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ABSTRACT

This paper presents a quantitative approach to demonstrate
the robustness of neural networks for tabular data. These data
form the backbone of the data structures found in most in-
dustrial applications. We analyse the effect of various widely
used techniques we encounter in neural network practice,
such as regularization of weights, addition of noise to the
data, and positivity constraints. This analysis is performed by
using three state-of-the-art techniques, which provide math-
ematical proofs of robustness in terms of Lipschitz constant
for feed-forward networks. The experiments are carried out
on two prediction tasks and one classification task. Our work
brings insights into building robust neural network architec-
tures for safety critical systems that require certification or
approval from a competent authority.

Index Terms— Lipschitz stability, robustness, safety, tab-
ular data, neural networks, supervised learning

1. INTRODUCTION

Neural networks (NNs) find numerous applications in a grow-
ing number of applicative fields. However, one of their main
weaknesses is that they are sensitive to adversarial examples
[1, 2]. This means that they can be fooled, in a deliberate
or unintentional manner, which raises many safety and secu-
rity issues while deploying them for industrial usage. Many
industry applications (autonomous vehicles, aeronautics, rail-
way, space, etc.) are safety or mission critical systems re-
quiring a certification or an approval from a competent au-
thority, i.e. a demonstration that the system is acceptably se-
cure and trustworthy. This demonstration should be done via
a complete, documented and valid argument that the system
using NNs (or other AI technologies) behaves only as spec-
ified in the specified context of the final user and continues
to behave in this way in accordance with monitoring crite-
ria. NN solutions are hindered with certification issues due to
their intrinsic complex structure. Traditional coverage-based
approaches may be irrelevant for testing neural network sys-
tems. Code certifiability can be trivially satisfied while pro-
viding only limited guarantees on the safe behaviour of the

system when facing situations which have not been strictly
met during the training process. Few works in the literature
such as [3, 4, 5] study the provable defenses that can be pro-
vided for certification against adversarial perturbations. An
attempt towards property verification of neural networks in
safety critical applications was made in [6].

Deep learning on tabular data has received less attention
than deep learning for standard signal/image processing prob-
lems particularly seen in the area of computer vision and nat-
ural language processing. Tabular data allows to take advan-
tage of heterogeneous sources of information coming from
different sensors or registered variables (like altitude of an air-
craft, departure and destination airport, duration of the flight,
company type). Tabular data analysis covers a wide variety of
applications, e.g. fraud detection, product failure prediction,
anti-money laundering, recommendation systems [7], click-
through rate prediction [8] etc. A generalised NN framework
for tabular data is presented in [9]. Most of the mentioned
tasks may be hampered with safety concerns and require re-
liability in the performance of the NN used for predicting or
classifying data. In [10], authors presented a method for gen-
eration of imperceptible adversarial attacks for tabular data.

In this paper, we focus on a less empirical way of quan-
tifying the robustness of a NN model by computing its Lip-
schitz constant. The Lipschitz regularity of a NN model has
been investigated in the literature [11, 12] and constitutes a
valuable measure of its robustness to small perturbations. We
compare three state-of-the art methods [13, 14, 15] to esti-
mate the Lipschitz constant and draw conclusions regarding
their effectiveness. It is worth noticing that these methods
allow the Lipschitz constant to be computed according to var-
ious norms. Using these quantitative tools, we also evaluate
the impact of several standard training procedures on the sta-
bility of fully connected networks designed for dealing with
tabular data. The effect of `1 and `2 regularization, dropout,
positivity, and the addition of noise on the training samples is
thus analyzed in three applicative scenarios.

The rest of the paper is organized as follows. The theoret-
ical background of our work is presented in next section. In
Section 3 we present our experimental setup for different data



sets and different techniques, and we conclude this section
with the analysis performed based on our various Lipschitz
estimation techniques. Some concluding remarks are drawn
in the last section.

2. BACKGROUND

2.1. Lipschitz Constant of Feed-forward Networks

Consider the m-layer feedforward neural network T illus-
trated in Fig 1, having Ni neurons at layer i ∈ {1, . . . ,m}.
Let x ∈ RN0 be the input and T (x) ∈ RNm the associated
output. A Lipschitz constant of this NN is an upper bound on
the ratio between the variations of the outputs and the varia-
tions of the inputs of a function T , thus measuring the sen-
sitivity of the function with respect to input perturbations z.
This means that θ is a Lipschitz constant of T if

‖T (x+ z)− T (x)‖ ≤ θ‖z‖ (1)

for every input x ∈ RN0 and perturbation z ∈ RN0 . The
smaller this constant, the more robust the network with re-
spect to perturbations.

Fig. 1. m-layered feed-forward neural network architecture.
For the ith-layer, Wi is the linear weight operator, bi the bias
vector, and Ri the activation operator.

The first upper-bound on the Lipschitz constant of a
neural network was derived by analyzing the effect of each
layer independently and considering a product of the result-
ing spectral norms [2]: θm = ‖Wm‖S‖Wm−1‖S · · · ‖W1‖S.
Although easy to compute, this upper bound turns out be
over-pessimistic. In [12], the problem of computing the ex-
act Lipschitz constant of a NN with differentiable activation
functions is pointed out to be NP hard. The authors proposed
an estimation algorithm for sequential NNs.

In [14], various bounds on the Lipschitz constant of a
feed-forward network are derived by assuming that, for ev-
ery i ∈ {1, . . . ,m} the activation operator Ri is αi-averaged
with αi ∈]0, 1].1 This assumption is satisfied in many NNs
since most of the existing activation functions are proximity
operators of convex potentials [16], hence 1/2-averaged. If,
for every i ∈ {1, . . . ,m − 1}, Ri is separable, i.e., consists
of real-valued functions of one-variable applied to each of the
components of its input vector, a general Lipschitz constant
estimate (designated as CPLip) reads

ϑm = sup
Λ1∈D1,...,Λm−1∈Dm−1

‖WmΛm−1 · · ·Λ1W1‖S, (2)

1This means that there exists an nonexpansive operator Qi such that
Ri = (1− αi) Id+αiQi.

where, for every i ∈ {1, . . . ,m − 1}, Di is the set of diag-
onal matrices of size Ni × Ni with diagonal elements equal
to 2αi − 1 or 1. An interesting result established in [14] is
that this estimate remains valid when other norms than the
Euclidean norm are used to quantify the perturbations on the
input and the output. The ability to use norms other than the
Euclidean one may be sometimes more meaningful in prac-
tice (especially for the `1 or the sup norm).

2.2. SDP Based Approach

The work in [13] focuses on NNs using separable activation
operators. It assumes that the activation function ρi used at a
layer i ∈ {1, . . . ,m} is slope-bounded, i.e. there exists non-
negative parameters σmin and σmax such that

(∀(ξ, ξ′) ∈ R2) ξ 6= ξ′ ⇒ σmin ≤
ρi(ξ)− ρi(ξ′)

ξ − ξ′
≤ σmax.

As mentioned by the authors, most activation functions sat-
isfy this inequality with σmin = 0 and σmax = 1. But it
turns out from [17, Proposition 2.4] that we then recover sim-
ilar assumptions to those made in [16]. By a clever use of
the firm nonexpansiveness properties of the activation opera-
tors Ri, the problems can be recast as solving the following
semidefinite positive programming (SDP):

minimize
(ρm,Q1,...,Qm−1)∈C

ρm, (3)

where
√
ρ
m

with ρm ≥ 0 is the sought Lipschitz constant,
(Qi)1≤i≤m−1 ∈ [0,+∞)Ni×Ni are diagonal matrices, and
C is a closed convex set defined by the positive semidef-
initeness of a certain matrix which is an affine function of
(ρm, Q1, . . . , Qm−1) (see [13] for details). One limitation of
this method is that it is tailored to the use of the Euclidean
norm.

Remark 1. In [13], one of the versions of this method, that
will be designated hereafter by LipSDP, uses non diagonal
matrices (Qi)1≤i≤m−1. As shown by the counterexample pre-
sented in [18], this estimate is however erroneous.

2.3. Polynomial optimization based approach

The approach in [15] applies to NNs having a single output
(i.e. Nm = 1).2 The authors insist that their approach is re-
stricted to differentiable activation functions, but it is actually
valid for any separable firmly nonexpansive activation opera-
tor. When Nm = 1 and the `p norm with p ∈ [1,+∞] is used
for the input space, the Lipschitz constant reduces to

ϑm = sup
Λ1∈D1,...,Λm−1∈Dm−1

‖W>1 Λ1 · · ·Λm−1W
>
m‖p∗ , (4)

2This can be extended to multiple output network, if the output space is
equipped with the `+∞ norm.



`1 `2
α 0 0.00001 0.0001 0.001 0.01 0.1 0.00001 0.0001 0.001 0.01 0.1

MAE 0.0069 0.0071 0.0069 0.0094 0.0300 0.0300 0.0073 0.007 0.0077 0.0299 0.030

L2,2
LipSDP [13] 0.657 0.705 0.26 0.024 ≈ 0 ≈ 0 1.01 0.741 0.027 ≈ 0 ≈ 0
CPLip[14] 0.638 0.681 0.25 0.024 5.33e-11 3.99e-11 0.96 0.73 0.027 1.26e-09 1.09e-17

L+∞,+∞
Lipopt-k [15] 1.41 1.39 0.47 0.028 ≈0 ≈ 0 1.89 1.26 0.040 1.07e-09 ≈ 0

CPLip[14] 1.23 1.17 0.46 0.028 9.16e-11 6.75e-11 1.486 1.26 0.040 2.35e-09 1.95e-17

Table 1: Results on Combined Cycle Power Plant Data Set for `1 and `2 regularization

`1 `2
α 0 0.00001 0.0001 0.001 0.01 0.1 0.2 0.00001 0.0001 0.001 0.01 0.1 0.2

MAE 0.0418 0.0444 0.0405 0.0443 0.0505 0.1490 0.1490 0.0515 0.0404 0.0424 0.0454 0.1489 0.1489

L2,2
LipSDP [13] 2.75 1.74 0.38 0.16 0.11 ≈ 0 ≈ 0 2.13 0.78 0.201 0.089 ≈ 0 ≈ 0
CPLip[14] 2.747 1.705 0.373 0.16 0.110 8.75e-09 7.44e-09 2.11 0.721 0.201 0.089 9.96e-09 9.72e-09

L+∞,+∞
Lipopt-k [15] 9.47 5.66 1.04 0.286 0.1642 1.66e-08 1.83e-08 7.048 3.088 0.4365 0.2099 1.41e-08 1.45e-08

CPLip[14] 6.98 4.36 1.03 0.29 0.16 2.30e-08 2.06e-08 4.97 1.93 0.44 0.21 2.9e-08 2.8e-08

Table 2: Results on Auto MPG Data Set for `1 and `2 regularization

`1 `2
α 0 0.00001 0.0001 0.001 0.01 0.1 0.2 0.00001 0.0001 0.001 0.01 0.1 0.2

Acc 84.94 85.16 85.57 85.54 76.30 76.30 76.30 85.32 85.26 85.46 84.73 76.32 76.32

L2,2
LipSDP[13] 8.21 6.29 5.15 3.45 ≈ 0 ≈ 0 ≈ 0 9.15 5.32 4.19 1.91 ≈ 0 ≈ 0
CPLip[14] 8.208 6.29 5.15 3.45 5.81e-10 1.84e-10 3.02e-10 9.15 5.32 4.19 1.91 1.839e-10 6.04e-11

L+∞,+∞
Lipopt-k [15] 56.22 31.77 20.53 12.36 ≈ 0 ≈ 0 ≈ 0 42.74 22.48 17.90 9.06 2.43e-11 ≈ 0

CPLip[14] 56.22 31.77 20.53 12.36 4.33e-09 1.34e-09 2.21e-09 42.74 22.48 17.90 9.06 9.25e-10 3.85e-10

Table 3: Results on Adult Data Set for `1 and `2 regularization

where p∗ ∈ [1,+∞] is the dual exponent of p (such that
1/p + 1/p∗ = 1). When p ∈ N \ {0, 1} and p = +∞,
finding ϑm turns out to be a polynomial constrained optimiza-
tion problem. Solving such an optimization problem can be
achieved by solving a hierarchy of convex problems, leading
to the so-called LipOpt estimation method. However, the size
of the hierarchy tends to grow fast and if its order is trun-
cated to a too small value, the delivered result becomes in-
accurate. Leveraging the sparsity properties that might exist
for the weight matrices may be helpful numerically. The ap-
proach is further improved in [19].

3. EXPERIMENTS ON TABULAR DATA

3.1. Dataset and Network description

In our stability analysis, we study three widely used tabular
datasets from UCI Repository: 1) Combined Cycle Power
Plant Data Set has 4 attrributes with 9568 instances , 2) Auto
MPG Data Set consists of 398 instances with 7 attributes, 3)
Adult Data Set consists of 48842 instances in total with 14
attributes. Dataset 2 and 3 include both continuous and cate-
gorical attributes, whereas dataset 1 contains only continuous
attributes. The datasets are divided with a ratio of 4:1 be-
tween training and testing data. The categorical attributes are
dealt with by using one hot encoding based on the number of
categories. The input attributes are normalised by removing
their mean and scaling to unit variance. All the architectures

are made up of two hidden fully connected layers with the
following characteristics:

• Combined Cycle Power Plant Data set - (4, 10, 6, 1)
• Auto MPG Data set - (9, 16, 8, 1)
• Adult Data set - (88, 6, 6, 1)

3.2. Effect of Regularization Techniques

We present the results for three regularisation techniques: `1,
`2, and Dropout [20]. We study the relationship between the
parameters associated with each regularisation and the NN
stability quantified by its Lipschitz constant. Attention also
to be paid to the resulting accuracy. We apply these regu-
larization techniques while training our NNs, then compute a
Lipschitz constant associated with the obtained weights. We
use the three state-of-the-art estimation methods which have
been described in Section 2. The first one is LipSDP [13]
which uses Euclidean norms for both the input and output
spaces (L2,2 spectral norm). The second one is the polyno-
mial based approach LipOpt [19] where the input and output
spaces are equipped with the sup norm while estimating the
Lipschitz constant. This estimation approach is thus linked to
the L+∞,+∞ subordinate matrix norm. The third estimation
method is CPLip [14] which can work for any norm on the
input and output spaces.

Each experiment was run 10 times and we chose the
model with best performance (least MAE or highest classifi-
cation accuracy) and computed a Lipschitz constant for this



Drop-rate 0 0.05 0.1 0.2 0.3 0.4 0.5
MAE 0.0069 0.0069 0.0074 0.0086 0.0115 0.0111 0.016

L2,2
LipSDP [13] 0.66 0.16 0.23 0.56 0.45 0.27 0.40
CPLip[14] 0.64 0.16 0.23 0.54 0.42 0.27 0.39

L+∞,+∞
Lipopt-k [15] 1.41 0.26 0.32 1.01 0.79 0.42 0.69

CPLip[14] 1.23 0.26 0.32 1.01 0.69 0.42 0.69

Table 4: Results on Combined Cycle Power Plant Data set
with Dropout

Drop-rate 0 0.05 0.1 0.2 0.3 0.4 0.5
MAE 0.042 0.039 0.0364 0.043 0.044 0.045 0.050

L2,2
LipSDP [13] 2.75 1.86 2.1 1.89 2.28 1.88 1.41
CPLip[14] 2.75 1.73 2.1 1.87 2.28 1.88 1.42

L+∞,+∞
Lipopt-k [15] 9.47 6.41 5.49 4.89 5.2 3.98 3.07
CPLip [14] 6.98 4.45 4.631 4.89 5.19 3.98 3.07

Table 5: Results on Auto MPG Data set with Dropout

model. The results for the datasets using `1 and `2 regulariza-
tion are reported in Tables 1, 2, and 3 for varying values of the
regularization parameter α which controls the strength of the
`1 and `2 penalty on the weights. Similar results with vary-
ing Droprates are presented in Tables 4, 5, and 6. Droprate
corresponds to the proportion of the neurons which will be
shut-off while training a neural network.

3.3. Positive Weighted Networks

Next we analyse the stability of NNs when the weights are
constrained to be non-negative. The comparison between ar-
bitrary signed network and positively signed network for all
the three datasets is shown in Table 7.

3.4. Addition of Noise to the Dataset

We also perform a stability analysis when the original dataset
is corrupted with random noise which is a standard practice
while training NNs having continuous input variables. From
the original dataset, we generated a dataset 20 times larger by
including noisy samples. More precisely, to all the normalised
input features, we added a noise value drawn from a random
i.i.d. zero-mean Gaussian distribution with a small standard
deviation. We combined the original training set with the gen-
erated noisy samples and trained our model on the augmented
dataset. The results on Combined Cycle Power plant with
variation of standard deviation are given in Table 8.

3.5. Comments on the results

A first observation is that CPLip provides slightly tighter
bounds than LipSDP and LipOpt. The two latter approaches

Drop-rate 0 0.05 0.1 0.2 0.3 0.4 0.5
Acc 84.94 85.13 85.14 85.08 85.03 85.09 84.81

L2,2
LipSDP [13] 8.21 7.17 7.39 6.82 6.53 6.68 6.63
CPLip[14] 8.21 7.17 7.39 6.82 6.53 6.68 6.63

L+∞,+∞
Lipopt-k [15] 56.22 46.07 49.32 43.58 40.21 39.87 41.26

CPLip[14] 56.22 46.07 49.32 43.58 40.21 39.87 41.26

Table 6: Results on Adult Data Set with Dropout

Dataset 1 Dataset 2 Dataset 3
Arbitrary Positive Arbitrary Positive Arbitrary Positive

MAE/ACC 0.0069 0.021 0.042 0.08 84.94 83.54

L2,2
LipSDP [13] 0.66 0.03 2.75 0.57 8.21 3.65
CPLip [14] 0.64 0.03 2.75 0.57 8.21 3.65

L+∞,+∞
3 Lipopt-k [15] 1.41 0.06 9.47 3.29 56.22 18.81

CPLip[14] 1.23 0.06 6.98 1.24 56.22 18.81

Table 7: Results with positive constraint on the weights

std No Noise 0.01 0.05 0.1 0.2
MAE 0.0069 0.0064 0.0061 0.0065 0.0071

L2,2
LipSDP [13] 0.66 0.61 0.34 0.37 0.10
CPLip[14] 0.64 0.61 0.33 0.36 0.09

L+∞,+∞
Lipopt-k [15] 1.411 1.12 0.58 0.61 0.24

CPLip[14] 1.234 1.12 0.57 0.59 0.16

Table 8: Results on Combined Cycle Power Plant Data set
with added noise

may however be more scalable when applied to deeper net-
works. Another remark is that similar behaviours can be seen
when using different norms. While designing a network for
deployment, it also appears that there is a trade-off between
stability and performance.

• `1 and `2 regularizations increase the stability of the
network consistently, but the performance is main-
tained up to a certain value of α, from where the accu-
racy drops. `1 usually yields better results, confirming
the robustness of this norm as training measure.

• We globally observe an increasing stability of the neu-
ral networks as we increase the value of Droprate. The
results are however less consistent than with regulariza-
tion.

• The positive constraint leads to a significant loss of per-
formance in terms of MAE and classification accuracy,
but the stability of the networks is improved by a sig-
nificant margin.

• As expected, adding noise leads to a drop in the value
of the Lipschitz constant as the noise level increases,
without having a too negative impact on the accuracy.

4. CONCLUSION

This work is a step towards better controlling the robustness
of NNs by analysing their Lipschitz properties. Ensuring the
safety of new generations of industrial products based on AI
constitutes the main objective. We have here showcased the
impact of standard training procedures on stability. However,
developing more dedicated training procedures [21, 22] to im-
prove robustness could allow us to achieve better accuracy-
stability tradeoffs.
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