

Gaussian Process Regression for Complex-valued Frequency Response Functions

with J. Bect³, U. Römer¹ and S. Schöps²; ECCOMAS YIC 2021

Niklas Georg^{1,2}, July 8, 2021

¹ Institut für Dynamik und Schwingungen, Technische Universität Braunschweig, Germany

² Centre of Computational Engineering and TEMF, Technische Universität Darmstadt, Germany

³ Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, France

Overview

- Introduction
- Approximation of Frequency Response Functions
- Numerical results
- Conclusion

Frequency Response Functions (FRFs)

- Response to harmonic (sinusoidal) excitation with a certain frequency f
 - FRF: Measure of magnitude and phase of the output, relative to the input

- Frequency sweep requires many simulation runs
- Goal: Approximation of FRFs based on a few training points
- Approach: Describe FRF with a complex Gaussian Process

- Gaussian Process
 f(x) ∼ GP(m(x), k(x, x'))
 - Mean function m(x)
 - Covariance function k(x, x')
- Gaussian Process Regression (GPR): infer unobserved values by conditioning on training data
- Posterior mean: minimum norm interpolant in the RKHS associated to k
- Approximation of complex functions
 - 1. Use separate Gaussian Process approximations for real and imaginary part
 - 2. Use complex Gaussian Process $f(x) \sim CGP(m(x), k(x, x'), c(x, x'))$
 - Covariance function $k(x, x') = \mathbb{E}[(f(x) m(x))\overline{(f(x) m(x'))}]$
 - Pseudo-covariance function $c(x, x') = \mathbb{E}[(f(x) m(x))(f(x) m(x'))]$

- Gaussian Process $f(x) \sim GP(m(x), k(x, x'))$
 - Mean function m(x)
 - Covariance function k(x, x')
- Gaussian Process Regression (GPR): infer unobserved values by conditioning on training data
- Posterior mean: minimum norm interpolant in the RKHS associated to k
- Approximation of complex functions
 - 1. Use separate Gaussian Process approximations for real and imaginary part
 - **2.** Use complex Gaussian Process $f(x) \sim CGP(m(x), k(x, x'), c(x, x'))$
 - Covariance function $k(x, x') = \mathbb{E}[(f(x) m(x))\overline{(f(x) m(x'))}]$
 - Pseudo-covariance function $c(x, x') = \mathbb{E}[(f(x) m(x))(f(x) m(x'))]$

- Gaussian Process
 f(x) ∼ GP(m(x), k(x, x'))
 - Mean function m(x)
 - Covariance function k(x, x')
- Gaussian Process Regression (GPR): infer unobserved values by conditioning on training data
- Posterior mean: minimum norm interpolant in the RKHS associated to k
- Approximation of complex functions
 - 1. Use separate Gaussian Process approximations for real and imaginary part
 - **2.** Use complex Gaussian Process $f(x) \sim CGP(m(x), k(x, x'), c(x, x'))$
 - Covariance function $k(x, x') = \mathbb{E}[(f(x) m(x))\overline{(f(x) m(x'))}]$
 - Pseudo-covariance function $c(x, x') = \mathbb{E}[(f(x) m(x))(f(x) m(x'))]$

- Gaussian Process
 f(x) ∼ GP(m(x), k(x, x'))
 - Mean function m(x)
 - Covariance function k(x, x')
- Gaussian Process Regression (GPR): infer unobserved values by conditioning on training data
- Posterior mean: minimum norm interpolant in the RKHS associated to k
- Approximation of complex functions
 - 1. Use separate Gaussian Process approximations for real and imaginary part
 - 2. Use complex Gaussian Process $f(x) \sim CGP(m(x), k(x, x'), c(x, x'))$
 - Covariance function $k(x, x') = \mathbb{E}[(f(x) m(x))\overline{(f(x) m(x'))}]$
 - Pseudo-covariance function $c(x, x') = \mathbb{E}[(f(x) m(x))(f(x) m(x'))]$

- Gaussian Process f(x) ~ GP(m(x), k(x, x'))
 - Mean function m(x)
 - Covariance function k(x, x')
- Gaussian Process Regression (GPR): infer unobserved values by conditioning on training data
- Posterior mean: minimum norm interpolant in the RKHS associated to k
- Approximation of complex functions
 - 1. Use separate Gaussian Process approximations for real and imaginary part
 - 2. Use complex Gaussian Process $f(x) \sim CGP(m(x), k(x, x'), c(x, x'))$
 - Covariance function $k(x, x') = \mathbb{E}[(f(x) m(x))\overline{(f(x) m(x'))}]$
 - Pseudo-covariance function $c(x, x') = \mathbb{E}[(f(x) m(x))(f(x) m(x'))]$

- Gaussian Process f(x) ~ GP(m(x), k(x, x'))
 - Mean function m(x)
 - Covariance function k(x, x')
- Gaussian Process Regression (GPR): infer unobserved values by conditioning on training data
- Posterior mean: minimum norm interpolant in the RKHS associated to k
- Approximation of complex functions
 - 1. Use separate Gaussian Process approximations for real and imaginary part
 - **2.** Use complex Gaussian Process $f(x) \sim CGP(m(x), k(x, x'), c(x, x'))$
 - Covariance function $k(x, x') = \mathbb{E}[(f(x) m(x))\overline{(f(x) m(x'))}]$
 - Pseudo-covariance function $c(x, x') = \mathbb{E}[(f(x) m(x))(f(x) m(x'))]$

- Gaussian Process f(x) ~ GP(m(x), k(x, x'))
 - Mean function m(x)
 - Covariance function k(x, x')
- Gaussian Process Regression (GPR): infer unobserved values by conditioning on training data
- Posterior mean: minimum norm interpolant in the RKHS associated to k
- Approximation of complex functions
 - 1. Use separate Gaussian Process approximations for real and imaginary part
 - **2.** Use complex Gaussian Process $f(x) \sim CGP(m(x), k(x, x'), c(x, x'))$
 - Covariance function $k(x, x') = \mathbb{E}[(f(x) m(x))\overline{(f(x) m(x'))}]$
 - Pseudo-covariance function $c(x, x') = \mathbb{E}[(f(x) m(x))(f(x) m(x'))]$

Parametric Problem

· We address linear parametric problems in the form

$$(\mathbf{K} + s\mathbf{D} + s^2\mathbf{M})\mathbf{u} = \mathbf{g}$$

- Stiffness, damping and mass matrix **K**, **D**, \mathbf{M} , $\in \mathbb{R}^{n_h \times n_h}$
- Complex frequency variable $s = i\omega$, where $\omega \in \Omega \subset \mathbb{R}^+$
- Quantity of Interest (QoI)

 $F:\mathbb{C} \to \mathbb{C}$, $s \mapsto \mathcal{J}(\mathbf{u}(s))$

• Assumption: $F \in H^2(\Gamma_{\alpha})$, where

$$\Gamma_{lpha}:=\{s\in\mathbb{C}\,|\,\mathcal{R}[s]>-lpha\}$$
 , $lpha>0$

• Hardy space $H^2(\Gamma_{\alpha})$ is an RKHS with the Szegö kernel

$$k(s_k, s_l) = \frac{1}{2\pi(2\alpha + s_k + \overline{s_l})}$$

Choice of Pseudo-Covariance

- FRF $F(i\omega)$ is the Laplace transform of a real-valued signal $\tilde{f}(t)$, hence $F \in H^2_{sub}(\Gamma_{\alpha}) := \{ u \in H^2(\Gamma_{\alpha}) \mid \mathcal{L}^{-1}[u](t) \text{ real-valued} \}$
- Information can be incorporated by choosing the pseudo-covariance¹

$$c(s_k, s_l) = \mathbb{E}[f(s_k)f(s_l)] = \mathbb{E}[f(s_k)\overline{f(\overline{s_l})}] = k(s, \overline{s_l})$$
(1)

of a mean-free complex GP, i.e., $f(s) \sim \mathsf{CGP}(\mathbf{0}, \mathit{k}, \mathit{c})$

• Numerical example: third order rational function $g \in H^2_{\mathrm{sub}}(\Gamma_{\alpha})$, $\omega \in [0, 1]$

¹J. Lataire and T. Chen. "Transfer function and transient estimation by Gaussian process regression in the frequency domain." Automatica (2016)

Niklas Georg

Approach: GPR + Rational Basis (Sz.-Rat.)

- Problem: slow convergence of Szegö-GPR prediction f_N(iω; α) if F has a few dominant poles limiting Γ_α
- Idea: combine GPR with rational basis functions²

$$f_{N}^{(K)}(i\omega;\mathbf{p},\alpha) = f_{N}(i\omega;\alpha) + \sum_{i=1}^{K} \frac{1}{i\omega - p_{i}}r_{i} + \frac{1}{i\omega - \overline{p_{i}}}\overline{r_{i}},$$

- Approach: heuristic algorithm starting with K_{max} initial pole pairs p_i , $\overline{p_i}$
 - 1. Tune kernel hyper-parameter α and K pole pairs simultaneously (MLE)
 - 2. Store model $f_N^{(K)}$
 - 3. Remove pole pair with smallest contribution to the likelihood and repeat
- Output: set of approximations $\{f^{(K)}\}_{K=0}^{K_{max}}$
- ⇒ Model selection using a novel criterion based on leave-on-out cross-validation with an additional instability penalty

²B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting", IEEE Trans. Power Delivery (1999)

Contents

- Introduction
- Approximation of Frequency Response Functions
- Numerical results
- Conclusion

Electric Circuit

Parallel connection of n underdamped series RLC circuits

$$\Upsilon(i\omega) = \sum_{i=1}^{n} \frac{i\omega}{(i\omega)^2 L_i + i\omega R_i + C_i^{-1}}, \quad \omega \in [10 \text{ kHz}, 25 \text{ kHz}]$$

Setting 1: n₁ = 1000 random series RLC elements

$$C_i \sim \mathcal{U}(1, 20) \, \mu$$
F, $L_i \sim \mathcal{U}(0.1, 2) \, m$ H, $R_i = L_i (1 + \mathcal{U}(-0.2, 0.2)) rac{\Omega}{mH}$

Setting 2: two additional circuit elements with very low damping

Electric Circuit

Parallel connection of n underdamped series RLC circuits

$$\Upsilon(i\omega) = \sum_{i=1}^{n} \frac{i\omega}{(i\omega)^2 L_i + i\omega R_i + C_i^{-1}}, \quad \omega \in [10 \text{ kHz}, 25 \text{ kHz}]$$

Setting 1: n₁ = 1000 random series RLC elements

$$C_i \sim \mathcal{U}(1, 20) \, \mu$$
F, $L_i \sim \mathcal{U}(0.1, 2) \, m$ H, $R_i = L_i (1 + \mathcal{U}(-0.2, 0.2)) rac{\Omega}{mH}$

Setting 2: two additional circuit elements with very low damping

¹Y. Nakatsukasa et al. "The AAA algorithm for rational approximation" (2018)

²B. Gustavsen et al. "Rational approximation of frequency domain responses by vector fitting" (1999)

Niklas Georg

¹Y. Nakatsukasa et al. "The AAA algorithm for rational approximation" (2018)

²B. Gustavsen et al. "Rational approximation of frequency domain responses by vector fitting" (1999)

Niklas Georg

¹Y. Nakatsukasa et al. "The AAA algorithm for rational approximation" (2018)

²B. Gustavsen et al. "Rational approximation of frequency domain responses by vector fitting" (1999)

Niklas Georg

¹Y. Nakatsukasa et al. "The AAA algorithm for rational approximation" (2018)

²B. Gustavsen et al. "Rational approximation of frequency domain responses by vector fitting" (1999)

Niklas Georg

¹Y. Nakatsukasa et al. "The AAA algorithm for rational approximation" (2018)

²B. Gustavsen et al. "Rational approximation of frequency domain responses by vector fitting" (1999)

Niklas Georg

Method:

- PACMAN shape: vibrating surface (frequency $f = \frac{\omega}{2\pi}$)
- Acoustic pressure p_i at black dot
- Approximation using 28 training points (blue crosses)

³H. Ziegelwanger, P. Reiter. "The PAC-MAN model: Benchmark case for linear acoustics in computational physics." J. Comput. Phys. (2017)

- 2m
- PACMAN shape: vibrating surface (frequency $f = \frac{\omega}{2\pi}$)
- Acoustic pressure p_i at black dot
- Approximation using 28 training points (blue crosses)

³H. Ziegelwanger, P. Reiter. "The PAC-MAN model: Benchmark case for linear acoustics in computational physics." J. Comput. Phys. (2017)

- PACMAN shape: vibrating surface (frequency $f = \frac{\omega}{2\pi}$)
- Acoustic pressure *p_i* at black dot
- Approximation using 28 training points (blue crosses)
- Method: AAA (rational approximation)

³H. Ziegelwanger, P. Reiter. "The PAC-MAN model: Benchmark case for linear acoustics in computational physics." J. Comput. Phys. (2017)

- PACMAN shape: vibrating surface (frequency $f = \frac{\omega}{2\pi}$)
- Acoustic pressure *p_i* at black dot
- Approximation using 28 training points (blue crosses)
- Method: Vector Fitting (rational approximation)

³H. Ziegelwanger, P. Reiter. "The PAC-MAN model: Benchmark case for linear acoustics in computational physics." J. Comput. Phys. (2017)

- PACMAN shape: vibrating surface (frequency $f = \frac{\omega}{2\pi}$)
- Acoustic pressure *p_i* at black dot
- Approximation using 28 training points (blue crosses)
- Method: GPR (Szegö kernel) + rational basis

³H. Ziegelwanger, P. Reiter. "The PAC-MAN model: Benchmark case for linear acoustics in computational physics." J. Comput. Phys. (2017)

- PACMAN shape: vibrating surface (frequency $f = \frac{\omega}{2\pi}$)
- Acoustic pressure *p_i* at black dot
- Approximation using N training points

³H. Ziegelwanger, P. Reiter. "The PAC-MAN model: Benchmark case for linear acoustics in computational physics." J. Comput. Phys. (2017)

Conclusion⁵

- Complex GPR using a suitable (pseudo-)kernel for FRFs
- Additional rational basis functions to capture dominant poles
- Model selection based on LOO and instability penalty
- Improvements w.r.t. AAA/VF for a number of benchmark problems

Outlook:

• Generalization to multivariate case \Rightarrow UQ for parametric PDEs⁴

⁴M. Griebel and C. Rieger. "Reproducing kernel Hilbert spaces for parametric partial differential equations." SIAM-ASA J. Uncertain. (2017)

⁵N. Georg, J. Bect, U. Römer, S. Schöps. *Rational kernel-based interpolation for complex-valued frequency response functions.* Will appear on ARXIV soon.

Thank you for your attention!

Please ask questions now or contact

Niklas Georg n.georg@tu-braunschweig.de http://www.ids.tu-braunschweig.de

Acknowledgment: This work is supported by the DFG grant RO4937/1-1, the *Excellence Initiative* of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt.