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Frequency Response Functions (FRFs)

Response to harmonic (sinusoidal) excitation with a certain frequency f
FRF: Measure of magnitude and phase of the output, relative to the input
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Frequency sweep requires many simulation runs
Goal: Approximation of FRFs based on a few training points
Approach: Describe FRF with a complex Gaussian Process
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Gaussian Process Regression

Gaussian Process
f (x) ∼ GP(m(x), k(x, x′))

Mean function m(x)
Covariance function k(x, x′)

Gaussian Process Regression (GPR):
infer unobserved values by conditioning
on training data

Posterior mean: minimum norm
interpolant in the RKHS associated to k 1 1.5 2 2.5 3
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Approximation of complex functions

1. Use separate Gaussian Process approximations for real and imaginary part
2. Use complex Gaussian Process f (x) ∼ CGP(m(x), k(x, x′), c(x, x′))

– Covariance function k(x, x′) = E[(f (x)−m(x))(f (x)−m(x′))]

– Pseudo-covariance function c(x, x′) = E[(f (x)−m(x))(f (x)−m(x′))]
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Parametric Problem
We address linear parametric problems in the form

(K+ sD+ s2M)u = g

Stiffness, damping and mass matrix K,D,M,∈ Rnh×nh

Complex frequency variable s = iω, where ω ∈ Ω ⊂ R+

Quantity of Interest (QoI)

F : C → C, s 7→ J (u(s))

Assumption: F ∈ H2(Γα), where

Γα := {s ∈ C | R[s] > −α}, α > 0

−α
Γα

<

=

Hardy space H2(Γα) is an RKHS with the Szegö kernel

k(sk, sl) =
1

2π(2α + sk + sl)
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Choice of Pseudo-Covariance
FRF F(iω) is the Laplace transform of a real-valued signal f̃ (t), hence

F ∈ H2
sub(Γα) := {u ∈ H2(Γα) | L−1[u](t) real-valued}

Information can be incorporated by choosing the pseudo-covariance1

c(sk, sl) = E[f (sk)f (sl)] = E[f (sk)f (sl)] = k(s, sl) (1)

of a mean-free complex GP, i.e., f (s) ∼ CGP(0, k, c)
Numerical example: third order rational function g ∈ H2

sub(Γα), ω ∈ [0, 1]
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1J. Lataire and T. Chen. "Transfer function and transient estimation by Gaussian process
regression in the frequency domain." Automatica (2016)
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Approach: GPR + Rational Basis (Sz.-Rat.)

Problem: slow convergence of Szegö-GPR prediction fN(iω; α) if F has a few
dominant poles limiting Γα

Idea: combine GPR with rational basis functions2

f (K)N (iω; p, α) = fN(iω; α) +
K

∑
i=1

1
iω − pi

ri +
1

iω − pi
ri,

Approach: heuristic algorithm starting with Kmax initial pole pairs pi, pi
1. Tune kernel hyper-parameter α and K pole pairs simultaneously (MLE)
2. Store model f (K)N
3. Remove pole pair with smallest contribution to the likelihood and repeat

Output: set of approximations {f (K)}KmaxK=0

⇒Model selection using a novel criterion based on leave-on-out
cross-validation with an additional instability penalty
2B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by

vector fitting", IEEE Trans. Power Delivery (1999)
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Electric Circuit
Parallel connection of n underdamped series RLC circuits

Y(iω) =
n

∑
i=1

iω
(iω)2Li + iωRi + C−1

i
, ω ∈ [10 kHz, 25 kHz]

Setting 1: n1 = 1000 random series RLC elements

Ci ∼ U (1, 20) µF, Li ∼ U (0.1, 2)mH, Ri = Li(1+ U (−0.2, 0.2))
Ω
mH

Setting 2: two additional circuit elements with very low damping
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Electric Circuit - Setting 1
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1Y. Nakatsukasa et al. "The AAA algorithm for rational approximation" (2018)
2B. Gustavsen et al. "Rational approximation of frequency domain responses by vector fitting" (1999)
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Electric Circuit - Setting 2
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Benchmark Problem: Acoustic Scattering3

2m

PACMAN shape: vibrating surface (frequency f = ω
2π )

Acoustic pressure pi at black dot

Approximation using 28 training points (blue crosses)

Method:
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3H. Ziegelwanger, P. Reiter. "The PAC-MAN model: Benchmark case for linear acoustics in
computational physics." J. Comput. Phys. (2017)
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Benchmark Problem: Acoustic Scattering3

2m

PACMAN shape: vibrating surface (frequency f = ω
2π )

Acoustic pressure pi at black dot

Approximation using 28 training points (blue crosses)

Method: AAA (rational approximation)
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Benchmark Problem: Acoustic Scattering3

2m

PACMAN shape: vibrating surface (frequency f = ω
2π )

Acoustic pressure pi at black dot

Approximation using 28 training points (blue crosses)

Method: Vector Fitting (rational approximation)
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Benchmark Problem: Acoustic Scattering3

2m

PACMAN shape: vibrating surface (frequency f = ω
2π )

Acoustic pressure pi at black dot

Approximation using 28 training points (blue crosses)

Method: GPR (Szegö kernel) + rational basis
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Benchmark Problem: Acoustic Scattering3

2m

PACMAN shape: vibrating surface (frequency f = ω
2π )

Acoustic pressure pi at black dot

Approximation using N training points

20 30 40 50
10−4

10−2

100

Number of training points N

RM
SE

AAA
VF

Sz.+Rat.
Szegö
Gauss
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Conclusion5

Complex GPR using a suitable (pseudo-)kernel for FRFs

Additional rational basis functions to capture dominant poles

Model selection based on LOO and instability penalty

Improvements w.r.t. AAA/VF for a number of benchmark problems

Outlook:

Generalization to multivariate case⇒ UQ for parametric PDEs4

4M. Griebel and C. Rieger. "Reproducing kernel Hilbert spaces for parametric partial differential
equations." SIAM-ASA J. Uncertain. (2017)

5N. Georg, J. Bect, U. Römer, S. Schöps. Rational kernel-based interpolation for complex-valued
frequency response functions. Will appear on arXiv soon.
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Thank you for your attention!

Please ask questions now or contact
Niklas Georg
n.georg@tu-braunschweig.de

http://www.ids.tu-braunschweig.de
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