ( , ) : , ( , )Ry t x x B t T R     , thus establishing 

UAOS. To that end, suppose that  0 0sup ( , ) : , ( , )Ry t x x B t T R     . Then there exists 

0 Rx B   and ( , )t T R  such that 
0( , )y t x  . By virtue of (2.7) we conclude that 

 0( , ) ( )W t x a  . It follows from (5.6) that 

 

   0 0( ) ( , )a W s x W x   , for all [0, ]s t                                     (5.9) 

 

Since 0 Rx B  , we get from (5.9) that 
 

   0( ) ( , ) sup ( ): ,a W s x W x x x R     , for all [0, ]s t                     (5.10) 

 

and consequently by using definition (5.7) 
 

  0( , ) ( , )R W s x    , for all [0, ]s t                                       (5.11) 

Using (5.5) we obtain: 

      0 0 0

0

( , ) ( , )

t

V t x V x W s x ds                                           (5.12) 

 

Combining (5.11) and (5.12), we get the inequality 
 

   0 0( , ) ( , )V t x V x t R                                                      (5.13) 

 

Since 0 Rx B  , we get from (5.13) 
 

   0( , ) sup ( ): , ( , )V t x V x x x R t R                                      (5.14) 

 

Inequality (5.14) in conjunction with the fact that ( , )t T R  and definition (5.8) gives 
 

 0( , ) 0V t x   

 

which contradicts the fact that  0( , ) 0V t x  .      

 

 

5.5. Proof of Lemma 3 

 

The proof is made by contradiction. Suppose that there exists 0   and an increasing sequence 

 0: 1,2,...it i   with  lim i
i

t


   such that ( )if t  .  

 

We next distinguish the following cases.  

 

Case 1: f  is quasi-uniformly continuous 

 

Since f  is a quasi-uniformly continuous function there exists 0   such that ( ) ( ) / 2f t f s    

for all  ,s t t  .  
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   Without loss of generality (by taking a subsequence if necessary) we may assume that 1 1t    

and 1 1i it t      for all 1,2,...i  . Notice that  

 

( ) ( )
2 2

if t f s
 
    for all  ,i is t t  , 1,2,...i  .                                (5.15)  

    If :     is non-decreasing then (5.15) implies  ( )
2

f s


 
 

 
 

 for all  ,i is t t  , 

1,2,...i  . Since the intervals  ,i it t , 1,2,...i   are disjoint, it follows that 

 
0

( )
2

it

i f s ds


  
 

 
 

  for all 1,2,...i  , which contradicts the fact that  
0

( )f t dt


  . 

    Now consider the case when f  is bounded and let  : sup ( ): 0R f t t   and 

: min ( ) :
2

c s s R



 

   
 

. It follows from (5.15) that  ( )f s c   for all  ,i is t t  , 

1,2,...i  . Since the intervals  ,i it t , 1,2,...i   are disjoint, it follows that  
0

( )
it

i c f s ds    

for all 1,2,...i  , which contradicts the fact that  
0

( )f t dt


  .  

 

Case 2: f  is quasi-uniformly continuous 

 

Since f  is a quasi-uniformly continuous function there exists 0   such that 

( ) ( ) / 2f t f      for all  ,t     .  

   Without loss of generality (by taking a subsequence if necessary) we may assume that 1 1t    

and 1 1i it t      for all 1,2,...i  . Notice that  

 

( ) ( )
2 2

if t f t
 
    for all  ,i it t t   , 1,2,...i  .                             (5.16) 

 

    If :     is non-decreasing then (5.16) implies  ( )
2

f t


 
 

 
 

 for all  ,i it t t   , 

1,2,...i  . Since the intervals  ,i it t  , 1,2,...i   are disjoint, it follows that 

 
0

( 1) ( )
2

it

i f s ds


  
 

  
 

  for all 1,2,...i  , which contradicts the fact that  
0

( )f t dt


  . 

    Now consider the case when f  is bounded and let  : sup ( ): 0R f t t   and 

: min ( ) :
2

c s s R



 

   
 

. It follows from (5.16) that  ( )f t c   for all  ,i it t t   , 1,2,...i  . 

Since the intervals  ,i it t  , 1,2,...i   are disjoint, it follows that  
0

( 1) ( )
it

i c f s ds     for all 

1,2,...i  , which contradicts the fact that  
0

( )f t dt


  .      
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5.6. Proof of Theorem 2 

 

Proposition 1 guarantees Lagrange output stability on   and Lyapunov output stability on  . 

   Notice that (2.6) implies differential inequality (5.5) for all 0x  . Consequently, (5.5) implies 

that the following estimate holds for all 0x   and 0t  : 
 

   0 0( , )V t x V x                                                             (5.17) 

 

Inequalities (2.9), (2.10) imply that one of the differential inequalities holds for all 0x  :   
 

    0 0( , ) ( , )
d

W t x V t x
dt

   , for all 0t                                         (5.18) 

or 
 

    0 0( , ) ( , )
d

W t x V t x
dt

    , for all 0t                                     (5.19) 

 

Taking into account inequality (5.17) and defining  
 

 0 0( ) max ( ):0 ( )G x s s V x   , for all 0x                              (5.20) 

 

we obtain from (5.18) and (5.19) that one of the following differential inequalities holds for all 

0x  :   
 

   0 0( , )
d

W t x G x
dt

  , for all 0t                                                (5.21) 

or 
 

   0 0( , )
d

W t x G x
dt

   , for all 0t                                            (5.22) 

 

Proposition 2 in conjunction with (5.21) and (5.22) implies that either for all 0x   the mapping 

 0( , )t W t x  is quasi-uniformly continuous (when (5.21) holds) or for all 0x   the mapping 

 0( , )t W t x  is quasi-uniformly continuous (when (5.22) holds).  

 

Using (5.5) we obtain (5.12), which shows that for every 0x   it holds that 

    0 0

0

( , )W s x ds V x 


 .  

 

   If   is non-decreasing then the application of Lemma 3 to the function  0( ) ( , )f t W t x  shows 

that  0lim ( ( , )) 0
t

W t x


  for every 0x  . The fact that  lim ( , ) 0
t

y t x


  is a direct consequence 

of inequality (2.7) and the fact that  lim ( ( , )) 0
t

W t x


 . 

 

On the other hand, if (2.11) holds then we get for all 0x  :   
 

    0 0( , ) ( , )W t x V t x   , for all 0t                                         (5.23) 
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Taking into account inequality (5.17) and defining  
 

 0 0( ) max ( ):0 ( )Z x s s V x   , for all 0x                              (5.24) 

 

we obtain from (5.23) that the following estimate holds for all 0x  :   
 

   0 0( , )W t x Z x  , for all 0t                                         (5.25) 

 

Estimate (5.25) shows that for all 0x   the mapping  0( , )t W t x  is bounded. Therefore, the 

application of Lemma 3 to the function  0( ) ( , )f t W t x  shows that  0lim ( ( , )) 0
t

W t x


  for 

every 0x  . The fact that  lim ( , ) 0
t

y t x


  is a direct consequence of inequality (2.7) and the fact 

that  lim ( ( , )) 0
t

W t x


 .      

 

 

5.7. Proof of Theorem 3 
 

Using (3.2), (3.9) and the definition 
2

( ) : ( )
2

V x P y z


   we can establish the inequality 

 ( ) ( )
d

V x Q y
dt

  , for all ( , ) n px y z                                (5.26) 

 

Since Q  and P  are positive definite functions and since P  is radially unbounded, there exists a 

continuous, positive definite function :     with the following property (see Proposition 2.2 

on page 107 in [6]): 

 ( ) ( )Q y P y , for all 
ny                                         (5.27) 

 

Moreover, 
2

( ) : ( )
2

V x P y z


   is radially unbounded. Therefore, there exist functions ,a b K  

with the following properties (see Proposition 2.2 on page 107 in [6]): 
 

  ( )a y P y , for all 
ny                                            (5.28) 

 

 
2

( ) ( )
2

V x P y z b x


   , for all ( , ) n px y z                          (5.29) 

 

Let 0

n px    be given. The initial-value problem (3.9) with initial condition 0(0)x x  has a 

unique solution 
max:[0, ) n px t   , where max (0, ]t    is the maximal existence time of the 

corresponding solution. The differential inequality (5.26) implies that  
 

0( ( )) ( )V x t V x , for all max[0, )t t                                        (5.30) 
 

Define the set  0: : ( ) ( )n px V x V x     . Since 
2

( ) : ( )
2

V x P y z


   is a positive definite 

and radially unbounded function,   is a compact set. Since estimate (5.30) implies that ( )x t   

for all max[0, )t t , it follows that maxt  cannot be finite. Consequently, maxt   . Estimate (5.30) 
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shows that the set  0: : ( ) ( )n px V x V x      is a positively invariant set for the dynamical 

system (3.9). Similarly, the set   defined by (3.10) is a positively invariant set for the dynamical 

system (3.9).  

   Theorem 2 (and Remark 2.2(ii)) in conjunction with the fact that 
2

( ) : ( )
2

V x P y z


   is a radially 

unbounded function implies that system (3.9) with output (3.5) is AOS on n p  .  
 

If ( , )x y z    then definition (3.10) implies that 2z L . Consequently, we obtain for all 

( , )x y z  : 

 

2 2

( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( )

1
( ) ( ) ( ) ( )

2 ( )

P y g y y z P y g y y z

L P y g y y

L y P y g y y
y

 



 


  

 

  

 

It follows from (3.7) and the above inequality that the following inequality holds for all 

( , )x y z  : 

 
2 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

P y g y y z L y P y g y Q y                                 (5.31) 

 

Using inequalities (3.2) and (5.31), we get from (3.9) for all ( , )x y z  : 
 

 

 

2

2

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

2

d
P y P y y

dt

P y f y P y g y k y L y P y g y P y g y y z

Q y L y P y g y P y g y y z Q y

 

 

 

     

        

     (5.32) 

Inequalities (5.26), (5.27), (5.28), (5.32) show that all assumptions of Theorem 1 hold with 

( ) ( )W x P y  and UAOS on W follows.      

 

 

 

6. Concluding Remarks  
 

We have provided a Lyapunov-based condition to ensure uniform output asymptotic stability in the 

case when the Lyapunov function does not involve the Lyapunov function itself, but rather a 

function W  which can only vanish when the output is zero. Unlike classical tools such as Barbălat’s 

lemma and Barbashin-Krasovskii-LaSalle's invariance principle, the convergence of the output to 

zero is guaranteed to be uniform on bounded sets of the state provided that this function W  does not 

increase along the system's solutions. We have shown that this result can be useful in the analysis of 

control systems under adaptive control. 

   We have also presented a relaxation of Barbălat’s lemma, which does not require uniform 

continuity of the considered function. This requirement is replaced by “quasi-uniform continuity”, 

which can be inferred by showing that the derivative of the considered function is upper bounded 

(but not necessarily lower-bounded). We have shown through academic examples that this 

relaxation can prove useful in situations where Barbălat’s lemma cannot be applied. 
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   We have also shown that these results are not confined to finite-dimensional systems, but also 

hold in infinite dimension, thus covering time-delay systems and systems ruled by partial 

differential equations. 

    One of the advantages of Barbălat’s lemma is its ability to be applied to time-varying systems: 

future work should aim at extending the results presented here to such class of systems, which could 

have practical interest for instance in adaptive control for trajectory tracking. Further investigations 

are also needed to cover control systems with uncertain parameters that do not satisfy the matching 

condition. Finally, uniform stability properties own the advantage of providing robustness to 

exogenous disturbances or model imprecision: future work is needed to formalize this fact in a 

general context. 
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