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Abstract—Precision medicine is a paradigm shift in healthcare
relying heavily on genomics data. However, the complexity of
biological interactions, the large number of genes as well as
the lack of comparisons on the analysis of data, remain a
tremendous bottleneck regarding clinical adoption. In this paper,
we introduce a novel, automatic and unsupervised framework
to discover low-dimensional gene biomarkers. Our method is
based on the LP-Stability algorithm, a high dimensional center-
based unsupervised clustering algorithm. It offers modularity
as concerns metric functions and scalability, while being able
to automatically determine the best number of clusters. Our
evaluation includes both mathematical and biological criteria
to define a quantitative metric. The recovered signature is
applied to a variety of biological tasks, including screening of
biological pathways and functions, and characterization relevance
on tumor types and subtypes. Quantitative comparisons among
different distance metrics, commonly used clustering methods
and a referential gene signature used in the literature, confirm
state of the art performance of our approach. In particular, our
signature, based on 27 genes, reports at least 30 times better
mathematical significance (average Dunn’s Index) and 25% better
biological significance (average Enrichment in Protein-Protein
Interaction) than those produced by other referential clustering
methods. Finally, our signature reports promising results on
distinguishing immune inflammatory and immune desert tumors,
while reporting a high balanced accuracy of 92% on tumor types
classification and averaged balanced accuracy of 68% on tumor
subtypes classification, which represents, respectively 7% and 9%
higher performance compared to the referential signature.

Index Terms—Clustering, Predictive Signature, Biomarkers,
Genomics, Multi-tumor association

I. INTRODUCTION

OMICS data analysis - including genomics, transcrip-
tomics and metabolomics - has greatly benefited from

the tremendous sequencing technique advances [1] allowing
to highly increase the quality and the quantity of data. These
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omics techniques are pivotal aspects of the development of
personalized medicine by enabling a better understanding of
fine-grained molecular mechanisms [2]. In oncology, these
techniques provide a more comprehensive insight of the bi-
ological processes intricacy in cancers giving momentum to
molecular-type characterization through omics or even multi-
omics approaches [3]–[5]. Such a precise and robust charac-
terization is a highly valuable asset for tumor characterization
and provides significant acumen on their treatment.

Genomics, probably the most prominent omics technique,
refers to the study of entire genomes contrary to genetics that
interrogates individual variants or single genes [6]. In this
direction, novel methods studying specific variants of genes
aim at producing robust biomarkers, contributing to both the
response of patients to treatment [7], [8] and the association
with complex and Mendelian diseases [9]. However, the rela-
tively low number of samples per tumor subtype, along with
the curse of dimensionality and the lack of ground truth, affects
many of these studies [10] and might prevent any statistically
meaningful causal relation discovery.

Unsupervised clustering is a very efficient technique to
study large high-dimensional datasets and designed for discov-
ering unknown indiscernible structures and correlations [11].
Clustering algorithms aspire to single out a group separation
of the data favoring low variation inside the groups and high
variation between groups. Notwithstanding, there is a large
variety of clustering approaches, relying on different properties
and leading to significantly different outcomes. The main
challenge of clustering is the definition of a metric/similarity
function depicting the notion of closeness between objects
under consideration. This includes not only the intrinsic clus-
tering properties the algorithm seeks to optimize but also
the notion of distance involved. Qualitative and quantitative
evaluation is a critical step towards clustering effective adop-
tion and relies on independent and reliable measures for the
proper comparison of the parameters and methods. Numerous
existing metrics assess the quality of the clusters from a
statistical point of view as the Silhouette Value [12], Dunn’s
Index [13] or more recently the Diversity Method [14]. In
addition, in presence of annotations, the Rand Index [15] is
a referential technique. Clustering evaluation is even more
challenging in the case of genomics, as the clusters should also
be biologically informative. Protein-Protein Interaction (PPI)
and the Gene Ontology (GO) have been recently introduced
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in this sub-domain to assess the biological soundness of the
clusters through Enrichment Scores [16], [17].

The use of cluster analysis on RNA-seq transcriptomes is
a wide-spread technique [18], [19] whose main goal is to
define groups of genes that have similar expression profiles,
proposing compact signatures [9]. These robust signatures are
necessary to identify associations with different biological
processes, as tumor types or cancer molecular subtypes, and
to highlight gene coding for proteins interacting together or
participating in a same biological process [20]. The main
advantages of unsupervised clustering compared to super-
vised approaches - or methods guided by specific biological
functions or processes - is the ability to discover unknown
patterns, associations and correlations in the genome. Further-
more, unsupervised discovery offers better tractability when
applied to the tremendous amount of genes. While studies
that perform clustering relying on a priori knowledge lead
to redundant signatures and loss of information [21]. This
is one of the reasons that several studies focus on statisti-
cal pattern recognition methods such as the center-based K-
Means [22], the model-based CorEx [23] or the stability-based
LP-Stability [24] towards the identification of meaningful and
predictive groups of genes as biomarkers [25]. In this direction,
CorEx [17] has recently been introduced to generate gene
signatures evaluated and optimized over ovarian tumors that
address this specific tumor type with a high dimensional gene
signature composed of several hundred genes. To deal with
this high dimensionality, studies propose methods to combine
and prune existing signatures to obtain a unique compact and
informative signature [21], [26].

Although dimension reduction through clustering is not
new [17], there is an important shortfall in literature of a
thorough, mathematically and biologically meaningful com-
parison of clusterings methods on a same database. In many
studies, a single evaluation metric is used and there is no
relevant comparison with other algorithms. By “relevant”, we
mean here that the optimization of the different algorithms
hyperparameters is ensured and compared through a fair eval-
uation metric. Mathematical metrics for instance, are highly
dependent on the property the algorithm is optimizing and
the distance notion considered. The evaluation of this bias
through, as an example, random clusters or using different
distance notions would offer an essential insight. Finally, some
surveys [27] provide an exhaustive comparison, using several
evaluation criteria. Albeit, they only report results shown in
several other studies without actually comparing the methods
on a same database with all the criteria at once.

In this paper, we introduce a novel unsupervised approach,
COMBING, that is modular, scalable and metric free to-
wards the definition of a predictive gene signature while
proposing a complete methodology for comparison, analysis
and evaluation of genomic signatures. The backbone of our
methodology refers to a powerful graph-based unsupervised
clustering method, the LP-Stability algorithm [24], which has
been successfully adapted in various fields including, recently,
in genomics [28]. Our COMBING approach offers:

(i) Standardization and automatization concerning gene clus-
tering evaluation for the selection of the best distance

notions, metrics, algorithms and hyperparameters;
(ii) Creation of generic, low dimensional signatures using

the gene expressions of all coding genes, including
comparisons to random signatures to highlight statistical
superiority;

(iii) Systematic assessment of the biological power of gene
signatures by evaluating the different tumor type and
subtype associations via supervised (proving tissue-
specificity and predictive power), and unsupervised (prov-
ing automatic discovery and expression power) tech-
niques. By this, we demonstrated the power of the pro-
posed gene signature (based on 27 genes) compared to
other methods in the literature;

(iv) Thorough biological analysis of the processes involved in
sample clusters via gene screening techniques, affirming
the robustness of the obtained results.

II. OVERVIEW OF THE PROPOSED APPROACH

The overview of the method presented in this paper is
summarized in Fig. 1. To evaluate and select the best gene
signature, we introduce two distinct metrics checking both
mathematical and biological properties. In particular, we used
the mathematical assessment metric of Dunn’s Index (DI) [13]
and the biological one of Enrichment Score in PPI [17] which
are both referential for the assessment of clustering although
they have never been combined. Then, a low dimensional ag-
gregated gene signature is defined by combining representative
genes in each cluster. To prove the power of the discovered
biomarker, a systematic and thorough evaluation regarding its
biological and clinical relevance was performed. In particular,
the signature was evaluated and compared through sample
clustering and sample classification. Regarding the sample
clustering, we chose the different tumor types and assessed
the success of the clustering through sample distribution
analysis and clustering evaluation metrics such as Rand Index
and Mutual Information. In addition, we used the method
from [29] to obtain important genes for the samples of each
cluster which were associated to their pathways using [30].
Finally, the last evaluation criteria was the performance in
categorizing the cancer types and subtypes through supervised
machine learning techniques [31]. Our signature, obtained
through COMBING approach, has been compared against
signatures designed from commonly used algorithms for gene
clustering [17], [22] and a recently proposed prominent gene
signature [26].

III. DISCOVERING CORRELATIONS IN GENE EXPRESSIONS

A. Algorithms

We consider here n points S = {x1, x2, ..., xn} in a space
of dimension m where each point xp coordinates will be
described by xp = (xp1, x

p
2, ..., x

p
m). In this study, we consider

several notions of dissimilarity d. If we denote k the number
of clusters in a clustering C, then the clustering is a set of
clusters C = {C1, C2, ..., Ck} defined such that ∀1 ≤ i, j ≤ k,
Ci ∩ Cj = ∅ and

⋃
1≤i≤k Ci = S. The number of points in

cluster Ci will be denoted by ni.
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Fig. 1. Proposed Framework. A general overview of the different steps of our process. Our proposed COMBING framework is composed of two steps.
First, a clustering algorithm, here LP-Stability, is used to generate clusters of genes having similar expression profiles. Then, the clustering that performs best
on both mathematical and biological scores is selected as a gene signature. In the second step, the generated signature is used to perform sample clustering
and sample classification. The performance on this step is evaluated by analysing the distribution of the samples into the different clusters or the performance
on the classification tasks, here the target was the tumor types and subtypes characterization.

K-Means algorithm [22] is a very popular and simple
algorithm used for data following Gaussian distributions.

CorEx algorithm [23] is a model-based algorithm that has
been applied to various fields and, especially on genes [17]
with great success. This algorithm aims to define a set S′ of k
latent factors accounting for the most variance of the dataset
S.

LP-Stability algorithm [24] is based on linear program-
ming and relies on the same definition of clusters as K-Means
i.e. we want to minimize the distance between each point of a
cluster and the center of the cluster. However, the novelty and
interest of this technique is that instead of taking centroids as
cluster centers, it defines stable cluster centers. Formally, we
aim to optimize the following linear system

PRIMAL ≡ min
C

∑
p,q

d(xp, xq)C(p, q)

s.t.
∑
q

C(p, q) = 1

C(p, q) ≤ C(q, q)

C(p, q) ≥ 0 .

(1)

where C(p, q) represents the fact that xp belongs to the cluster
of center xq . The formula corresponds to the minimization
of the distance between a point and its cluster center while
ensuring that each point must belong to one and only one
cluster and that centers belong to their own cluster. The
determination of the stable centers relies on the following

notion of stability:

S(q) = inf
s
{s, d(q, q) + s PRIMAL has no

optimal solution with C(q, q) > 0} .

The stability of a point is the maximum penalty the point
can receive while remaining an optimal cluster center in
PRIMAL. Besides, to better exploit particular field constraints
of the points or to better tune the number of clusters, penalty
value Sq >= 0 can be added to point q. We will then
consider the penalty vector S weighting the distance d such as
∀q, Sq ∈ S, d′(q, q) = d(q, q) + Sq . Doing so, we will impose
a stronger minimal stability for the cluster centers entailing a
lower number of clusters.

Let us denote Q the set of stable clusters centers. The
algorithm solves the clustering using the DUAL problem

DUAL ≡ max
D

D(h) =
∑
p∈V

hp

s.t. hp = min
q∈V

h(p, q)∑
p∈V

h(p, q) =
∑
p∈V

d(xp, xq)

h(p, q) ≥ d(xp, xq) .

(2)

where h(p, q) corresponds here to the minimal pseudo-distance
between xp and xq and hp to the one from xp. This previ-
ous DUAL problem is then conditioned by considering only
centers in the set of stable points Q:
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DUALQ = maxDUAL s.t. hpq = dpq,∀{p, q} ∩ Q 6= ∅ .
(3)

This method presents several advantages. It is versatile and
can integrate any metric function while, it does not make prior
assumptions on the number of clusters or their distribution. It
aims to define clustering in a global manner seeking for an
automatic selection of the cluster centers. For that matter, it
relies on the optimization of the set of stable centers, as well
as the assignment of each observation to the most appropriate
cluster, meaning the one minimizing the distance to the center.
This algorithm only requires a penalty vector S, influencing
the number of clusters.

B. Proximity Measures

To tackle the issue of high dimensionality of the data
combined with a low ratio between samples and dimensions
of each sample, we studied several different distance notions.
In this study we considered the following distances: the Eu-
clidean distance, the Cosine distance, the Pearson’s correlation,
the Spearman’s rank correlation, the Kendall’s rank correlation
and the Kullback-Leibler divergence. These standard metrics
are further detailed in Supplementary Materials.

Depending on the type of data or algorithm used, different
proximity measures may heavily impact the performance for
the clustering. The different correlations cover the range of
[−1, 1], the value is positive when the observations evolve in a
similar way for the compared variables and negative when they
evolve in opposite ways. High absolute values indicate high
correlations in the observations. On the other hand, high values
in terms of distance indicate observations that are not similar
in the specific feature space. In this work, we used

√
2(1− c)

to convert correlations (c) into distances. This conversion
is deduced from the cosine theorem in a Euclidean space
equipped with the scalar product derived from the correlation.
For simplicity, distances coming from correlations will be
referred to as correlation-based distances for the rest of the
paper.

C. Unsupervised Gene Clustering Evaluation

To evaluate the performance of gene clustering methods,
COMBING uses both mathematical and biological criteria.
The quality of the results was assessed using the biological
relevance information brought by the Enrichment Score, while
the prominent Dunn’s Index statistical method was considered
regarding the clustering mathematical appropriateness.
• Enrichment Score (ES): Enrichment is the most com-

monly adopted technique to assess biological relevance
in an automatic manner [17]. We considered here the
Enrichment in PPI by studying the proteins correspond-
ing to the genes. Even if, contrary to enrichment in a
given biological process, PPI does not integrate specific
information about predefined pathways and biological
processes, it fulfills our aim of an unbiased and general
metric. Enrichment for a cluster represents the probability
of obtaining the same number of interactions in a random

set of genes of same size as in the evaluated cluster. In
particular, the cluster is considered as enriched if the p-
value is below a given threshold (abbreviated by th). The
ES corresponds to the proportion of enriched clusters in
the clustering. To calculate the ES, Stringdb library based
on String PPI network [30] was used.

• Dunn’s Index (DI): The Dunn’s Index [13] studies the
ratio between inter-cluster and intra-cluster variance. The
former is meant to be large as the distributions in different
clusters should be different. The latter has to be small as
we want points that are in a same cluster to follow a
common distribution. Formally,

Dunn(C) =
min1≤i,j≤k δ(Ci, Cj)

max1≤i≤k ∆(Ci)
where δ(C1, C2) is

the distance between the two closest points of the clusters
Ci and Cj , ∆(Ci) is the diameter of the cluster i.e. the
distance between the two farthest points of the cluster Ci.
This assessment score is highly sensitive to extreme not
well-formed clusters making it ideal for our problem.

IV. DEFINITION OF A LOW DIMENSIONAL CANCER
SIGNATURE

A. Signature Selection

The ultimate goal of COMBING is to produce low dimen-
sional signatures as a byproduct of unsupervised clustering
outcomes. To this end, the signatures were produced by select-
ing the most representative gene per cluster for the clusterings
with the highest ES and DI performance. More specifically,
when ES and DI were not in agreement on the best number of
clusters, we selected the clustering reporting maximal ES with
the highest DI. This way, we favored biological relevance over
a good mathematical score unrelated to biological processes.
For the LP-Stability algorithm, the selected genes were the
stable centers that the algorithm relies on. For the rest of the
algorithms, we chose as representatives the clusters medoids
which are the genes the closest to the cluster centroid. This
choice is motivated by the fact that the stable centers of the
clustering obtained through LP-Stability are also medoids.

In complement, a redundancy analysis was performed on
the selected signature using STRING tool [30] to decipher any
biological process that was particularly over-represented. This
aims at identifying a potential redundancy of the information.
In addition, Genotype-Tissue Expression (GTEx) portal was
used to assess the tissue specificity for the proposed signature.
A good signature should present genes with different expres-
sion profiles over the different cancer tissue types. This tool
offers a visual representation for each gene of its expression
in different tissues. It relies on the analysis of multiple human
tissues from donors to identify correlations between genotype
and tissue-specific gene expression levels.

B. Sample Clustering: Discovery Power

In order to perform sample clustering, we compared the
performances of several algorithms and distances. The most
meaningful results were obtained with the K-Medoids method,

www.gtexportal.org
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a variant of K-Means, combined with the Spearman’s rank
correlation-based distance. The relevance of the obtained
results was assessed by analyzing the partition of the dif-
ferent tumor types into the clusters. In particular, driven
from known biological evidence, we considered as meaningful
the associations of lung tumors (LUSC, LUAD), squamous
tumors (LUSC, HNSC, CESC), gynecologic tumors (BRCA,
OV, CESC), smoking related tumors (LUSC, LUAD, BLCA,
CESC, HNSC). We disregarded samples types in a cluster rep-
resenting less than 5% of the total cluster size. We considered
a poorly defined cluster to be a cluster presenting less than
50 samples or a distribution of the samples types similar to
the observed one in the whole dataset, which would attest for
random associations.

Gene screening analysis was also used to identify the genes
that are expressed differently over the sample clusters and
thus indicating the biological processes involved. For that, we
used the SAM method [29], that aims to identify the genes
that are differentially expressed over two groups of samples.
SAM assesses the significance of the variations of the gene
expression using a statistical t-test, providing a significance
score and a False Discovery Rate (FDR). To better assess
the relevance of separating samples of the same tumor type,
we studied the genes that are expressed differently for each
tumor type in a cluster, compared to all the other samples
of the same tumor type. We thus pinpointed significant genes
for each cluster and each tumor type by cluster. Once more,
the method in [30] has been used for assessing the biological
relevance of the clusters and their association to different
tumor types, by studying the biological processes involved.
A well-defined sample clustering is characterized by different
clusters presenting different enriched biological processes and
pathways while different tumor types in a same cluster should
be enriched in the same processes and pathways.

Details about the supervised algorithms leveraged for tumor
type/subtype classification are presented in Supplementary
Materials Section VIII.

C. Sample Clustering: Expression Power

To assess how well the different tumor types have been
separated, we used several different metrics (formal definitions
are provided in Supplementary Materials).
• Adjusted Rand Index (ARI) is a similarity measure

between a clustering C ′ and a ground truth C. ARI
corresponds to the proportion of pairs of elements that
are in different clusters in both C and C ′ called a or in
a same cluster in both C and C ′ called b.

• Normalized Mutual Information (NMI) is a normalized
measure of the mutual dependence between a clustering
and the reference group.

• Homogeneity: Considering a clustering C ′ and a ground
truth C. It values clusters of C containing elements all
belonging to a same cluster in C ′.

• Completeness: Considering a clustering C ′ and a ground
truth C. This complement of homogeneity values clusters
of C having all their elements belonging to a same cluster
in C ′.

• Fowlkes-Mallow Score (FMS): It corresponds to the
geometric mean of the pairwise precision and recall.

D. Supervised Tumor Types/SubTypes Categorization

The evaluation of the provided signatures were further as-
sessed by a supervised setting in order to highlight their tissue
specificity properties. The supervised framework for tumor
types and subtypes categorization was adapted from [32].
This classification pipeline relies on an ensemble of ma-
chine learning classifiers namely Nearest Neighbor, {Linear,
Sigmoid, Radial Basis Function (RBF), Polynomial Kernel}
Support Vector Machines (SVM), Gaussian Process, Decision
Trees, Random Forests, AdaBoost, XGBoosting, Gaussian
Naive Bayes, Bernoulli Naive Bayes, Multi-Layer Perceptron
and Quadratic Discriminant Analysis. Resorting to cross-
validation, [31] aims at identifying the ones with strong
generalisation power. The best performing classifiers in terms
of balanced accuracy and discrepancy between training and
validation are combined through a probabilistic consensus
schema to provide the appropriate label. To combine the
results, we leveraged here a majority voting approach.

Towards the evaluation of the reported performance, we re-
lied on classic machine learning metrics, namely balanced ac-
curacy, weighted precision, weighted specificity and weighted
sensitivity. The use of weighted metrics is required here as
we are considering a multi-class classification task with very
unbalanced classes. The weighted scores (WS) were defined
as

WS =
1

N

∑
l

NlSl (4)

where N corresponds to the total number of samples, Nl

the number of samples with class of label l and Sl the
corresponding non-weighted score in one-vs-rest classification
for the class l.

V. IMPLEMENTATION DETAILS

The parameters of each algorithm for the gene clustering
were obtained using grid search. In order to benchmark the
behavior of each algorithm on different number of clusters,
we evaluated their performance for the following number of
clusters: from 2 to 10 with an increment of 1, 15, 20, 25
and between 30 and 100 with an increasing step of 10 for
the Random Clustering and K-Means algorithms and 25 for
CorEx algorithm because of its computational complexity.
LP-Stability automatically determines the number of clusters.
In order to create meaningful comparisons, we adjusted the
penalty vector S in order to obtain approximately the same
number of clusters as with the rest of the algorithms. For
comparison purposes, we used the same penalty for all the
genes, however, for the LP-Stability algorithm the penalty
value could be adjusted and customized depending on the
importance of specific genes.

For the ES we reported the behavior of the algorithms
with different threshold values i.e. 0.005, 0.025, 0.05 and
0.1. Furthermore, the DI score has been evaluated for each
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TABLE I
DESCRIPTION OF THE DATASET USED IN THIS STUDY. THE DIFFERENT

TUMORS AND TUMOR TYPES TOGETHER WITH THE CORRESPONDING
NUMBER OF SAMPLES ARE SUMMARISED.

Tumor Type Clustering Classification
#Samples #Samples Types #Samples Subtypes:

BLCA 427 129 ——

BRCA 1212 1223

Normal: 144
LumA: 582
LumB: 220
Her2: 83
Basal: 194

CESC 309 —— ——
GBM 171 827 ——

HNSC 566 279

Mesenchymal: 75
Basal: 87

Atypical: 68
Classical: 49

LIHC 423 183
iCluster1: 65
iCluster2: 55
iCluster3: 63

LUAD 576 230 ——
LUSC 552 178 ——

OV 307 489

Proliferative: 138
Mesenchymal: 109
Differentiated: 135

Immunoreactive: 107

READ 72 111 CIN: 102
GS: 9

method with the same proximity measure it relies on. For K-
Means that is sensitive to initialization, we performed 100
iterations for each parameter, and selected the best clustering
based on DI only, to cope with the computational cost of the
ES. This iterative process augments the computational time
of the algorithm, but is essential to define clusters with better
statistical significance and more stable scores. Similarly, we
performed 100 repetitions of random clustering and observed
rather similar results, we selected the clustering that reports
the best DI score.

For the sample clustering, we considered 10 clusters corre-
sponding to the actual 10 tumor types. For the gene screening,
we selected the most significant genes that reported a signifi-
cance score of 7 which corresponds to a q-value of FDR close
to zero in most cases, while for the biological processes we
considered only the 10 most enriched processes by screening.

Regarding the supervised algorithms leveraged for tumor
type/subtype classification, details are provided in Supplemen-
tary Materials Section IX.

VI. DATASET

In this study, we based our experiments on The Can-
cer Genome Atlas (TCGA) dataset [33]. TCGA contains a
comprehensive dataset including several data types such as
DNA copy number, DNA methylation, mRNA expression,
miRNA expression, protein expression, and somatic point
mutation. We focused our study on tumor types relevant
for radiotherapy and/or immunotherapy. For the gene clus-
tering part, our dataset consists of 4615 samples (Table
I second column). In particular, we investigated the fol-
lowing types of tumors, namely: Urothelial Bladder Carci-
noma (BLCA), Breast Invasive Carcinoma (BRCA), Cervical
Squamous Cell Carcinoma and Endocervical Adenocarcinoma

(CESC), Glioblastoma Multiforme (GBM), Head and Neck
Squamous Cell Carcinoma (HNSC), Liver Hepatocellular
Carcinoma (LIHC), Rectum Adenocarcinoma (READ), Lung
adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma
(LUSC) and Ovarian Cancer (OV). For each sample, we had
the RNA-seq reads of 20 365 genes processed using normal-
ized RNA-seq by Expectation-Maximization (RSEM) [34].

Several articles as [35] consider the challenging and impor-
tant task of generating biomarkers for distinguishing tumor and
subtumor types. In this study, we also focus on this task basing
our experiments on the cohort presented in [26] by selecting
samples from the 10 locations used for the gene signature.
This cohort consists of 3653 samples (Table I third and fourth
columns). For the tumor subtypes characterisation, we focused
on tumor types presenting more than 50 · n subtype samples
with nsubtype the number of subtypes for this particular
type. At the end, 5 different tumor types namely the BRCA,
HNSC, LIHC, READ and OV have been used for subtypes
classification.

VII. RESULTS AND DISCUSSION

This study has been designed upon three pivotal com-
plementary aspects. The first one relates to the genes clus-
tering performance to assess the definition of the signature
regarding both a mathematical (DI) and a biological (ES)
metric (section VII-A). The second evaluates the ability of the
signature to relevantly separate the different tumor samples in
an unbiased manner through sample clustering (section VII-B).
The third aspect characterizes the tissue specificity of the
signature thanks to classification tasks on tumor types and sub-
types (section VII-C). To better estimate the results obtained,
comparisons with referential clustering methods and gene
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c) K-Means
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Fig. 2. Evaluation of the clustering performance for different Enrichment
Threshold values. a) LP-Stability, b) CorEx, c) K-Means, d) Random. The
figure presents the percentage of the enriched clusters for the threshold values
of 0.005, 0.025, 0.05, 0.075, 0.1 and using Kendall’s correlation-based
distance. The higher differences in the enrichment thresholds are reported from
the Random Clustering when the number of clusters is relatively high. For
the rest of the algorithms and especially LP-Stability, the different thresholds
only slightly impact the reported results.
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signatures are performed throughout the different evaluations.
A global comparison with all references over all metrics is
provided in section VII-D.

A. Results on Gene Data Clustering

Starting with the biological criteria, Fig. 2 presents a com-
parison of the different ES per algorithm for different threshold
(th) values. We observed that for the different clustering meth-
ods the threshold does not significantly change the behavior
of the ES, indicating a strong statistical significance for the
clusters. However, this is not the case for the random signature
(d) on which for a number of clusters higher than 30, one can
observe an important disparity between the different th of the
ES. For the rest of the study, we will use th = 0.005 for ES.

To select the best distance per method, we used the DI
metric. In Fig. 3, one can observe the influence of the distance
with respect to the number of clusters for the random (a) and
LP-stability methods (b and c). Compared with random clus-
tering, one can observe the bias that each distance introduces
for the DI score. In particular, with correlation-based distances,
the reported DI scores are on average 10 times higher. Thus,
to tackle this problem of bias, for our comparisons, we will
refer to a clustering difference in DI scores with the corre-
sponding random clustering for the same number of clusters
and distance. Based on our experiments, we also noticed that
the choice of the distance greatly affects the performance of
the clustering algorithm, with the correlation-based distances
(especially the Kendall’s correlation) reporting, in general,
higher performances. To ensure the biological meaning of
the clusters, we also report the performance of the different
distances for ES. Once again the superiority of correlation-
based distances both in terms of performance and stability is
indicated. Besides, only the Euclidean distance does not reach
the maximal value of 100%. This is due to the unbalanced
clusters that Euclidean distance favors, leading to very small
clusters that are less likely to be enriched. For the rest of the
paper, we selected Kendall’s correlation-based distance when
reporting LP-Stability and Random Clustering performances.

In Table II, we summarize the performance of LP-Stability
in comparison to other algorithms based on both ES and
DI scores together with the reported number of clusters.
Additional information about the average Enrichment and the
average computational time per algorithm is also provided
in the table. The best performance of DI is achieved with
the LP-Stability and the Kendall’s Correlation-based distance.
Moreover, even if almost all the methods, except K-Means,
reached an ES of 100%, LP-Stability still reports the highest
average ES, with 96% while CorEx reaches only 71%. Another
interesting point from this analysis is the indication of the
optimal number of clusters per algorithm. Only LP-Stability
reports its best value with more than 25 clusters while the
rest of the algorithms have their best performance with less
than 7 clusters and even 2 clusters only if we consider DI
alone. This might seem to be an argument in favor of the
other algorithms as they are able to define a more compact
signature. However, such a low number of clusters highlights
failure on characterizing a clustering structure as they favor a

disposition where genes are grouped altogether. This is also
indicated by the low average ES and DI scores. A study of
the computational complexity can be found in Supplementary
Materials.

A thorough comparison of the different algorithms for a
different number of clusters is presented in Fig. 4. For both
DI (a) and ES (b) the superiority of the proposed LP-Stability
in comparison to the other algorithms can be observed both
in terms of stability for a varying number of clusters and
performance. The reported results indicate that the proposed
method can generate clusters that are both mathematically and
biologically meaningful. Moreover, even if Random Clustering
reports a high maximal ES, its performance dramatically drops
for more than 30 clusters, while the DI is really low for all
the experiments. This highlights the need to study both the
mathematical performance and the stability of the biological
score, as ES alone would not give significant results.

B. Unsupervised Signature Assessment
1) Signature Selection: The signature was selected using

the method detailed in section IV-A on the clustering pre-
senting the highest DI among clusterings having the best ES.
However, due to the relatively low number of selected genes
with K-Means, CorEx, or Random Clustering, the sample clus-
terings with those signatures gave rather irrelevant intermixed
tumor types (Fig.1 in Supplementary). To deal with this and
for comparison reasons, we used for all these algorithms the
gene signatures produced with 25 and 30 genes, and in the
following, when referring to CorEx and K-Means signatures,
we will refer to those signatures. To facilitate future studies
leveraging this work, we provide in Supplementary Materials
the clustering of genes and samples.

Regarding the evaluation of the enriched biological pro-
cesses for the different signatures, we found that LP-Stability
signature (27 genes with Kendall’s correlation-based distance)
does not present any redundancy in the biological processes,
in contrast to the K-Means (30 genes with Euclidean dis-
tance) which presents several hundreds of enriched biological
processes. Moreover, CorEx signature (30 genes with Total
Correlation) presents a low biological redundancy with only
phototransduction process being enriched.

Our gene signature using COMBING framework with
LP-Stability is composed by 27 genes. Globally these
genes, which descriptions are detailed in Supplementary
Materials, are related to cell development and cell cycle
(CD53, NCAPH, GNA15, GADD45GIP1, CD302, NCAPH,
YEATS2), DNA transcription (HSFX1, CCDC30, MATR3,
ASH1L, ANKRD30A, GSX1), gene expression (ZNF767,
C1orf159, RPS8, ZEB2), DNA repair (RIF1), antigen recog-
nition (ZNF767), apoptosis (C3P1, CLIP3), mRNA splicing
(SNRPG). We also have many genes specific to cancer (CD53,
ANKRD30A, ZEB2, ADNP, SFTA3, ACBD4). All these pro-
cesses are highly important and significant for cancer. We also
report in Supplementary Materials for each gene the main
tissues they are overexpressed in using GTEx portal. Finally,
even if we have many genes related to specific tissue types
such as brain, blood lymphocytes, liver or gynecologic tissues,
the overall profiles of each gene are unique.
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c) LP-Stability: Enrichment Score
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Fig. 3. Evaluation of the clustering performance for different distances. The performance of the different distances are presented for both Random (a) in
terms of Dunn’s Index and LP-Stability clustering (b and c) in terms of Dunn’s Index and Enrichment Score. Only DI results are presented for Random as
ES computation on a same clustering is not influenced by the distance used. Both ES and DI are presented in percentages in terms of the number of clusters.
The figure highlights the superiority of the correlation-based distances and in particular the one reported by Kendall’s for both mathematical and biological
aspects.

TABLE II
COMPARISON OF THE DIFFERENT EVALUATED ALGORITHMS IN TERMS OF PPI ENRICHMENT SCORE (ES) WITH A THRESHOLD OF 0.005, DUNN’S INDEX

(DI), AVERAGE ES AND COMPUTATIONAL TIME. LP-STABILITY ALGORITHM OUTPERFORMS THE REST OF THE ALGORITHMS REPORTING HIGHEST DI
AND AVERAGE ES SCORE AND THE LOWEST COMPUTATIONAL TIME.

Method Best ES Best DI Average ES (%) Average DI (%) TimeES (%) DI (%) Clusters ES (%) DI (%) Clusters
Random 100 36 2 100 36 2 54 19.8 -

K-Means (Euclidean) 85.7 2.5 7 50 15.6 5 37 1.2 3h
CorEx (Total Correlation) 100 2.4 5 100 2.4 5 71 0.6 >5 days
LP-Stability (Kendall’s) 100 40.6 27 100 40.6 27 96 38.5 1.5h
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Fig. 4. Evaluation of the different clustering algorithms. For the different evaluated algorithms the ES and the DI are presented in terms of number of
clusters and using Kendall’s correlation-based distance. For both metrics, LP-Stability reports the highest and most stable values. Moreover, the rest of the
algorithms tends to report their higher scores for a very small number of clusters (often 2), indicating their failure to discover clustering structures.

2) Sample Clustering (Discovery Power): The predictive
power of the best signature per algorithm together with the
random signatures, and the signature presented in [26], were
further assessed by measuring their ability to separate 10
different tumor types (Table I) in a completely unsupervised
manner, through sample clustering. Fig. 5 summarizes the
results for the LP-Stability (with 27 clusters, ES 100% and DI
40.6% using Kendall’s correlation-based distance) signature,
K-Means (with 30 genes, ES of 30% and a DI of 0.52% using
Euclidean distance), CorEx (with 25 genes, ES 72% and DI
0.06% using Total Correlation), Random Clustering signature
(with 27 genes, ES 86.6% and DI of 13.8% using Kendall’s
correlation-based distance) and the signature from [26]. One

can observe that CorEx and Random signatures fail to properly
separate the tumor types and for this reason for the rest of
the section we present a detailed comparison of the K-Means
and LP-Stability signatures only. A thorough analysis of the
clusterings of Fig. 5 is provided in [28] and in Supplementary
Materials and shows evidence validating the relevance of the
approach presented here.

Another interesting point is that the distance used greatly
affects the distribution of the different tumor types for the
clustering. This proves the importance of the distance selec-
tion in combination with the selected algorithm. Based on
our experiments, we noticed that Spearman’s and Kendall’s
correlations provide the best sample clustering for all the
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Fig. 5. Gene Signature Assessment via tumor distribution analysis across 10 sample clusters generated using the different signatures. The graph
presents the distribution of the different tumors for (a) Random Clustering signature (27 genes) , (b) CorEx , (c) K-Means , (d) a referential gene signature [26]
and (e) LP-Stability. The distribution of tumors for Random and CorEx algorithms is quite intermixed without a lot of associations between the tumor types
while K-Means, referential and LP-Stability signatures seem to favor some good tumor associations.

algorithms. In particular, Spearman’s correlation tends to better
separate the different tumors into different clusters, while the
Kendall’s one seems to generate clusters that groups tumor-
related samples (Fig.2 in Supplementary Materials).

To compare our results with other methods in the literature,
we assessed our gene signature against a knowledge-based
signature of 78 genes that has been proved to be appropriate
for determining immune related sample clusters [26]. The
obtained tumor distribution is presented in Fig. 5, reporting
quite intermixed associations. Again, LIHC and BRCA are
separated properly while the rest of the tumors are clustered
in unrelated groups. This comparison indicates the need for
compact signatures, highlighting at the same time the difficulty
of capturing the full genome information as well as the need
for an automatically computed signature to avoid redundancy
and information loss.

3) Gene Screening Analysis: Screening analysis aims to
identify the significant genes for each cluster which are
then used to determine the enriched biological processes per
cluster. To determine those significant genes, we used the
SAM method to look for differentially expressed genes in the
samples of one tumor type in a cluster compared to the other
samples of the same tumor type (see section IV-B for more
details). We will refer to those genes as differentially expressed
genes in the remainder of the article. Besides, the SAM method
allows to check if the tumor types of a given cluster share
genes related to similar biological processes, highlighting the
biological relevance of the cluster. Meanwhile, this method
enables us to verify the relevance of the distribution of the

same tumor types into different clusters by checking the
absence of similar biological processes. In the following, we
will refer to the most significant genes for a cluster or a
tumor type in a cluster for the genes reaching the highest
SAM scores. In particular, a summary of the analysis for
our COMBING signature’s sample clustering is presented in
Table III. In this section, we provide a detailed analysis per
tumor type for each cluster for both K-Means and LP-Stability
selected signatures.

Starting with the gene screening of LP-Stability, cluster 0
is one of the most intermixed clusters. This cluster contains
significant genes for different tumor types that are associated
with immune, defense response and other inflammatory pro-
cesses with strong enrichment. Among the most significant
genes we can report IL4R for HNSC, this Interleukin is a
treatment target for multiple cancers, GNA15 for LUSC which
has been highlighted in lung cancer treatment or for CESC.
KRT5, has been identified as a potential biomarker to dis-
tinguish adenocarcinomas to squamous cell carcinomas [36].
Continuing our analysis with cluster 1 which includes mainly
BRCA samples, its most significant gene is FPR3. This gene
seems to be related to immune inflammation and multiple
cancers including breast [37]. For cluster 2 which is mainly
composed of BRCA samples, we identified that it is a basal
BRCA cluster. Indeed, its most significant gene TTC28 is
related to breast cancer and especially basal BRCA [38].
Besides, the cluster is enriched for basal plasma membrane.
Cluster 3 is also a mixed cluster mostly composed of BRCA
and OV cancers. It seems to be related to mitochondrial



Version accepted in IEEE Transactions on Bioinformatics and Computational Biology on 10/30/2021

TABLE III
ANALYSIS OF THE BIOLOGICAL PATHWAYS AND MOST SIGNIFICANT GENES PER CLUSTER FOR THE SAMPLE CLUSTERING PERFORMED USING OUR

PROPOSED SIGNATURE OF 27 GENES VIA LP-STABILITY ALGORITHM AND KENDALL’S CORRELATION-BASED DISTANCE. THE TABLE HIGHLIGHTS THE
SEPARATION BETWEEN INFLAMED AND NON-INFLAMED TUMORS AND THE IDENTIFICATION OF WELL-KNOWN CANCER SUBTYPES SUCH AS BRCA.

Clusters Significant Tumor Validated Role of the Gene Biological Pathways Key Feature
Genes Type in Tumor Type of the cluster

Cluster 0

IL4R HNSC Treatment target Immune and defense response An inflamed solidGNA15 LUSC Lung cancers treatment Regulation of cell proliferation tumors cluster
KRT5 CESC Biomarker distinguishing adenocarcinomas Interferon-gamma mediated processfrom squamous cell carcinomas [36]

Cluster 1 FPR3 BRCA Immune inflammation related [37] Immune response related pathways An inflamed BRCA
tumors cluster

Cluster 2 TTC28 BRCA Related to basal breast cancer risk [38] Basal plasma membrane A basal BRCA
tumors cluster

Cluster 3
NDUFB10 BRCA

Related to breast [39] and ovarian [40] Mitochondrial complexes and

A gynecologic tumors
cancers, poor prognosis for

cells organization related processesesophageal lineage and LIHC

SLC39A6 OV Poor prognosis for cluster linked to LIHC
esophageal lineage and LIHC

Cluster 4 SFTA3 LUAD Related to LUAD and LUSC [36], [41] Pathways of immune response An inflamed lung tumors clusterNAPSA LUSC Related to LUAD Surfactant homeostasis

Cluster 5 LIHC A pure complete LIHC
tumor cluster

Cluster 6 FOXA1 BRCA Related to Breast Metabolic processes A luminal BRCA
Luminal cancer [42] tumors cluster

Cluster 7

GBM Complete GBM cluster Response to stimulus,
ANGPTL5 BRCA Angiopoietin-like protein family cardiovascularity, A GBM tumors cluster

FERMT2 BLCA Related to various cancer with other tumors, all enriched
including breast ones blood vessels related in cardiovascularity pathways

Cluster 8 UQCRH BRCA Mitochondrial Hinge protein related [43] Metabolic processes Mis-splicing related tumorsAP1M2 BLCA Tyrosine-based signals general compound processes

Cluster 9 CIRBP BRCA Driver of many cancers Related to alternative splicing Alternative splicing related BRCAprocesses and organelles

complexes and organization. Its most significant gene is the
NDUFB10 which is related to breast cancer patients [39],
OV cancer [40] and also correlated to a decreased viabil-
ity in esophageal squamous lineage as LIHC. Cluster 4 is
a lung related cluster, composed of LUAD/LUSC samples.
LUAD samples are related to immune response and LUSC
samples to surfactant homeostasis which is linked to many
lung diseases. The most significant gene for LUAD is SFTA3,
a lung protein [41] and a biomarker distinguishing LUAD
and LUSC [36], whereas the most significant gene for LUSC
samples is NAPSA that has been proven to be of relevance
for LUAD tumors. Cluster 5 mostly consists of LIHC samples,
grouping all the LIHC samples in this cluster. Similarly cluster
7 consists of all GBM tumors. Thus, the screening process
is not applicable for them as it compares samples from the
same tumor type over different clusters. Cluster 6 is a luminal
breast cancer cluster, related to metabolic processes which
have already been studied in a breast cancer context [44]. The
most significant gene seems to be the FOXA1, a gene related to
Estrogen-Receptor Positive Breast Cancer and Luminal Breast
Carcinoma [42]. Cluster 7 is a GBM tumors cluster. It is
interesting to notice that the other two dominant tumor types in
the cluster, BRCA and BLCA, are related to cardiovascularity
and blood vessels. Their respective most significant genes are
ANGPTL5 and FERMT2. The latter has been highlighted in
GBM proliferation [45]. Cluster 8 has no biological process
linked to immune response, but presents a strong association to
metabolic and structural processes. This group of processes has
been found significant for BRCA [46]. The most significant
genes for this cluster are the AP1M2 for BLCA samples which
interacts in tyrosine-based signals and has been considered

in epithelial cells studies, the UQCRH for BRCA a gene
encoding mitochondrial Hinge protein that is important in soft
tissue sarcomas and in particular in two cell lines of breast
cancer and one of ovarian cancer [43]. Finally, cluster 9 is a
cluster with BRCA tumors, it has CIRP as its most significant
gene, which is considered to be an oncogene in several cancers
and in particular for BRCA. Cluster 9 presents alternative
splicing and coiled coil processes.

This analysis highlights that each cluster is enriched in
similar biological processes while the processes from differ-
ent clusters are different. Moreover, it reveals that even if
clusters 0 and 8 contain different tumor types, they present
a homogeneity in their biological processes. Cluster 0 is
especially interesting as it contains inflamed tumor samples
and cluster 8 non-inflamed samples. These two clusters contain
all the CESC samples, proving once more the relevance of the
LP-Stability signature as they automatically and without any
prior knowledge separate inflammatory and non-inflammatory
CESC samples. This specific problem is an active field of
research [47]. Clusters 0 and 8 provide an even more valu-
able insight when studying the genes IFNG, STAT1, CCR5,
CXCL9, CXCL10, CXCL11, IDO1, PRF1, GZMA, MHCII
and HLA-DRA highlighted in [48] for their major role in
immunotherapy. Indeed, for each tumor type in cluster 0 all
or most of these genes are differentially expressed which is not
the case for cluster 8. This proves the specificity and clinical
relevance of the separation of these clusters.

On a second level, we analyzed the distribution of the
BRCA cancer samples on different clusters, examining its
clinical relevance. We chose to highlight BRCA in this
comparison, as it is the most represented tumor type and
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it presents a variety of subtypes. BRCA samples are dis-
tributed into clusters 1, 2, 3, 6, 8 and 9 using the LP-
Stability signature, featuring the main molecular subtypes of
BRCA. In particular, cluster 1 contains immune inflammatory
samples, cluster 2 basal samples and cluster 6 the luminal
Estrogen-Receptor Positive samples. Additionally cluster 3 is
a gynecologic cluster with BRCA samples presenting relations
to OV samples. Cluster 8 features mis-splicing related tumors
which are strongly related to BRCA samples [49]. Cluster 9 is
marked by alternative splicing whose implications in cancers
are well known and studied [50]. It is also interesting to
report that hallmarks genes BRCA1 and BRCA2 are positively
and differentially expressed in luminal BRCA cluster 6 which
attests of an over-expression of these genes for cluster 6. This
observation is consistent with [51], where BRCA1 and BRCA2
were more expressed in luminal BRCA samples as they are
markers for good prognosis. Besides, cluster 3 presents an
under-expression in these genes. This is coherent with the fact
cluster 3 mixes BRCA and OV samples, which are known to
present a bad prognosis.

For comparison, we performed the same analysis with the
sample clustering produced by the K-Means algorithm with the
30 genes. After the analysis, we observed that this signature
seems to be very specific for the BRCA tumors while reporting
weaker relevance in the separation of other samples. Indeed,
we can observe that the separation of BRCA samples is rather
meaningful as in each cluster BRCA samples present rather
relevant differentially expressed genes and enriched biological
processes. However, the clusters are lacking homogeneity as
the different tumor types of the clusters present unrelated dif-
ferentially expressed genes and enriched biological processes.
Besides, K-Means signature fails to properly characterize other
tumor types. This issue might be explained by the over-
representation of BRCA samples in our data set. Detailed
analysis of the sample clustering using K-Means signature can
be found in Supplementary Materials.

Additionally, in order to indicate the significance of the
distance used we considered different distances to perform the
sample clustering. Our experiments confirmed that the distance
that gave the best biologically relevant clusters was Spear-
man’s correlation-based distance. Moreover, after the screen-
ing analysis we observed that the differentially expressed
genes are not necessarily the genes selected in the signatures.
This observation indicates that the strength of our approach
is to combine genes that might not be the most informative
considered individually but whose association allows a good
compact representation of the information brought by the
whole genome on tumor types. It is also worth mentioning
that LP-Stability signature correctly separates immune inflam-
matory samples from the others for all tumor types.

4) Expression Power: The expression power of our signa-
ture was further evaluated using the ARI, NMI, homogeneity,
completeness and FMS metrics and compared with the rest
of the signatures. We called the average of those scores the
Expression Power of the signature and report it in Fig.6.
Detailed results for each score are provided in Supplementary
Materials. For Random Clustering, we calculated the metrics
on the average results of sample clustering designed from 10

random signatures. Overall, the performances of K-Means and
LP-Stability are the best ones with the first outperforming the
second. Good performance of K-Means could be due to the
good separation of BRCA clusters, the dominant tumor type
in our dataset.

C. Tumor Types/Subtypes Classification Tasks

The predictive power of our proposed COMBING signature
has been assessed in a supervised setting by classifying the
samples according to their tumor and sub-tumor types. This
experiment aims to evaluate the tissue-specific information
captured by each signature. In Table IV, we report the per-
formance on training and test for each signature using the
same classification strategy. Our experiments highlight that
even random signatures with the relatively small number of
27 genes reports good performance with a balanced accuracy
of 84%. This proves that even a low number of genes are
informative enough to perform a good separation of tumor
types. However, our proposed COMBING signature reports
the highest balanced accuracy reaching 92% outperforming the
referential signature [26] which reached a balanced accuracy
of 85%.

Regarding tumor subtypes classification, results averaged
over all considered tumor types are provided in Table V.
Our proposed method presents the highest performance with a
balanced accuracy of 68%, outperforming the other algorithms
by at least 9%. This task is quite challenging as we are
using the same compact signature to characterize all the
different tumor types at a fine molecular level. Considering the
complexity of the task and the important number of different
classes, results obtained with the COMBING signature are
very promising. Indeed, it is surpassing the random signa-
tures average balanced accuracy by 11% and the referential
signature, devised on this specific dataset, by 9%.

D. Global Comparison

In order to better summarize the different results and provide
a fair comparison with random and the referential signatures
a spider chart is presented in Fig. 6. The comparison focuses
in 3 different criteria: (i) criteria based on the gene clustering
performance in blue, (ii) criteria based on the informativeness
of the signature for unsupervised clustering tasks in green
and (iii) criteria based on the relevance of the signature for
supervised classification tasks in gold. Discovery Power has
been defined as the proportion of tumor types that are rele-
vantly grouped in sample clustering according to related tumor
types, the criteria of evaluation are presented in section IV-B.
Expression Power corresponds to the average of the following
clustering scores: ARI, NMI, homogeneity, completeness and
FMS the results are provided in Supplementary Materials.
Predictive Power on tumor types is the balanced accuracy
on test of the tumor types classification task. The results are
provided in Table IV. Predictive Power on subtypes is the
average over all tumor types of the balanced accuracy on
test for tumor subtypes classification. The results are provided
in Table V. Biological Relevance corresponds to the average
ES of the gene clustering method. The results are provided
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TABLE IV
TUMOR TYPES CLASSIFICATION COMPARISON OF THE RESULTS OF THE AVERAGE PERFORMANCE OF 10 SETS OF RANDOMLY-SELECTED GENES OF

SAME SIZE AS OUR PROPOSED SIGNATURE, COREX, K-MEANS, THE REFERENTIAL [26] AND COMBING SIGNATURES.

Signature Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Test Training Test Training Test Training Test

Random 96+/-5 84+/-2 95+/-5 87+/-3 94+/-7 86+/-4 99+/-1 97+/-1
CorEx 100 85 100 90 100 91 100 98

K-Means 100 90 100 94 100 94 100 98
Referential [24] 100 85 100 89 100 89 100 98

Proposed 99 92 99 94 98 93 100 99

TABLE V
TUMOR SUBTYPES CLASSIFICATION COMPARISON OF THE AVERAGE RESULTS OF THE AVERAGE PERFORMANCE OF 10 SETS OF RANDOMLY-SELECTED
GENES OF SAME SIZE AS OUR PROPOSED SIGNATURE, COREX, K-MEANS, THE REFERENTIAL [26] AND COMBING SIGNATURES. ONLY THE 5 TYPES OF

TUMORS WITH MORE THAN 50 · n subtypes SAMPLES WERE STUDIED

Signature Balanced Accuracy (%) Weighted Precision (%) Weighted Sensitivity (%) Weighted Specificity (%)
Training Test Training Test Training Test Training Test

Random 81+/-11 57+/-9 85+/-8 66+/-10 82+/-9 62+/-7 87+/-12 74+/-23
CorEx 82+/-19 59+/-14 83+/-18 70+/-11 81+/-20 65+/-8 94+/-6 71+/-36

K-Means 85+/-12 53+/-24 89+/-10 67+/-15 79+/-20 56+/-19 96+/-3 69+/-38
Referential [24] 90+/-11 59+/-7 91+/-9 68+/-10 90+/-9 67+/-12 97+/-4 70+/-35

Proposed 85+/-11 68+/-9 90+/-6 73+/-13 82+/-16 63+/-9 93+/-6 89+/-6

in Table II. Mathematical Relevance is the average DI score
of the gene clustering method. The results are provided in
Table II. Decreasing Time Complexity is the average time
taken for the gene clustering, the bigger the area in the chart
the faster, results are provided in Table II. Our COMBING
signature is shown to be largely superior by at least 10% to
random and referential signatures in all criteria except com-
pactness. It is also superior to the other signatures designed
using COMBING with other prominent clustering methods.
One interesting exception is the Tumor-Specific Expression
Power of K-Means-derived signature. The signature defined
with K-Means differentiates the types of tumor well as also
proved by the score on tumor type classification (Predictive
Power: Types) but does not perform well on identifying the
subtypes (Predictive Power: Subtypes). This is also due to
the lower Discovery Power of K-Means compared to our
COMBING signature.

VIII. CONCLUSIONS

In this paper, we present COMBING, a framework for gene
clustering definition and comparison, and, for gene signature
selection and evaluation in terms of redundancy, compactness
and expression power. In particular, we provide a mathematical
and biological evaluation of gene clustering, an extensive sam-
ple clustering evaluation using quantitative and field specific
clinical, biological metrics, and a supervised approach for its
association with tumor types and subtypes characterization.
In this framework, we have shown the interest of using LP-
Stability algorithm, a powerful center-based clustering algo-
rithm, for gene clustering. Moreover, the obtained clusters
formulate a gene signature proving causality and strong as-
sociations with tumor phenotypes. These results compete with
those reported in the literature when using a large set of dif-
ferent omics data. In addition, our compact signature has been

Fig. 6. Comparison of the different signatures. Blue: criteria based on the
gene clustering performance, Green: criteria based on the informativeness of
the signature for unsupervised clustering tasks and Gold: criteria based on the
relevance of the signature for supervised classification tasks.

compared and proved to be more expressive than a prominent
knowledge-based gene signature [26]. An extensive biological
analysis evidenced that the designed signature leads to sample
clusters with high relevance and correlation to cancer-related
processes and immune response, while reporting promising
results in tumor types and subtypes classification. In the future,
we aim to extend the proposed method towards discovering
stronger gene dependencies through higher-order relations
between gene expression data, as well as further evaluation
of this biomarker for therapeutic treatment selection in the
context of cancer.
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Théo Estienne holds a MSc and a engineer degree in Applied Mathematics
from Centrale Paris (became CentraleSupelec). He is currently pursuing a
PhD in collaboration between CentraleSupelec (MICS laboratory) and Gustave
Roussy. His topics are medical imaging, deep learning and more specifically
the extraction of new bio-markers for brain cancer using deep learning and
brain MRI registration based on deep learning.
Lerousseau Marvin is a PhD student in oncology and artificial intelligence.
Sergey Nikolaev main research’s interest has evolved from evolutionary
genetics to genetics of cancer, benign tumors and non-tumoral malformative
disease. In the last 8 years, he has conducted successful genetic research
with next generation sequencing on various cancer types, which resulted
in important scientific advances published in Nat. Communications, Journal
of Pathology, Cancer Research, Nat. Genetics and New England Journal of
Medicine. From January 2018 he started his own group in Gustave Roussy
Comprehensive Cancer Center located in Villejuif, Paris. In Gustave Roussy
his team studies the genetics of Non-Melanoma Skin Cancers and continues
to collaborate with clinicians to study the genetics of other rare tumor types
and somatic mutations in non-tumoral malformative diseases.
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