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ABSTRACT
While the transportation sector is responsible for a growing share of greenhouse gas emissions,
electric vehicles (EVs) offer solutions for greener mobility. The proportion of electric vehicles
in transportation fleets is increasing, but wider adoption will not be possible without an appro-
priate charging infrastructure. The deployment of such infrastructure should follow a strategy
that considers both the environment in which it is deployed and the behavior patterns of electric
vehicle users. If these aspects are not taken into consideration, there is a risk of failing to meet
users’ needs and generating additional costs. Here we review the literature on location problems
for electric vehicle charging stations. We aim to draw up a comparative overview of approaches
that have been used up to 2020 for optimizing the locations of charging infrastructure. We first
briefly review the issues raised by the deployment of charging infrastructure, namely technical,
economic and user acceptance concerns. We then look at the goals of the infrastructure location
models in the literature. Schematically, those goals fall into two categories: minimizing the cost
of charging infrastructure for a given level of service, or maximizing the service provided for a
given cost. Finally, we focus on the approaches used to achieve these goals. Three categories
of approaches are identified: node, path, and tour- or activity-based approaches. We then dis-
cuss these approaches in relation to technical, economic and user acceptance factors in order to
provide a comprehensive analysis for stakeholders involved in EV charging infrastructure plan-
ning. Directions are given for future research to develop models that better reflect the real-world
picture.

Word count : 8919 words

Abbreviations

AC Alternative Current
DC Direct Current
EV Electric Vehicle

EVSE Electric Vehicle Supply Equipment
FCLM Flow-Capturing Location Model
FRLM Flow-Refueling Location Model
GHG Greenhouse Gas
ICCT International Council on Clean Transportation
ICE Internal Combustion Engine

MCLM Maximum Covering Location Model
PHEV Plug-in Hybrid Electric Vehicle
SCLM Set Covering Location Model

1. Introduction
The climate emergency requires a drastic and rapid reduction in anthropogenic greenhouse gas (GHG) emissions,

which are the cause of the fastest global warming ever observed [1]. The transportation sector is responsible for about
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15% of global GHG emissions (27% in the European Union), and this rate is expected to increase in the coming years
[2]. A transition from internal combustion engine (ICE) vehicles to greener transportation could be a major lever for
reducing global GHG emissions.

For road transportation and individual mobility, which account for the largest share of transportation-sector emis-
sions, electric vehicles (EVs) emerge as a major alternative to ICE vehicles. Considering the whole lifetime of the
vehicle, EVs have a lower global warming potential than ICE vehicles, especially if they are coupled with low-carbon
electricity production systems [3]. Moreover, EVs have many other benefits, such as no tailpipe emissions—which
could help avoid air pollution and exposure to nitrogen oxides, volatile organic compounds, and carbon monoxide in
urban areas, and reduce particulate matter emissions—and far less noise than ICE vehicles.

Despite all these benefits, large-scale uptake of EVs is bottlenecked by a number of different barriers [4]. A first
major barrier is the high purchase price of EVs compared to ICE vehicles, although the purchase price impact is
expected to diminish shortly. When considering total cost of ownership over the whole life cycle, an EV is already
less expensive than an ICE vehicle in countries such as Norway or France [5]. Moreover, the purchase price of EVs is
projected to drop below that of ICE vehicles by 2025 [6]. The second main barrier for users is tied to range anxiety.
Most EVs have a lower driving range than ICE vehicles. Even though the range offered by a full-charge battery is
sufficient for daily use for a large majority of users, they fear that they will run out of battery before being able to
finish their trips or find a charging point. User anxiety is thus the main problem to address to enable large-scale EV
adoption. The way forward could be to increase battery capacity to improve EV range or to provide an efficient charging
infrastructure to better cover charging needs. However, even with a larger range, the fear of not being able to charge
EVs when the battery is empty is still the same [7], so large-scale EV deployment cannot be achieved without a prior
appropriate charging infrastructure [8]. Furthermore, research shows that investing in charging infrastructure is more
efficient than subsidizing larger batteries as long as the investments in charging infrastructure are not sufficient to cover
the whole territory [9, 10, 11].

However, deploying a charging infrastructure is hugely expensive and comes with several technical and economic
constraints. The Energy Transition for Green Growth act in France sets a target of 7 million EV charging stations
(public and private) by 2030, which corresponds to a minimum cost of around 2 billion euros [12] while an ICCT
report projects an estimated 1 billion dollars in investment over the 2019–2025 period for the USA to fill its public
charging infrastructure gap [13]. These huge costs warrant a proper deployment strategy to efficiently locate and scale
new charging stations in order to favor large-scale EV adoption while avoiding resource waste or underinvestment for
infrastructure investors. This deployment, with the costs it entails, also faces a chicken-and-egg problem: drivers will
be reluctant to buy an EV without adequate infrastructure, while operators will refuse to invest in infrastructure until
there is sufficient demand to make it profitable. To ease this bottleneck, the first step must be taken by operators [14].

Once the first step has been taken, the issue of optimal deployment of a vehicle refueling infrastructure is not a
new challenge. Coverage and location models, such as those of Toregas [15] or Hodgson [16], have been around for
a relatively long time and are perfectly applicable to gas refueling stations. However, EVs have different demands to
ICE vehicles (charging takes longer than refueling), which makes these coverage models incompatible with routine
EV use. Models taking these specificities into account have thus been developed since the end of the 2000s.

Nevertheless, few of them seem to take advantage of the benefits offered by electric vehicle charging, which does
not require the user to be present during charging time. Moreover, the deployment of such an infrastructure does not
happen all at once, partly because of the problem of the development costs it would generate without a guaranteed
return on investment from a demand that will take a long time to come, which brings us back to the previous chicken-
and-egg problem. An incremental and over-time deployment must be considered, considering the early stages of the
infrastructure already present in the territory.

This literature review aims to provide an overview of the timely problem of EV charging infrastructure planning in
terms of the optimization models used to determine optimal locations of charging points, and sizing. It explores and
compares a rapidly growing scientific literature proposing strategies and simulation models for deployment of electric
charging infrastructures, considering the technical, economic and user-side aspects of EVs.

To identify the first relevant articles, the Google Scholar database was searched with combination of keywords :
{EV, electric vehicles, charging infrastructure, charging stations} and {planning, location, model, optimization}. We
kept a sample of 287 articles containing literature reviews and papers on infrastructure optimisation and deployment
models cited as references in this field. The articles cited in these papers and the articles also citing them were then
screened, and we added 63 relevant articles to our review.

The paper is structured as follows. Section 2 explains the different charging technologies and the issues involved in
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deploying charging infrastructure. Section 3 presents the objectives and targets of infrastructure deployment. Section
4 then covers the methods for locating and sizing infrastructure in a territory, and Section 5 highlights gaps in the
literature and avenues for future research.

2. Background on charging infrastructure and the allied issues
The issue of deploying charging infrastructure for EVs is set in the following framework: EV users with limited

autonomy travel the road network. Making these trips consumes energy, which in turn decreases the state of charge of
the EV battery and creates a need to charge, which can be met in two ways: either through home/office charging, or
through public (or semi-public) charging infrastructure. This infrastructure needs to stay at a reasonable cost for opera-
tors, who have limited investment capacity, while giving EV users the transportation network coverage they need. The
goal is to enable drivers to use their EVs with less range anxiety, knowing that they can rely on public charging infras-
tructure when they need it. As public charging infrastructure supplies energy from the grid, infrastructure deployment
needs to consider the constraints linked to power grid operation.

Figure 1: Overview of the charging infrastructure framework
In this framework, three main types of issues are to consider when deploying charging infrastructure : technical,

economic and user-centred issues.
2.1. Technical overview of charging devices

Charging devices provide the link between electricity grid and EVs by converting AC power into DC power, which
can charge a battery. They can be on-board or off-board, depending on the type of charging.

The International Electrotechnical Commission (IEC) defines four charging modes [17]. In the first three modes,
the EV is directly connected to the AC distribution network, and the conversion to DC is done through the vehicle’s
onboard charger. The main difference between these three levels lies in the level of safety and charging control, which
allow the vehicle battery to be charged with more or less power. For example, mode 1, which is used for low-power
charging, is equivalent to plugging the vehicle into an electrical outlet, while mode 3 allows advanced charging control
and higher charging power. The mode 4 is mostly used for fast charging applications. Unlike the three first modes,
here the connection of EVs to the AC grid is not direct: the AC power is converted into DC power in an off-board
charger, and then used to charge the EV’s battery. Figure 2 gives a simplified illustration of EV charging.
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Figure 2: Simplified architecture of EV charging

2.2. Charging infrastructure and EV acceptance
Charging EVs generally requires much more time than filling up an ICE vehicle gas tank. Charging times go from

a few dozen minutes for the fastest chargers up to more than 20 hours for the slow ones [18]. Charging stations thus
have different design and management imperatives to conventional gas stations. EVs have different refueling behaviors
due to different required charge-times and charging locations, especially when taking into account one of the major
conveniences offered by EVs, i.e. that EV batteries can charge while the vehicle is not in use for mobility purposes
(while parked at home, the workplace, in mall parking, etc.). Home EV charging does not require any effort from the
driver other than plugging in the EV. It also does not require any specific installation—at least not for slow charging
[17] - even if the majority of EV drivers install specific equipment to increase charging speed and for safety aspects.
Moreover, in 90% of cases, trips do not exceed 80 km, whereas the typical range for an EV is about 200 km 1 [20, 21].
Thus, home charging should be sufficient for a large majority of users: with a fully charged battery when leaving home,
they could complete their daily trips and charge their EV once back home, ready for the next day.

However, home charging has some limits. First, if trips—or a succession of trips—exceed the EV range, then
drivers need to be able to charge their EV elsewhere than at home. If this is not possible, then EVs will remain as a
second car for the wealthiest percentiles of the population, since users will not be able to use it to make occasional long
journeys and will therefore prefer an ICE vehicle [8]. Moreover, in many countries, a large part of the population do
not have a single-family home with a private parking space where they can install a charging point [22]. This illustrates
that relying solely on home charging for the transition from ICE vehicles to EVs will leave important barriers to the
adoption of electric mobility, justifying the need for an appropriate public charging infrastructure.

The range and charging constraints of EVsmake it illusory to envisage the broad diffusion of EVs without sufficient
charging infrastructure. At the same time, if there are not enough EVs on the road, there will not be enough interest in
setting up an expensive, unprofitable charging infrastructure. But without this infrastructure, it is illusory to envisage
the democratization of EVs... The chicken-and-egg problem in this two-sided market has been studied by Delacretaz
et al. [23] who show that an initial infrastructure has little immediate positive effect on EV adoption but that positive
effect does increase over time. They also show a snowball effect: the demand elasticity for EVs relative to charging
infrastructure provision increases with infrastructure development. In other words, the more charging stations there
are, the greater the increase in EV demand with further investment in charging infrastructure.

This raises the question of marginal—or incremental—infrastructure development. An infrastructure is deployed
in a spatial context, but also in a temporal one, and it is unrealistic to consider instantaneous deployment of a complete
set [24]. It is therefore important to define a temporal deployment sequence along with a spatial set of locations to

1Note : This is valid for the European market, where the population densities are rather high and the distances to be travelled relatively small. In
the case of the US or similar markets, the distances involved may be higher. However, they remain well below 200km, which is already a pessimistic
estimate of the range of a standard electric vehicle. [19]
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determine the most cost-effective investments [25]. Otherwise, the risk is to end up with an infrastructure unsuited to
driver needs at the beginning, which would not allow the diffusion of EVs to start and thus discourage additional in-
vestments in infrastructure, and so on (again, a chicken-and-egg paradigm). In addition, even though charging stations
are often deployed without a global vision, they nevertheless already exist in the territory, and it would be a mistake not
to consider this existing resource. We must therefore think about the problem of placing ‘one more charging station’
and the value of this station when there is already a set of operational stations, while almost all the models focus on
optimising the final charging infrastructure without considering the process to get there.
2.3. Economical issues

A naive approach would be to consider the best option is to put fast chargers everywhere, as people value the option
to charge quickly [26]. However, a DC fast charging station costs much more than a slower one. The average cost for a
level 2 public charging station is $3000, while the average cost of a DC fast charging station is nine timesmore (Table 1).

Table 1: Electric vehicle supply equipment (EVSE) purchase and installation costs in the U.S. [13]
EVSE Type Average public installation cost Average home installation cost
Level 1 $4000 $400 -$900
Level 2 $6000 $680-$4100

DC Fast Charging (50 kW) $73,000 Not available
DC Fast Charging (150 kW) $120,000 Not available
DC Fast Charging (350 kW) $205,000 Not available

Since more expensive infrastructure should lead to more expensive charging service for users, a poor choice of
electric vehicle supply equipment (EVSE) penalizes not just the consumer but also the operator for whom a charging
station adapted to local needs guarantees a better return on investment. Let us explain this with a simple example.
Suppose a charger able to fully charge an EV in three hours is placed in a site where parking times are usually eight
hours. A person who leaves their EV parked and plugged in will charge for a maximum of three hours but then
unnecessarily occupy the terminal for the remaining time. However, for the same budget, several slower charging
stations could have been installed which would maximize the profit for the operator and the level of service for users.

Finally, it is important in the case of several operators that they coordinate with each other to ensure interoperability
and good global coverage. But it is also important to put in place regulations to prevent the creation of local private
monopolies in public parking areas, which would be harmful to users [27].
2.4. Power grid issues

Another issue in charging station location concerns the power grid. Level 1 infrastructure only requires about 3kW
from the power network, which is no more than common household appliances. This should not have a big impact on
the wider grid, even when several EVs are simultaneously charging, or at least not one that a small tariff incentive could
not solve. However, current fast chargers can require up to 150kW from the grid, which is not necessarily scaled for
that, especially if there are several fast chargers at the same place, as is the case with charging hubs. Placing chargers
requiring too much power in non-adapted locations can stress the existing infrastructure and lead to the need for grid
reinforcement, which can be very expensive [28].

The choice of charging station type and placement can therefore be a source of cost inefficiencies. To control the
total cost of the infrastructure, this choice must be considered in relation to the real needs of users, as well as the
capacity of the power grid.

Charging EVs is not simply a source of grid stress but also a potential source of grid stability if combined with
smart grid management to exploit positive synergy with renewable energy production. Renewable energies are a source
of stress for the electricity grid, as they are not or only partially controllable. Therefore, they sometimes produce too
much energy with respect to the needs, and this surplus of energy has to be used. The batteries of EVs can then store
this surplus energy produced by renewables to smooth out excess power output. Scheduling the charging of vehicles
according to the constraints of the electrical grid is often called "smart charging".

EVs can also provide additional power to the grid during grid stress episodes by injecting electrical power from
their battery into the grid, like a generator [29]. This bi-directional mechanism is commonly called Vehicle-to-Grid
(V2G). Through this mechanism, EVs can notably flatten consumption peaks and play a role in regulating grid incidents
by providing ancillary services to the grid, such as frequency regulation, resource adequacy, network deferral, energy
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arbitrage, spinning reserve, etc. [30] They can also directly fast-charge other vehicles, avoiding power demand peaks
from fast charging on the distribution network [31].
2.5. Summary

In summary, the charging infrastructure for EVs needs to address technical issues linked to the technology used
and the constraints it places on existing grid infrastructures. It also meets financial challenges: the costs related to
charging infrastructure are relatively high, so it is important for operators to avoid making unnecessary investments
and to be assured of a return on their investments. Finally, charging infrastructure needs to respond to user demand in
order to garner user acceptance of EVs.

The financial stakes and public acceptance of EVs are closely linked: insufficient coverage of the territory, i.e.
underinvestment or unwise investment, will discourage users from buying and using an EV. This in turn will have
consequences on return on investment, as would prohibitively high utilization cost of the infrastructure. The technical
constraints linked to the charging station energy supply can lead to significant additional costs linked to the electrical
network. Finally, the adoption of EVs requires a charging infrastructure technology that meets users’ expectations.
Users expect to have at their disposal an infrastructure that suits their needs in a convenient way, and that they can rely
on.

3. Overview and scope of planning simulation models
An appropriate EV charging infrastructure has to satisfy technical, economic and acceptability constraints. The

infrastructure must address a threefold issue: its location, i.e. its distribution on the transport network, its capacity, i.e.
the demand it can serve, and its users. In addition, infrastructure deployment can serve different goals depending on
the interests of those deploying it on the transportation network.

To describe a transportation network in a location problem, we decompose it into nodes and paths (or links). The
simplest strategy is to define one in relation to the other: a path or route is a link between two nodes, and a node is the
intersection point of two paths, or can be the end of a path too.

Users make trips in the transportation network, i.e. they travel between two nodes. They also make tours, i.e. series
of trips. During those trips, EV users use energy from their batteries, and sometimes need to charge their EVs with
charging infrastructure in public space.
3.1. Users and charging infrastructure utilization

Location and sizing of the charging infrastructure must meet user demand. The literature mainly focuses on three
types of charging-infrastructure users: buses, taxis, or private vehicles. A classification has been made in the table in
the Appendix A.

Charging infrastructure is easier to design for buses, as buses have fixed tours with (more or less) precise time
schedules, so uncertainties about their state of charge, availability or itinerary is quite low. For this problem, there are
two options. If the buses have enough autonomy to run all day long without being charged, they can simply be charged
at the end of their shift at charging stations installed at the depot. The second option is to place fast charging stations at
bus stops to allow all buses to complete their tours, as described by Wang et al. [32]. The stops at charging points do
not even have to be longer than at other bus stops, as current flash charging technology is able to charge two or three
kWh into bus batteries in a couple of seconds. In this case, the choice could even be made to place a fast charging point
at each bus stop, allowing the buses to be equipped with low-capacity batteries. These two options are not mutually
exclusive, and it is possible to charge buses at night and add charging stations for buses that are unable to complete
their tours.

For taxis, as fuel is a large part of their costs and they mainly make short trips, EVs could be an excellent option,
and taxis could become a good showcase for the usefulness of EVs2, but the charging infrastructure has to meet specific
requirements. First, electric taxis cannot charge during trips with a customer: they have to charge during idle time.
However, these downtimes must be as short as possible. This is why it is critical here to consider the time spent at
the charging station (waiting time and charging time), as it is idle time for the driver. Taxis already have many idle
time situations, typically when waiting for customers. Charging time should not be an additional heavy constraint.
Ideally, it should be available where and when taxis have idle time. Then, because it is common for taxi drivers to

2Note: In Amsterdam Airport Schiphol, where there is the largest Tesla taxi fleet, taxis are massively using the free infrastructure provided by
the car company, making it the most intensively used charging infrastructure in the world.
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share a vehicle, home charging is not always an option: the charging infrastructure for taxis must allow them to operate
continuously. The fast charging option is therefore often preferred for taxis.

Most of the literature focuses on private vehicles, which account for the biggest share of the vehicle fleet, or at least
considers that an infrastructure can be developed for all light vehicles. Private vehicle owners have a wide variety of
uses for their vehicles depending on their environment (rural, urban), travel habits (distance from their main points of
interest, frequency of travel), and many other factors. The different ways of looking at the case of private vehicles are
detailed in the rest of the paper.
3.2. Optimization goals

The literature has considered several optimization goals to effectively meet user charging demand.
Many studies aim to minimize the infrastructure costs for meeting a given demand, thus taking demand as a con-

straint. Like infrastructure costs, some papers only take the installation costs into account. These can be a simple fixed
cost for any charging station, which can be actualized considering its life-cycle as in Dong et al. [33]. In this case, the
objective narrows down to finding the configuration that allows to have as few stations as possible. The cost of charging
infrastructure can also be made more complex if we consider the different costs of chargers and the construction costs,
land costs as in Mehar et al. [34], or network reinforcement costs as in Rajabi-Ghahnavieh et al. [35]. Others take into
account both investment and operation costs, such as maintenance costs or cost of electricity (Jia et al. [36]).

With a view to achieving profitability, several papers also aim to maximize the utilisation of chargers (Cai et al.
[37], Pevec et al. [38]).

Other studies choose to deal not with the infrastructure cost but with minimizing the user’s costs. User costs are
mainly tied to time spent waiting at charging stations (Hanabusa et al. [39], Tu et al. [40]), and the trip—or the
deviation from their original path—they have to make to charge their vehicle (Ge et al. [41], Xu et al. [42]).

Some papers choose to focus on maximizing the number of EVs that could be charged at the station. In other words,
the objective is to maximize EV flow at the charging station, based on the rationale that the more people have access
to the infrastructure, the more useful it is. Some models only consider a location problem and provide a geographical
coverage of the demand (Wang andWang [43], Motoaki [44]). In this case, the objective is to have a maximum number
of EVs with access to a potentially available station, and the charging station locations are uncorrelated to the charging
station sizes. Other works consider the availability of the station, by introducing charging time during which the station
is unavailable (Sun et al. [45]), or queuing models (Yang et al. [46]). This allows to address the question of sizing the
infrastructure.

An alternative to maximizing EV flow is to maximize the amount of energy charged by the EVs (Chen et al. [47],
Csizar et al. [48]) or the global distance they can travel (Wang et al. [49]), which is almost the same. This prevents
many vehicles being covered by a single station, as can be the case with the previous objective. However, in this case
charging 10 kWh in a single EV is the same as charging 1 kWh in ten vehicles, regardless of whether the intended trip
is feasible for the vehicles. This is why some papers aim to build a charging infrastructure that minimizes failed—or
maximize feasible—trips (Asamer et al. [50], Micari et al. [51]).

These optimization objectives are implemented using various location methods, as detailed in Section 4.
3.3. Sizing charging infrastructure

With the problem of location comes the problem of sizing the charging stations at the chosen locations. This is
mainly a matter of answering two questions: how many charging points should be placed at a location, and which
charging speed should be chosen. Locations are also dependent on station capacity, i.e. the number of vehicles that
can be served within a certain period. For example, if a station with a large service capacity is installed at one location,
there is limited interest in placing another station near it.

Some studies only focus on the problem of locating charging stations, sometimes considering an infinite capacity
[43, 52] which does not represent a real situation where charging points can only accommodate a limited number of
vehicles. But once locations have been found without considering this limited capacity, charging stations can be sized
according to the demand at each station, as in Micari et al. [51]. The sizing can be done simply with the number
of EVs likely to need each station, or by more sophisticated models such as queuing models that can consider the
randomness of charging demand, as in Zhu et al. [53]. However, not considering the capacity of charging stations in
a first step of charging station location planning can lead to sub-optimal results, as the size of the stations influences
their distribution over a territory.
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Some models directly take into account limited capacity of their charging stations as a constraint, like the models
proposed by Upchurch et al. [54] or Gavranovic et al. [55]. By doing so, it is possible to consider disparities in demand
and avoid, for example, an area with a high concentration of demand being covered by only one station that will not
be able to satisfy all the demand in its area. In addition, multiplying the number of stations in areas of high demand
reduces the impact of a failure of one of them, which is important for the reliability of the infrastructure. Unlike the
previous method, however, this approach leaves little flexibility in terms of the size of each station, since this parameter
must be set beforehand.

Sizing the charging infrastructure is not just a matter of deciding the number of vehicles that can be accommodated,
but also the time spent at the station. It is not always inconvenient that the charging process takes several hours, but
this is not always acceptable, such as during long journeys requiring a quick charge to reach the destination. That is
why it is also important to wisely choose the power level of charging stations based on the use case, and many models
incorporate power sizing (You et al. [56], Wang et al. [57]). This sizing can also be done with each type of station
chosen according to the type of targeted route, which allows fast charging stations to be placed where a quick charge
is most useful. Indeed, even if increasing the charging speed of a station also increases its capacity as it serves EVs
faster, slow charging stations are a more cost-effective option to meet the needs of a whole territory (Sun et al. [45]).

Finally, charging stations must be sized by considering grid capacity at the location of the charging points. As
explained earlier, a large number of charging points at the same place or high power charging points cannot be installed
where the electrical grid is too weak, at the risk of causing instabilities due to excessive power demand [58]. Some
studies choose to take the characteristics of the electrical grid as a constraint (Zhu et al. [53], Zhang et al. [59]), and
a few consider the possibility of reinforcing the electrical grid (Sadeghi-Barzani et al. [60], Guo & Zhao [61]). Other
grid-related issues, such as peaks in demand or power quality, may also arise because of charging infrastructure that
does not take the power grid into account [62] or because of a power grid that does not take the charging infrastructure
into account, depending on the point of view.

4. Location methods
Several methods to locate charging infrastructure have been developed, and most can be grouped into three main

categories: node, path, or tour-based approaches [63].
The node-based approach is the most popular method for locating charging stations. It deals with the location

problem as a facility location problem, which has been extensively studied for many applications [64]. The problem to
be solved is formulated as follows. Given candidate locations which are the nodes, the objective is to place facilities,
i.e. the charging stations, to meet the demand at the nodes. Even if it seems a simple formulation, this problem
belongs to the NP-hard class, meaning that we are not able to find exact solutions in a reasonable time because the
corresponding resolution algorithms have an execution time that increases exponentially in the problem dimension.
Heuristic methods are often used to provide approximate solutions in a reasonable computing time. The principle of
the method is illustrated in Figure 3.

Figure 3: Simplified principle of a node-based approach
A second approach that has been considered is the path-based approach, introduced by Hodgson [16] and illustrated

in Figure 4. This approach relies on a flow-capturing model: the objective is to place charging stations along paths
with the highest flows of vehicles, considering origin–destination trips, in order to serve as many users as possible. It
considers effects that only emerge from the demand emanating from vehicle flows, whereas the node-based approach
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offers a relatively static view of demand.

Figure 4: Simplified principle of a path-based approach
Last, the tour-based approach, illustrated in Figure 5, does not just consider individual origin–destination trips but

the entire activity of an agent and its vehicle during a period. It considers origin, destination, distance traveled, vehicle
paths and dwell times, to choose the best places to put charging infrastructures according to users’ behavior.

Figure 5: Simplified principle of a tour-based approach

4.1. Node-based approach
The Set Covering LocationModel (SCLM) is a facility locationmodel that aims tominimize the number of facilities

while covering all the demand from the customers [15]. In thismodel, facilities are located in such away that all demand
points are not further from a plant than a certain determined distance. It assures all the consumers that they can find a
facility under this distance, but does not consider the demand: all the demand points have the same weight, they just
have to be covered. Wang and Lin [65] adapted this method and proposed a refueling-station-location model using a
mixed integer programming method based on vehicle-routing logics with the aim of making all transportation network
nodes accessible to each other. Later, Wang and Wang [43] used an SCLM to cover the maximum demand for both
intra- and inter-city trips while minimizing cost, assuming that the capacity of each station is unlimited.

Another node-based approach is the Maximum Covering Location Model (MCLM) [66]. Its objective is to locate
a given number of facilities to maximize coverage of the demand, considering a critical distance as the SCLM does:
a facility covers a demand node if the distance from facility to node is under this critical distance. Unlike the SCLM,
the MCLM allows some demand nodes to not be covered, so can be used when resources are insufficient to cover all
the demand nodes, as is often the case in reality. However, both SCLM and MCLM consider the distance to determine
if the demand node is geographically covered by the facility, without taking into account the impact of that distance:
placing a plant at a demand node or at the node’s critical distance is the same thing. Frade et al. [67] used theMCLM in
a case study in Lisbon, Portugal to determine the locations of charging stations and then sized the stations according to
the demand in each zone covered. Sun et al. [45] used a node-based maximum coverage model to locate slow charging
stations in competition with fast charging stations placed with a flow-capturing model (see later). Wagner et al. [68]
used a maximum coverage optimization and quantified the value of putting a charging station at points of interest such
as schools or stores.

The p-median model first introduced by S. Hakimi [69] is now one of the most widely-used models in facility
location problems. The objective of a p-median problem is to determine where to place p facilities among candidate
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locations to minimize the transportation cost (or weighted distance) between customers and facilities, with each cus-
tomer assigned to a facility. The problem can be capacitated, meaning that the facilities have capacity restrictions on
the amount of demand they can serve, and so the demand from customers assigned to this facility cannot exceed this
capacity. In the case of charging stations, this means that only a limited number of cars can be served within a certain
period, and therefore the availability of the station depends directly on its capacity. Gavranovic et al. [55] used this
model on a subset of potential locations in Turkey, considering the demand and the preferences of local stakeholders.
Jia et al. [70] separated the need for fast and slow charging, and used the p-median model to locate fast-charging
stations. Jung et al. [71] also used the p-median in a bi-level problem to locate charging stations for taxis, while mini-
mizing both distance to travel to the station and queue at the station. He et al. [72] estimated charging demand through
socio-demographic data in Beijing and used this estimation as an input for all three node-basedmodels (SCLM,MCLM
and p-median). They found that the p-median model outperform SCLM and MCLM, and gives more stable solutions.
An et al. [73] developed a two-stage optimization framework that considers the disruptions that could lead to charging
demand changes.

Table 2 gives an overview of the node-based methods applied to EV charging stations location.

Table 2: Summary of articles using the node-based approach
Method Problem Main optimization goal Paper

MCLM Location Maximize the number of EVs
charged Frade et al. (2011) [67]

MCLM Location Maximize the number of EVs
charged Guo & Zhao (2015) [61]

MCLM Location and sizing
(capacity 3)

Maximize the number of EVs
charged Wang et al. (2013) [57]

MCLM Location and sizing
(capacity)

Maximize the number of EVs
charged

Gopalakrishnan et al. (2016)
[74]

MCLM Location and sizing
(power4and capacity)

Minimize the infrastructure cost
for a given demand Yang et al. (2017) [46]

MCLM Location and sizing
(power)

Maximize the amount of energy
charged Wagner et al. (2013) [68]

MCLM Location and sizing
(power)

Maximize the number of EVs
charged Liu, J. (2012) [75]

MCLM Location and sizing
(power)

Minimize the infrastructure cost
for a given demand Deb et al. (2019) [76]

p-median Location Minimize the distance (or
deviation) to a charging station Xu et al. (2013) [42]

p-median Location Minimize the distance (or
deviation) to a charging station Gavranović et al. (2014) [55]

p-median Location Minimize the infrastructure cost
for a given demand Jia et al. (2014) [70]

p-median Location and sizing
(capacity)

Minimize the distance (or
deviation) to a charging station Ge et al. (2011) [41]

p-median Location and sizing
(capacity)

Minimize the infrastructure cost
for a given demand Mehar et al. (2013) [34]

p-median Location and sizing
(capacity)

Minimize the infrastructure cost
for a given demand

Sadeghi-Barzani et al.
(2014) [60]

p-median Location and sizing
(capacity)

Minimize the infrastructure cost
for a given demand Zhu et al. (2017) [53]

SCLM Location Maximize the number of EVs
charged Wang & Lin (2009) [65]

SCLM Location Maximize the number of EVs
charged Wang & Wang (2010) [43]
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Table 2: Summary of articles using the node-based approach
Method Problem Main optimization goal Paper

SCLM Location and sizing
(capacity)

Maximize the amount of energy
charged Csiszár et al. (2019) [48]

SCLM Location and sizing
(capacity)

Minimize the infrastructure cost
for a given demand Andrenacci et al. (2016) [77]

SCLM Location and sizing
(capacity)

Minimize the infrastructure cost
for a given demand Ghamami et al. (2016) [78]

SCLM Location and sizing
(capacity)

Minimize the infrastructure cost
for a given demand

Davidov & Pantoš (2017)
[79]

SCLM Location and sizing
(capacity)

Minimize the infrastructure cost
for a given demand Vazifeh et al. (2019) [80]

SCLM Location and sizing
(power)

Minimize the infrastructure cost
for a given demand Li et al (2011) [81]

Unclassified
(node-based) Location Maximize charger utilization Pevec et al. (2018) [38]
Unclassified
(node-based) Location Minimize the infrastructure cost

for a given demand
Rajabi-Ghahnavie &

Sadeghi-Barzani (2017) [35]
Unclassified
(node-based)

Location and sizing
(capacity)

Maximize the number of EVs
charged He et al. (2016) [72]

Unclassified
(node-based)

Location and sizing
(power) Maximize the distance traveled Wang et al. (2019) [49]

4.2. Path-based approach
Instead of dealing with demand at nodes, Hodgson [16] introduced a path-based version of the MCLM called the

Flow-Capturing LocationModel (FCLM) with the hypothesis that traffic in a network can be served by several facilities
located on common paths. The FCLM considers origin–destination pairs and aims to maximize the flow captured on
the shortest path between origins and destinations. In this model, the path is considered covered if it passes through at
least one node with a charging station.

The FCLM was later extended. Kuby and Lim [82] developed the Flow-Refueling Location Problem (FRLM)
especially for alternative-fuel vehicles that considers the limited range of the vehicles, as a vehicle may have to stop at
more than one refueling station in order to complete a path. They found that placing charging stations only at nodes
would not be sufficient to provide total coverage, and then developed a method to locate stations on links [83]. Then,
with Upchurch [54], they went on to develop the CFRLM, which is a FRLM with capacity constraints on the refueling
stations. Wang et al. [57] used this model to place different kinds of stations, as previous models only take into account
one type of charging stations. Kim and Kuby [84] then devised an optimization model that considers the deviations
from the shortest path that drivers should have to make to refuel their vehicle, and Huang et al. [85] proposed a model
with the possibility of multiple deviation paths. Li et al [25] proposed a ‘multi-period multi-path’ FRLM with the
objective to minimize the total cost of installations while making each trip feasible via at least one path between ori-
gin and destination within a reasonable tolerance compared to the shortest path, and considering the dynamics of the
network over time. Further, Wu and Sioshansi [86] developed a stochastic FCLM model that takes into account the
uncertainty of EV charging demand as soon as the infrastructure is built in anticipation of future EV adoption. Table
3 gives an overview of path-based methods.

Table 3: Summary of articles using the path-based approach
Method Problem Main optimization goal Paper
FCLM Location Maximize number of EVs charged He et al. (2018) [87]

3The sizing in capacity refers to number of EVs that can be served per unit of time
4The sizing in power refers to charging speed (higher charging power means higher charging speed
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Table 3: Summary of articles using the path-based approach
Method Problem Main optimization goal Paper
FCLM Location Maximize number of EVs charged Motoaki, Y (2019) [44]
FCLM Location Maximize number of EVs charged Riemann et al. (2015)

[88]
FCLM Location Maximize number of EVs charged Wu & Sioshansi

(2017) [86]
FCLM Location Minimize the infrastructure cost

for a given demand Li et al (2016) [25]
FCLM Location Minimize waiting time at the

station
Hanabusa & Horiguchi

(2011) [39]
FCLM Location and sizing

(capacity)
Minimize failed trips (or maximize

number of possible trips)
Micari et al. (2017)

[51]
FCLM Location and sizing

(capacity)
Minimize the infrastructure cost

for a given demand Dong et al. (2016) [33]
FCLM Location and sizing

(capacity)
Minimize the infrastructure cost

for a given demand
Xiang et al. (2016)

[89]
FRLM Location Maximize number of EVs charged Kuby et al. (2005) [82]
FRLM Location Maximize number of EVs charged Kuby et al. (2007) [83]
FRLM Location Minimize the infrastructure cost

for a given demand
Huang et al. (2015)

[85]
FRLM Location Minimize the infrastructure cost

for a given demand
Li & Huang (2014)

[11]
FRLM Location and sizing

(capacity) Maximize number of EVs charged Upchurch et al. (2009)
[54]

FRLM Location and sizing
(capacity) Maximize number of EVs charged Zhang et al. (2018)

[59]
Hybrid approach: node

and path-based Location Minimize failed trips (or maximize
number of possible trips)

Upchurch & Kuby
(2010) [90]

Hybrid approach:
path-based (fast
charging) and

node-based (slow
charging)

Location Minimize the infrastructure cost
for a given demand

Huang et al. (2016)
[91]

Hybrid approach:
path-based (fast
charging) and

node-based (slow
charging)

Location and sizing
(power) Maximize number of EVs charged Sun et al. (2018) [45]

4.3. Tour-based approach
The third method is the tour-based approach, sometimes also called activity-based. Jia et al. [36] proposed a model

with the estimation of vehicle charging demand based on parking demand, measured in vehicle-hours. They assumed
that the more occupied the parking slots are, the more charging demand there will be, regardless of turnover. Chen et al.
[47] developed a parking-based model that considers the duration of parking time but excludes home parking. Cavadas
et al. [92] also considered the possibility of demand transference between charging sites for users, meaning that the
charging demand on distinct places can be transferred between those sites according to the users’ activities. You et al.
[56] adopted a strategy based on missed trips in tours. Their optimization model tries to minimize the number of tours
that could not be done due to a lack of charging stations. Andrews et al. [93] adopted a similar approach on missed
trips but considering the available charging infrastructure. They developed a ‘user charging model’ that determines
where and how EV users need to charge given the available charging methods. If a vehicle fails its trip due to a lack of
infrastructure, it is taken as an input in an optimization program to place new charging stations. Cai et al. [37] proposed
M.O. Metais et al.: Preprint submitted to Elsevier Page 12 of 28



Too much or not enough? Planning EV charging infrastructure: a review of modeling options.

a data-driven method based on taxi data to put charging stations in existing gas stations. They extracted stop events
to find charging opportunities at the different stations and estimated the potential charging demand for stop points in
gas stations by evaluating state of charge according to previous tours. Shahraki et al. [94] used a similar method but
focused on plug-in hybrid electric vehicles (PHEV). They looked at dwelling time between trips and estimated the
state of charge of batteries after each trip, then placed charging stations to minimize the distance traveled by PHEV in
combustion-engine mode. Gonzalez et al. [95] adopted a similar approach from simulation data, with an optimization
concerning vehicles not able to complete their daily trips without modifying their initial behavior to charge their EV
while considering electricity price fluctuations in order to minimize charging cost. He et al. [52] determined a bi-level
tour-based model with traffic network equilibrium considering interactions between trips and charging needs in the
lower level and aiming to maximize social welfare in the upper level. Xi et al. [96] adopted a lower-resolution model,
dividing a region into sub-regions for which the trip data between sub-regions is available. Their aim was to maximize
the number of EVs that charge, or the amount of battery charged, with a trade-off between level 1 and 2 infrastructures
under a budget constraint. They found that the efficiency of privileging level 1 or 2 infrastructure depends on the
objective chosen, but that level 1 chargers are more cost-efficient if sufficient funds are unavailable.

An overview of the tour-based literature is given in Table 4. The tour-based methods are not really categorized, so
the "Method" column does not appear contrary to the two previous tables.

Table 4: Summary of articles using the tour-based approach
Problem Main optimization goal Paper
Location Maximize distance traveled Shahraki et al. (2015) [94]
Location Maximize number of EVs charged He et al. (2015) [52]
Location Minimize the distance (or

deviation) to a charging station Andrew et al. (2013) [93]
Location Minimize failed trips (or maximize

number of possible trips) Asamer et al. (2016) [50]
Location Minimize the infrastructure cost

for a given demand Wang et al. (2017) [32]
Location Minimize waiting time at the

station Jung et al. (2014) [71]
Location Minimize waiting time at the

station Tu et al. (2016) [40]
Location and sizing (capacity) Maximize charger utilization Cai et al. (2014) [37]
Location and sizing (capacity) Maximize number of EVs charged Cavadas et al. (2015) [92]
Location and sizing (capacity) Minimize failed trips (or maximize

the number of possible trips) Dong et al. (2012) [97]
Location and sizing (capacity) Minimize the infrastructure cost

for a given demand Han et al. (2016) [98]
Location and sizing (capacity) Minimize the infrastructure cost

for a given demand Jia et al. (2012) [36]
Location and sizing (power and

capacity)
Maximize the amount of energy

charged Chen et al. (2013) [47]
Location and sizing (power and

capacity)
Maximize number of EVs charged
or maximize the amount of energy

charged
Xi et al. (2013) [99]

Location and sizing (power) Minimize failed trips (or maximize
number of possible trips) You & Hsieh (2014) [56]

Location and sizing (power) Minimize waiting time at the
station Kameda & Mukai (2011) [100]

Tour-based models often require a lot of data, which is often difficult to access for privacy reasons. Agent-based
models—or multi agent models—can informatively simulate data and analyze traffic dynamics [49]. Chen et al.[101]
used an agent-based model with autonomous EVs to place charging stations. This kind of model can be built from
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real travel data (travel surveys, etc.) and be used to compare users’ behaviors among different charging infrastructure
deployment strategies. Agent-based models can also be built to scenarios for study, which can be useful if there is
insufficient data to validate a model principle. This can be valuable in the case of data-greedy tour-based models.
Multi-agent models make it possible to track each agent in a studied population individually, and therefore carry out
analyses in relation to the activities of that population, and provide explicit representations of tours [102]. Moreover,
modeling tools like the MATSim project [103] have been developed to simulate populations’ behavior with regard to
the transport system, and they can be used to model energy demand[104].
4.4. Discussion

To sum up, Figure 6 gives an overview of the methods previously discussed.

Location method

Tour-based
approach

Node-based
approach

SCLM
Minimize the
number of

facilities while
covering all
the demand

MCLM
Maximize
the number
of locations
covered for a
given number
of stations

p-median
Minimize
the distance
between

demand and
stations for a
given number
of stations

Path-based
approach

FCLM
Maximize
the amount
of vehicles
passing in
front of
stations

FRLM
Maximize

the flow and
take into

account the
limited range
of vehicles

Figure 6: Overview of location methods

The main advantage of the node-based approach is that it needs little data, only requiring population density, which is
relatively accessible. Thismakes the node-based approach an easy first estimate of charging station locations. However,
there are limits to this type of coverage. For instance, the uncapacitated models only deal with coverage without
considering the amount of demand. Second, this resolution pathway offers a static vision of the charging demand,
which is not the case in reality: as previously stated, one of the main advantages of a flow-based model over a nodal
approach is that it can take into account issues that only emerge from the description of vehicle flows. Another issue is
that node-based coverage can lead to a poor representation of charging needs. According to Hodgson [16], the demand
in a network is not always expressed at nodes, as people generally will not make a trip from home to the charging station
just to charge their vehicle. Furthermore, a node-based approach fails to deal with issues emerging from traffic flows
such as cannibalization, meaning that charging stations cut into each other’s coverage areas. In addition, Upchurch et
al. [90] found that the flow-based method is more stable as the number of charging stations to place increases, which
is really important when planning over time. That is why many studies explicitly integrate the effect of flows into the
location of charging stations [25].
However, this flow-based approach is not suitable for all cases. Flow-based methods consider that EV charging will be
done quickly before continuing the trip to the primary destination, just as any ICE vehicle user would do. While this
solution is possible with fast charging stations, which can refuel an EV in a dozen minutes, it is not possible for slow
charging stations where EV batteries can take several hours to charge. Thus, the flow-based approach is not a substitute
for the node-based approach, but complementary to it, depending on objective, territory, type of charging stations, etc.
However, many studies only use one or the other category. Sun et al.[45] used a mixed-method approach, with location
of fast charging stations for vehicle interception and a node-based approach to place slow charging stations in places
where a long charging time is acceptable. However, flow-capturing models often fail to capture the uncertainty of EV
charging demand, which can lead to less robust locations [86].
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Given the issues with the flow-based approach, the tour-based approach is based not only on user driving patterns
but more generally on user behaviors. This type of approach is sometimes also referred to as ‘activity-based’. By
considering events around the details of the sequence of trips, it allows a better representation of drivers’ charging
needs than the two previous approaches. By using real and individual data, the tour-based approach captures the
randomness in the behavior of users, and allows to serve all users, which cannot be done with aggregated data, as
illustrated in Figure 7. In this case, both green and yellow paths pass through nodes 1 and 2, and the red path passes
through node 3. If two stations were placed based on aggregated data, they would be at nodes 1 and 2 that have the
most traffic passing through, but the green and yellow vehicles would be served twice and the red one would not be
served at all, which could have been avoided if using individual data.

Figure 7: Example of three paths
However, as noted in most of the tour-based works, this method is often data-driven, with real or at least simulated
data. It requires a large amount of highly detailed data, drilling down to at least the detail of individual trips and stops
for a sufficiently large sample size to make the model realistic. This data can be hard to obtain. The mains points of
comparison between approaches are summarized in Table 5

Table 5: Main points of comparison between location methods

Criteria
Method Node-based Path-based Tour-based

Urban territory +++ −−−−−− ++++++

Highways −−− ++++++ +++

Representation of
charging needs −−−/+++ +++ ++++++

User behavior −−− −−−/+++ ++++++

Data requirements Very low Low Very high
To conclude this section, note that many studies have been conducted for the purpose of planning the best possible
charging infrastructure. They have been carried out with different criteria to be optimized according to the desired
objective. However, while it is easy to check whether chosen criteria have been optimized, it is harder to measure the
impact of this model on the population, in other words whether the criteria chosen are the right ones. The high cost
of the infrastructure makes large-scale testing unfeasible. To overcome this problem, multi-agent models can help, as
explained above. However, these models may be subject to simulation bias, and may therefore give an erroneous view
of user behaviour.
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5. Conclusion
This paper analyzed models for deploying charging infrastructure and discussed the allied technical, economic, and
user behavior-related issues.
The wide diffusion of EVs is a step towards greener mobility, which is one of today’s big challenges. This transition
from ICE vehicles to EVs cannot take place without infrastructure that greatly reduces early users’ range anxiety and
reassures potential future users that EVs are capable of providing the same services as ICE vehicles. For the time
being, infrastructures have been developed with a limited real coherent overarching strategy. However, the underlying
costs of necessary infrastructure to meet the needs of a large number of EV users, as well as the physical limitations of
the electricity grid, make it imperative to coordinate and optimize the large-scale deployment of an electric charging
infrastructure, failing which there is a risk of wasting valuable resources and of ending up with an infrastructure that
is not adapted to user needs.
The scholarship has used several approaches for optimizing the deployment of charging infrastructure. These ap-
proaches can be collapsed into three categories: node-based, path-based, and tour-based. Although not specific to
EV charging infrastructure planning, these approaches can readily adapt to consider the specificities of EVs instead
of copying the gas station model, and facilitate the transition from ICE vehicles to EVs easier by minimizing the
constraints of using EVs.
The node-based approach is easy to implement and suitable for certain areas such as residential neighborhoods, but it
fails to capture the problems arising from vehicle flows. The path-based approach can address this gap, but it is better
suited for highway use-cases and has the downside of leading to time-consuming infrastructure, which may prove a
barrier for users to make the transition from ICE vehicles to EVs. The tour-based approach requires a lot of data and
is therefore more difficult to implement, but it is able to consider user activities in order to get the best-adapted and
least-restrictive infrastructure possible for users. With data on the activities of users, points of interest can be exploited
to provide charging solutions at locations where there is demand, without users having to change their behavior [105].
The methods adopt different response strategies, regardless of the approach used. Some focus on maximizing served
demand for a fixed budget, which can be expressed in terms of the number of vehicles to be charged, volume of energy to
be charged, time saved or number of feasible trips. Others consider charging demand as the primal condition and try to
minimize the budget needed to satisfy it. While early work focused on the geographical placement of charging stations
to meet charging demand, more recent models now also integrate the service capacity of the stations, introducing
station sizing into the results. Charging speed used is rarely considered: many models consider only one type of
charging station, thus defining only the number (and not quality) of charging points needed.
Few of the models other than node and parking-based models look to take advantage of the benefits offered by EV
charging, which does not require the user to be present during charging time. This key advantage should be considered
in order to plan a charging infrastructure that matches charging opportunities, to make EV use as unrestrictive as
possible and thus encourage EV diffusion .
To conclude, the optimization models reviewed do not consider any temporality in deployment: for a given budget,
the infrastructure is optimized as if all the stations were placed simultaneously. However, this kind an infrastructure
does not get deployed all in one go, partly because of the development costs it would generate without a guaranteed
return on investment from a demand that will take a long time to come. Charging infrastructure deployment will take
place over a period that may last several years, and this factor should now be explored in order to have an infrastructure
that provides acceptable coverage from the very beginning of its deployment, and not just once the last charging points
have been installed. An incremental ‘over-time’ deployment must therefore be considered, factoring in the early-stage
infrastructure already present in the territory, which very few models do (see Appendix A), and the action of ’adding
one more station’.
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