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Localization of partially hidden targets
using a fleet of UAVs via robust bounded-error estimation

Julius Ibenthal, Luc Meyer, Hélène Piet-Lahanier, and Michel Kieffer

Abstract— This paper addresses the cooperative search of
static ground targets by a group of Unmanned Aerial Vehicles
(UAVs) over some region of interest. The search strategy
dependents on the availability and accuracy of the information
collected. When a target is detected, a probabilistic description
of the measurement noise is usually considered, as well as
probabilities of false alarm and non-detection, which may prove
difficult to characterize a priori.

An alternative modeling is introduced here. The ability to
detect and identify a target depends deterministically on the
point of view from which the target is observed. Introducing
the notion of detectability sets for targets, we propose a robust
distributed set-membership estimator to provide set estimates
of target locations. The obtained set estimates are guaranteed to
contain all target locations when the search is completed. The
target search is formulated as a multi-agent cooperative control
problem where the control inputs are obtained using a Model
Predictive Control (MPC) approach minimizing a measure of
the set estimates representing the detection performance. The
proposed set estimator and cooperative control scheme are
distributed, i.e., accounting only for information from neighbors
within communication range. The effectiveness of the proposed
algorithm is illustrated by simulation.

I. INTRODUCTION

The Cooperative Search and Track (CST) of multiple
targets can be addressed by the deployment of multiple
UAVs. CST consists of a continuous search for targets while
keeping track of already detected targets in some Region
of Interest (RoI). The number of targets is unknown and
may vary as targets may enter or leave the RoI during the
search. This application has received increased interest in
the last decades due to the recent advances in the devel-
opment of UAVs. Various approaches have been developed
for that purpose see, e.g., [1] and [2] and the references
therein. Most of the techniques of the state-of-the-art rely
on cooperative strategies and on distributed estimation of
the target locations. The displacement strategies alternate
between the search for new targets and track of already
identified ones. The evolution of the UAVs depends on the
collected information quality, which then impacts the estima-
tion uncertainty of target locations. Various approaches for
displacement strategy have been suggested including search
trajectory optimization accounting for kinematic constraints
as in [3] or game-theoretic techniques as in [4].
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One of the major issue of CST is the limited ability of
the UAVs to detect a target located in its field of view
and to discriminate targets from potential decoys. Limited
discrimination and detection abilities are usually modeled
with a probability of false alarm and a probability of non-
detection. For a given seeker, these probabilities are either
chosen as constant over the RoI as in [4], dependent on the
detection range, or measurement signal-to-noise ratio as in
[5]. These probabilities play an important role for the search
performance, however, it is difficult to provide reasonable
values. Moreover, such probabilistic representation poorly
accounts for the influence of the local environment on the
ability to detect targets or to misinterpret a decoy as a target,
which is usually deterministic. If, e.g., a target is partially
hidden by some obstacle, the ability of the UAV to detect
it is severely decreased. A decoy located in a clustered
environment can be more easily mistaken with a real target.
These examples illustrate that the ability of detecting a target
may be more efficiently modeled by accounting for the point
of view from which the target is observed. Observation
quality depending on the point-of-view has been suggested
in [6]. In [7], the ability to discriminate between a decoy
and a real target depends on the observation point of view.
The limitation of the UAV’s field of view in presence of
known obstacles has been considered in [8]. Set-membership
estimation techniques [7] are then well-suited to account for
deterministic detection and discrimination issues. In [7], one
can conclude that an observed subset is free from any target,
when no target is detected.

In this paper, we consider a fleet of UAVs equipped with
optical seekers able to detect and localize targets. Targets
are assumed to be static. Due to the existence of unknown
obstacles, a target may be masked and hence not detected
even if it belongs to the observed subset of the optical
seeker. We assume that the ability to detect and identify a
target depends deterministically on the point of view from
which it is observed: a target can be detected when observed
from some conic detectability set with its apex at the targets
location. Additionally, the target has to be located within
the field of view of the seeker. As a consequence, a target,
even located in the field of view of a seeker may be missed
when not observed from a point of view belonging to the
detectability set. This issue is difficult to address with the
set-membership estimation technique presented in [7]. Here,
when no target is detected, the observed subset cannot be
immediately declared free from any target. Such conclusion
is only possible when the same area of the RoI is observed
from a sufficient variety of points of view.



To address this problem, L non-overlapping conic obser-
vation subsets of points of view are considered for each
location of the RoI. We assume that one of these conic
subsets is included in the detectability set associated to each
location of the RoI. Under this hypothesis, it is possible to
guarantee that a location is free from a target when observed
from L different points of view, each belonging to a different
observation subset.

Based on this hypothesis, we propose a distributed set-
membership estimator able to provide set estimates guar-
anteed to contain all target locations within the RoI. Each
UAV runs a set estimator that evaluates target locations
accounting for its own measurements and for information
received during communications with other UAVs. Contrary
to [7], the proposed approach is able to guarantee the
detection of hidden targets. The control input for each UAV
is designed using a distributed MPC approach compliant
with the set-membership estimator. The resulting control
inputs account for the point of view of future observations,
extending [7], [8], and aims at minimizing a measure of the
estimation uncertainty. The controller accounts for the impact
of future measurements on the set estimates and infers future
information communicated by neighbors.

The paper is organized as follows. The context and hy-
potheses are recalled in Section II. The target detectability
set is introduced in Section III. Sections IV and V present
respectively the distributed estimator and the design of the
associated cooperative control strategy. Section VI introduces
simulation examples illustrating the performance obtained
with a fleet of UAVs. Section VII concludes the paper.

II. HYPOTHESES AND PROBLEM FORMULATION

We consider the search for an unknown number Nt of
static targets by a fleet of Nu UAVs within a bounded RoI
X0 ⊂ R3. A frame (O,F) is attached to X0 where O is the
origin. One assumes that a unique identifier j = 1, . . . , Nt
can be associated to each target. The RoI contains an a priori
unknown number of static obstacles.

A. UAV states and target locations

Time is discretized with a constant period T . At time
instant t = kT , the state vector xu

i,k ∈ Rnu of UAV i ∈
Nu = {1, . . . , Nu} evolves according to

xu
i,k+1 = f u

k

(
xu
i,k,ui,k

)
, (1)

where ui,k is the control input for UAV i, to be chosen in a
set U of admissible control inputs. The position of UAV i is
denoted as xu

i,k = p(xu
i,k), where p (x) represents the three

first components of x ∈ Rnu .
The RoI X0 is assumed to be compact and connected. Due

to the presence of obstacles, targets may only be located in a
subset XT ⊂ X0 of the RoI. The set XT is not known a priori.
The location of target j is denoted xt

j ∈ XT, j ∈ {1, . . . , Nt}.

B. Detectability set

The obstacles within the RoI may partly hide some points
x ∈ XT. This leads to restricted detectability of targets lo-
cated at these points. To represent this restricted detectability,

x

D(x)

Fig. 1. Detectability set D (x) ⊂ R3 (red and gray) for a point x ∈ XT
(blue) and a simple box shaped obstacle (dark gray).

for possible target locations x ∈ XT, one introduces the
detectability set D (x) ⊂ R3, as the subset of locations x′ ∈
R3 from where a target located at x can be detected. D (x)
depends on the environment (obstacles) and is unknown to
the UAVs. D (x) does not depend on the characteristics of
the seeker, which are taken into account in Section II-C.

We assume that for all x = (x1, x2, x3)
T ∈ XT,

there exists a set of n (x) ⩾ 3 unit vectors v1 (x) ∈
R3, . . . ,vn(x) (x) ∈ R3 defining a cone of non-zero volume
with apex x

D (x) = {x+ a1v1 (x) + · · ·+ an(x)vn(x) (x) |
ai ∈ R+, i = 1, . . . , n (x)}

such that D (x) ⊂ D (x). This assumption facilitates the
characterization of the detectability set.

Fig. 1 illustrates the detectability set D (x) ⊂ R3 (red and
gray) for a point x ∈ XT (blue) and a simple box-shaped
obstacle (dark gray).

C. Measurements

Each UAV i is equipped with a sensor to observe a subset
Fi (x

u
i ) (Field of View, FoV) of the RoI XT, when its state is

xu
i . The subset Fi (x

u
i ) is assumed to be described by a non-

zero volume cone characterized by a set of ni unit vectors
vF
i,m (xu

i ), m = 1, . . . , ni, depending on the UAV state xu
i

Fi (x
u
i ) = {xu

i + a1v
F
i,1 (x

u
i ) + · · ·+ aniv

F
i,ni

(xu
i ) |

am ∈ R+,m = 1, . . . , ni}. (2)

The mean of the vectors vF
i,1 (x

u
i ) , . . . ,v

F
i,ni

(xu
i )

vF
i (x

u
i ) =

( ∑
m=1,...,ni

vF
i,m (xu

i )

)
/

∥∥∥∥∥ ∑
m=1,...,ni

vF
i,m (xu

i )

∥∥∥∥∥ (3)

represents the FoV orientation of UAV i with state xu
i .

Let Di,k be the set of indexes of targets detected by UAV i
at time k. Assuming the state of UAV i is xu

i,k, one has

j ∈ Di,k ⇐⇒ xu
i,k ∈ D

(
xt
j

)
and xt

j ∈ Fi

(
xu
i,k

)
. (4)

For each detected target j ∈ Di,k , a noisy observation of
the location xt

j is obtained as

yi,j,k = hi

(
xu
i,k,x

t
j

)
+wi,j,k, (5)



where hi is the observation function of UAV i and wi,j,k

represents the measurement noise, bounded in some box
[wi,j,k]. Usually the box size varies according to environ-
mental conditions and is unknown [4], [9]. One assumes, that
a known box [wi] such that [wi,j,k] ⊂ [wi] can be obtained,
considering, e.g., worst-case measurement conditions.

D. Communications

The communication topology is described by the undi-
rected graph Gk = (Nu, Ek) at time k. The set of edges
Ek ⊂ Nu×Nu represents connections between the UAVs. We
assume that UAVs i and i′ are able to communicate at time k
if their positions xu

i,k and xu
i′,k satisfy some communication

condition c, i.e.,

c
(
xu
i,k,x

u
i′,k

)
⩾ 0 ⇐⇒ (i, i′) ∈ Ek. (6)

The communication condition c may account for the distance
between two UAVs, or for the presence of an obstacle
between them. The set of neighbors of UAV i is denoted
as Ni,k = {i′ ∈ Nu| (i, i′) ∈ Ek, i ̸= i′}.

E. Problem formulation

For each UAV i ∈ Nu, our aim is, at each time k, to
build a list Xi,k of set estimates Xi,j,k, j ∈ Li,k of target
locations, where Li,k is the set of already detected target
indexes. The set estimates have to be consistent with the
observations collected by UAV i and with the information
collected and transmitted by its neighbors. Moreover, each
UAV has be able to determine when all targets in the RoI
have been detected. This requires to be able to prove, from
a finite number of observations, that there is no target at a
location x of the RoI.

III. PROPOSED SOLUTION

Consider a generic UAV with state xu. According to the
target detection model (4), even if xt

j corresponding to the j-
th target is such that xt

j ∈ Fi (x
u), the target is not detected

by the UAV when xu /∈ D
(
xt
j

)
. To be detected, a target

located at xt
j has to be observed from a location x′ ∈ D

(
xt
j

)
.

The difficulty is that D
(
xt
j

)
is not known a priori.

Conversely, to prove that there is no target located at
x ∈ XT, since D (x) is unknown a priori, several conditions
have to be satisfied. First, a sufficient variety of observation
locations x′

ℓ has to be considered to be sure that at least
one of these observation locations is such that x′

ℓ ∈ D (x) .
Second, for each of these locations, the state x′

ℓ of a
UAV located at x′

ℓ has to be such that x′
ℓ = p (x′

ℓ) and
x ∈ Fi (x

′
ℓ) . Third, for all observations Fi (x

′
ℓ), one has to

conclude that there is no target at x. The fact that the cone
D (x) ⊂ D (x) is of non-zero volume ensures that only a
finite number of observation locations is required to state
the absence of target at some x ∈ X0.

Section III-A introduces L conic observation subsets for
all x ∈ XT. Choosing L sufficiently large ensures that
at least one of these subsets is included in D (x) for all
x ∈ XT. It is then possible to state that there is no target
at x provided that x has been observed from a location in

v1
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v9

O

Fig. 2. Partition in 8 cones of the set of points of view for O with x3 ⩾ 0;
the cone C1 (O) is shown in blue; its n1 = 4 vertices are v1, v2, v6, and
v5.

each of the L conic observation subsets and that no target
has been detected. Section III-B introduces L subsets of
locations where no target has been detected. To account
for the points of view from which the locations have been
observed, each of these subsets is associated to one of the L
conic observation subsets. Finally, the estimation uncertainty
is defined in Section III-C, which states the target detection
problem more formally.

A. Conic observation subsets

Consider L non-zero volume cones Cℓ (O) ∈ R3, ℓ =
1, . . . , L with apex O. Each cone Cℓ (O) is defined by a set
of nℓ unit-norm vectors vℓ,1 ∈ R3, . . . ,vℓ,nℓ

∈ R3, such that

Cℓ (O) = {a1vℓ,1 + · · ·+ anℓ
vℓ,nℓ

|
am ∈ R+,m = 1, . . . , nℓ}. (7)

Fig. 2 illustrates 8 cones with their apex O realizing a
partition of the half space with x3 ⩾ 0. The 8 cones form
a partition of the set of points of view with x3 ⩾ 0 from
which O may be observed.

Considering the cones Cℓ (O), ℓ = 1, . . . , L, one intro-
duces for all x ∈ R3 the translated cones Cℓ (x), ℓ =
1, . . . , L of apex x such that

x′ ∈ Cℓ (x) ⇔ x′ − x ∈ Cℓ (O) . (8)

The mean of the vectors vℓ,1, . . . ,vℓ,nℓ

vc
ℓ =

( ∑
m=1,...,nℓ

vℓ,m

)
/

∥∥∥∥∥ ∑
m=1,...,nℓ

vℓ,m

∥∥∥∥∥ , (9)

represents the orientation of the cones Cℓ (O) and Cℓ (x).
We assume that the cones C1 (x) , . . . ,CL (x) satisfy

∀x ∈ XT,∃ℓ ∈ {1, . . . , L} ,Cℓ (x) ⊂ D (x) , (10)

i.e., for every point x ∈ XT there exists a cone Cℓ (x)
included in D (x), and thus also included in D (x).

Consider the state xu
i,k of UAV i at time k and its FoV

Fi(x
u
i,k). The observed locations x ∈ Fi(x

u
i,k) do not nec-

essarily belong to the same conic observation subset. Thus,
one introduces the following subsets of the FoV Fi(x

u
i,k)

Fi,ℓ

(
xu
i,k

)
=
{
x ∈ Fi

(
xu
i,k

)
| xu

i,k ∈ Cℓ (x)
}
, (11)



ℓ ∈ {1, . . . , L}. Fi,ℓ(x
u
i,k) is the subset of locations x ∈

Fi(x
u
i,k) which are observed from a point of view belonging

to Cℓ(x).
Processing the information available from Fi(x

u
i,k) at

time k, one gets the set of detected targets Di,k and the
measurements yi,j,k, j ∈ Di,k. Using (4) and (5), one can
state that no target is detected at position x when observed
from a location xu

i,k = p(xu
i,k) belonging to Cℓ (x) either

when Di,k = ∅ or when ∀j ∈ Di,k,hi(x
u
i,k,x) /∈ [yi,j,k],

where [yi,j,k] = yi,j,k − [wi]. The latter condition indicates
that the candidate target location x is not consistent with the
measurement yi,j,k the measurement function hi, and the
noise bound [wi]. From these conditions, we can define

cℓ
(
xu
i,k,x

)
=



1 if x ∈ Fi,ℓ

(
xu
i,k

)
and Di,k = ∅,

1 if x ∈ Fi,ℓ

(
xu
i,k

)
and ∀j ∈ Di,k,hi

(
xu
i,k,x

)
/∈ [yi,j,k]

0 else.

When cℓ(x
u
i,k,x) = 1, no target is detected at position x

when observed from a location xu
i,k = p(xu

i,k) belonging to
Cℓ (x).

Theorem 1. Consider some x ∈ XT with detectability set
D (x), L conic observations subsets Cℓ (x), and a set of L
UAV states xu

ℓ, ℓ = 1, . . . , L, such that xu
ℓ = p (xu

ℓ) ∈ Cℓ (x)
and x ∈ Fℓ (x

u
ℓ). Assuming that Cℓ (x), ℓ = 1, . . . , L satisfy

(10), if cℓ (xu
ℓ,x) = 1 for all ℓ = 1, . . . , L, then there is no

target at x.

Proof: Assume that target j is located at x, i.e.,
xt
j = x, and that cℓ (x

u
ℓ,x) = 1 for all ℓ = 1, . . . , L.

Since ∃ℓ such that Cℓ (x) ⊂ D (x), we have xu
ℓ ∈ Cℓ (x) ⊂

D (x). Moreover, as x ∈ Fℓ (x
u
ℓ), according (4), target j

should have been detected, i.e., j ∈ Dℓ and a measurement
yℓ,j = hℓ

(
xu
ℓ,x

t
j

)
+ wℓ,j , with wℓ,j ∈ [wℓ] should be

available. Thus hℓ(x
u
ℓ,k,x) ∈ [yℓ,j,k] and cℓ(x

u
ℓ,k,x) = 0,

which contradicts the initial assumptions.
The observations obtained from UAVs with states xu

ℓ, ℓ =
1, . . . , L, could be taken by different UAVs and at different
time instants.

B. Estimates

Let Ii,k be the set gathering the information available to
UAV i up to time k. From Ii,k, UAV i is able to evaluate
Li,k, the list of indices of targets already detected or which
presence has been signaled by an other UAV of the fleet to
UAV i. Ii,k is used to evaluate a list of target set estimates
Xi,k = {Xi,j,k}j∈Li,k

such that xt
j ∈ Xi,j,k, for all j ∈

Li,k. Xi,j,k ⊂ X0 contains all possible values of the state of
the detected target j that are consistent with the information
available to UAV i at time k.

Additionally, UAV i maintains the subsets Xi,ℓ,k ⊂ X0,
ℓ = 1, . . . , L, of potential target locations x that have not
been observed from a point of view belonging to the cone
Cℓ (x) up to time k. The subsets Xi,ℓ,k, ℓ = 1, . . . , L, are

collected in the list X i,k =
{
Xi,ℓ,k

}
ℓ=1,...,L

. Moreover

Xi,k =
⋃

ℓ∈{1,...,L}

Xi,ℓ,k, (12)

is the set of potential target locations x which have not been
observed from at least one point of view in each cone Cℓ (x),
ℓ = 1, . . . , L.

C. Estimation uncertainty

At time k, the target estimation uncertainty for UAV i is
evaluated as

Φ
(
Xi,k,X i,k

)
=
∑

j∈Li,k

ϕ (Xi,j,k) +
1

L

L∑
ℓ=1

ϕ
(
Xi,ℓ,k

)
, (13)

where ϕ (X) represents a measure of X. Φ
(
Xi,k,X i,k

)
accounts for the set estimates Xi,j,k, j ∈ Li,k of detected
targets and for the sets Xi,ℓ,k, ℓ = 1, . . . , L, which have
to be further explored. The average estimation uncertainty
among all UAVs at time k is

Φk =
1

Nu

Nu∑
i=1

Φ
(
Xi,k,X i,k

)
. (14)

As in [7], the UAVs have to evaluate a sequence of control
inputs that minimizes the estimation uncertainty Φk. The
main difficulty compared to [7] lies in the fact that L sets
Xi,ℓ,k are taken into account, each associated with a specific
cone Cℓ, ℓ = 1, . . . , L. This requires first to be able to
determine the evolution of the various set estimates managed
by the UAVs when new measurements are available.

IV. EVOLUTION OF THE SET ESTIMATES

UAV i manages the sets Li,k, Xi,k, and X i,k introduced
in Section III-B. These sets are initialized at time k = 0
as Li,0 = ∅, Xi,0 = ∅, Xi,ℓ,0 = X0, ℓ = 1, ..., L,
for i = 1, . . . , Nu. In what follows, their evolutions are
described when new measurements are taken into account,
either coming from UAV i or from its neighbors.

A. Accounting for measurements

Assume that at time k+1, after processing the information
in Fi(x

u
i,k+1), UAV i obtains a measurement yi,j,k+1 for

each detected target j ∈ Di,k+1. Consequently, the informa-
tion gathered in Ii,k+1|k+1 is

Ii,k+1|k+1 = Ii,k ∪
{
Di,k+1, {yi,j,k+1}j∈Di,k+1

}
. (15)

Using the new information in Ii,k+1|k+1 and Fi(x
u
i,k+1),

three cases have to be considered for updating the sets Xi,k,
and X i,k.

When j ∈ Li,k and j ∈ Di,k+1, a known target j
is observed again. The new measurement yi,j,k+1 has to
be consistent with the previous target set estimate Xi,j,k.
Consequently,

Xi,j,k+1|k+1 =
{
x ∈ Xi,j,k |hi

(
xu
i,k+1,x

)
∈ [yi,j,k]

}
.

When j /∈ Li,k and j ∈ Di,k+1, a new target is
detected. The target location belongs to one of the non-empty



subsets Fi,ℓ(x
u
i,k) of the FoV Fi(x

u
i,k), and to one of the

corresponding set Xi,ℓ,k. Since determining which of these
sets contains the target is difficult, one gets

Xi,j,k+1|k+1 =
⋃

ℓ=1,...,L
Fi,ℓ(x

u
i,k

)̸=∅

{
x ∈ Xi,ℓ,k | hi

(
xu
i,k+1,x

)
∈ [yi,j,k]

}
.

When j ∈ Li,k and j /∈ Di,k+1, a previously detected and
known target j is not detected at time instant k + 1 and

Xi,j,k+1|k+1 = Xi,j,k. (16)

Once all information in Fi,ℓ(x
u
i,k+1) has been exploited,

one may update the sets Xi,ℓ,k, ℓ = 1, . . . , L by removing the
locations x ∈ Fi,ℓ(x

u
i,k+1) observed from xu

i,k+1 ∈ Cℓ (x),
thus

Xi,ℓ,k+1|k+1 = Xi,ℓ,k\Fi,ℓ

(
xu
i,k+1

)
. (17)

According to (12), one gets

Xi,k+1|k+1 =
⋃

ℓ∈{1,...,L}

Xi,ℓ,k+1|k+1. (18)

Fig. 3 shows different sets Xi,ℓ,k at time k considering
four cones Cℓ (O), ℓ ∈ {1, ..., 4}. The newly explored
space Xi,ℓ,k ∩ Fi,ℓ(x

u
i,k+1) at time k is shown in orange

for each UAV. The vertices of the associated cone Cℓ (x)
are highlighted in red. Fig. 3 (right) shows the resulting set
Xi,k. One observes that the orientation of the FoV of each
UAV determines the index ℓ of the set Xi,ℓ,k which size will
be the most significantly reduced using the measurement at
time k + 1. For example, the FoV of the red UAV has an
orientation opposite to the one of the cone C2, leading to a
significant reduction of Xi,2,k. The reduction of the size of
Xi,4,k is null, due to the relatively close orientation of the
FoV of the red UAV and that of the cone C4. This property
will have to be taken into account in the design of the control
inputs of the UAVs.

B. Accounting for communication

UAV i receives the information In,k+1|k+1 from each
UAV n ∈ Ni,k. Using that information, UAV i
first updates the list of known targets as Li,k+1 =⋃

n∈Ni,k∪{i} Ln,k+1|k+1. Then for each j ∈ Li,k+1, the
corrected target set estimate Xi,j,k+1 is evaluated as

Xi,j,k+1 =
⋂

n∈Ni,k∪{i} | j∈Ln,k+1|k+1

Xn,j,k+1|k+1, (19)

since Xi,j,k+1 has to be consistent with all observations from
the UAVs which have detected target j.

If, for some ℓ ∈ {1, ..., L}, UAV i or one of its neighbors
have observed x ∈ X0 from a location x′ ∈ Cℓ (x), it
is not necessary to observe x again from a location in
Cℓ (x). A target has either been detected, leading to one
of the sets Xi,j,k+1, j ∈ Ln,k+1|k+1, or no target has been
detected. In both cases, x can be removed from Xi,ℓ,k+1|k+1.
Consequently, for each ℓ ∈ {1, ..., L},

Xi,ℓ,k+1 =
⋂

n∈Ni,k∪{i}

Xn,ℓ,k+1|k+1. (20)

Finally, one has Xi,k+1 =
⋃L

ℓ=1 Xi,ℓ,k+1.

V. COOPERATIVE CONTROL DESIGN

The aim of the control input design is to compute, in a
distributed way, a sequence of control inputs ui,k:k+h−1 =
(ui,k, . . . ,ui,k+h−1) for each UAV i ∈ {1, . . . , Nu} that
minimizes the predicted estimation uncertainty (14)

Φk+h =
1

Nu

Nu∑
i=1

Φ
(
Xi,k+h,X i,k+h

)
, (21)

at time k + h where h ⩾ 1 is the prediction horizon
and Xi,k+h and X i,k+h depend on ui,k:k+h−1. The set-
membership estimators described in Section IV are combined
with a Model Predictive Control approach [10], [11], [12],
[13], to get a Set-Membership Model Predictive Control
(SM-MPC) design of the control inputs.

We assume that the UAVs compute their control inputs
sequentially. Once UAV i has evaluated ui,k:k+h−1, it is
broadcast to its neighbors, which then compute their se-
quence of control inputs accounting for those evaluated by
their neighbors. The order in which the evaluations are done
may clearly be optimized, but is left for future research.

A. Control input design

One assumes that UAV i has to evaluate ui,k:k+h−1

accounting for the sequences of control inputs already eval-
uated by a subset N C

i,k ⊂ Ni,k of its neighbors. Thus, one
assumes that all UAVs n ∈ N C

i,k have broadcasted their
sequence un,k:k+h−1 as well as their states xu

n,k, at time
k. Consequently, at time k, UAV i has access to Li,k, Xi,k,
X i,k, un,k:k+h−1, and xu

n,k, n ∈ N C
i,k. When UAV i has to

evaluate the sequence of control inputs minimizing Φk+h, it
has in fact to evaluate

ûi,k:k+h−1 = arg min
ui,k:k+h−1

Φ
(
X P

i,k+h,X
P
i,k+h

)
. (22)

Since one is unable to predict whether new targets will
be detected between time k + 1 and k + h, the predicted
values of Li,k+κ are set to LP

i,k+κ = Li,k, κ = 1, . . . , h.
Moreover, in the considered SM-MPC approach, the impact
of the control input sequence on Xi,j,k+κ, κ = 1, . . . , h is
difficult to evaluate and is thus neglected. This approximation
is reasonable, since most of the time, the contribution of
Xi,k+h to Φk+h is negligible compared to that of X i,k+h.
We thus focus on the evolution of the components of X i,k+κ,
κ = 1, . . . , h from control input sequences provided by
UAV i and its neighbors n ∈ N C

i,k. Consequently, (22) can
be simplified to

ûi,k:k+h−1 = arg min
ui,k:k+h−1

L∑
ℓ=1

ϕ
(
XP

i,ℓ,k+h

)
. (23)

We determine now the impact of the control input se-
quences of UAV i and of its neighbors n ∈ N C

i,k on the

predicted sets XP
i,ℓ,k+h. For all n ∈ N C

i,k, UAV i predicts
recursively xu,P

n,k+1, ...,x
u,P
n,k+h from xu

n,k and un,k:k+h−1

using (1). From xu,P
n,k+1, UAV i derives Fn,ℓ(x

u,P
n,k+1) as in
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Fig. 3. Evolution of Xi,ℓ,k , ℓ ∈ {1, ..., 4} when considering 3 UAVs; Each column shows a set Xi,ℓ,k in yellow and the corresponding cone Cℓ (O),
ℓ ∈ {1, ..., 4}; The last column represents Xi,k; The orange area indicates the set Xi,ℓ,k ∩ Fi,ℓ(x

u
i,k+1) at time k.

(11). Each UAV n ∈ N C
i,k will contribute to the reduction of

Xi,ℓ,k as follows

XP
i,ℓ,k+ = Xi,ℓ,k\

⋃
n∈N C

i,k

Fn,ℓ

(
xu,P
n,k+1

)
, (24)

ℓ ∈ {1, ..., L}. The previous approach can be applied
iteratively on XP

i,ℓ,k+ to evaluate the impact of un,k+κ−1,
n ∈ N C

i,k and κ = 1, . . . , h, as

XP
i,ℓ,k+κ+ = XP

i,ℓ,k+κ−1+\
⋃

n∈N C
i,k

Fn,ℓ

(
xu,P
n,k+κ

)
.

Finally, one may write

XP
i,ℓ,k+h+ = Xi,ℓ,k\

h⋃
κ=1

⋃
n∈N C

i,k

Fn,ℓ

(
xu,P
n,k+κ

)
.

In the same way, and for any control input sequence
ui,k:k+h−1, UAV i can predict recursively xu,P

i,k+1, ...,x
u,P
i,k+h

from xu
i,k and can derive Fi,ℓ(x

u,P
i,k+κ), κ = 1, ..., h, which

contributes to the reduction of XP
i,ℓ,k+h+ to get XP

i,ℓ,k+h

XP
i,ℓ,k+h = XP

i,ℓ,k+h+\
h⋃

κ=1

Fi,ℓ

(
xu,P
i,k+κ

)
.

Hence, (23) can finally be written as

ûi,k:k+h−1 = arg min
ui,k:k+h−1

L∑

ℓ=1

ϕ
(
XP

i,ℓ,k+h

)

= arg min
ui,k:k+h−1

L∑

ℓ=1

ϕ

(
XP

i,ℓ,k+h+\
h⋃

κ=1

Fi,ℓ

(
xu,P
i,k+κ

))
(25)

= arg max
ui,k:k+h−1

L∑

ℓ=1

ϕ

(
XP

i,ℓ,k+h+ ∩
h⋃

κ=1

Fi,ℓ

(
xu,P
i,k+κ

))
. (26)

The resulting sequence of control inputs leads to the
maximum average reduction of the size of XP

i,ℓ,k+h+.

B. Practical issues

In practice, obtaining ûi,k:k+h−1 from (26), when h
is limited may prove to be inefficient, especially when
XP

i,ℓ,k+h+ ∩ (
⋃h

κ=1 Fi,ℓ(x
u,P
i,k+κ)) = ∅ for all ℓ = 1, . . . , L,

whatever the sequence of control inputs. Such situation may
occur, e.g., when a UAV reaches the boundary of X0.

To address this issue, one observes that the orientation
of Fi(x

u
i,k+1) and of the cone Cℓ are quite different when

vF
i (x

u
i,k+1)

Tvc
ℓ < 0. In that case, ϕ(Fi,ℓ(x

u
i,k+1)) is likely to

be large and the UAV may be able to get observations able
to reduce Xi,ℓ,k, provided that Xi,ℓ,k∩Fi,ℓ(x

u
i,k+1) ̸= ∅. This

is, for example, the case with the red UAV in Fig. 3 for C2

and Xi,2,k.
When vF

i (x
u
i,k+1)

Tvc
ℓ > 0, the orientation of Fi(x

u
i,k+1) is

close to that of the cone Cℓ. In that case, ϕ(Fi,ℓ(x
u
i,k+1)) is

likely to be small. The observation performed at time k + 1
is likely to leave Xi,ℓ,k unchanged. This is the case with the
red UAV in Fig. 3 for C4 and Xi,4,k.

In order to get an efficient reduction of Xi,ℓ,k or XP
i,ℓ,k+h+,

it may thus be of interest to control UAV i in such a
way that vF

i (x
u
i,k+κ)

Tvc
ℓ is as negative as possible for some

ℓ ∈ {1, . . . , L}. This is nevertheless not sufficient, since one
should have, e.g., Xi,ℓ,k ∩ Fi,ℓ(x

u
i,k+1) ̸= ∅. Hence, when

XP
i,ℓ,k+h+ ∩ (

⋃h
κ=1 Fi,ℓ(x

u,P
i,k+κ)) = ∅ for all ℓ = 1, . . . , L

whatever the input sequences, while XP
i,ℓ,k+h+ ̸= ∅ for some

ℓ, it may be of interest to find a control input that drives
UAV i to a point of XP

i,ℓ,k+h+ which may lead to future
reductions via observations such that vF

i (x
u
i )

T
vc
ℓ < 0.

The point

x∗
i,ℓ,k+h = arg max

x∈XP
i,ℓ,k+h+

xTvc
ℓ,

is a good candidate for that purpose as it is the farthest point
of XP

i,ℓ,k+h+ from the origin along vc
ℓ.

For each cone Cℓ, ℓ = 1, . . . , L, one may then introduce
the cost function

Jℓ (ui,k, . . . ,ui,k+h−1) =

ϕ

(
XP

i,ℓ,k+h+ ∩
(

h⋃
κ=1

Fi,ℓ

(
xu,P
i,k+κ

)))
− α1

∥∥∥x∗
i,ℓ,k+h −

(
xu,P
i,k+h + λvF

i

(
xu,P
i,k+h

))∥∥∥
− α2v

F
i

(
xu,P
i,k+h

)
Tvc

ℓ. (27)



In the right-hand side of (27), the first term represents
the reduction of the measure of XP

i,ℓ,k+h+ that may be
obtained from successive measurements, as in (26). The
second term accounts for the Euclidian distance between
x∗
i,ℓ,k+h and a point xu,P

i,k+h + λvF
i (x

u,P
i,k+h) of the FoV of

UAV i when it is located at xu,P
i,k+h. The parameter λ can

be tuned to select specific locations in the FoV. Choosing
λ > 0 proves to be more efficient in practice. The last term
favors vF

i (x
u,P
i,k+h)

Tvc
ℓ < 0 as Jℓ is maximized. The tuning

parameters α1 and α2 adjust the weight of each term in the
cost function. The second and third terms of the right-hand
side of (27) are most often negligible compared to the first
term, as long as it is non-zero.

The control input for UAV i is obtained as the first element
of the control sequence

ûi,k:k+h−1 = arg max
ui,k:k+h−1

(
max

ℓ
(Jℓ (ui,k, . . . ,ui,k+h−1))

)
.

The cone Cℓ for which the reduction of the size of Xi,ℓ,k is
maximum is selected. This avoids changing too frequently
the orientation of the UAVs. The control inputs belong
to the set U of admissible control inputs. In practice, to
lighten computations, U is partitioned into discrete subsets
U0, . . . ,Uh−1.

VI. SIMULATIONS

In the proposed simulation, X0 is taken as [0, 300] ×
[0, 300]× [0, 100] m3. Obstacles, consist in boxes, randomly
placed with a minimal distance of 20m from each other.
They are uniformly scattered over [0, 300] × [0, 300] m2.
Their lengths and widths are uniformly distributed in
[40m, 60m]× [40m, 60m]. Their heights are uniformly dis-
tributed in [80m, 90m]. Only static targets at an altitude 0m
are considered in the RoI XT = [0, 300] × [0, 300] × [0, 0].
The location of the j-th target is then xt

j = (xj,1, xj,2, 0)
T,

j = 1, . . . , Nt. The locations are generated by distributing the
targets uniformly inside XT and discarding locations inside
of or too far from the obstacles.

The state of UAV i at time k consists of its location xu
i,k =

(xu
i,k,1, x

u
i,k,2, x

u
i,k,3)

⊤, flight path angle xu
i,k,4, heading angle

xu
i,k,5, yaw rate xu

i,k,6, and yaw rate derivative xu
i,k,7. The

control input is applied to xu
i,k,7. The UAV state vector xu

i,k

evolves according to



xu
i,k+1,1

xu
i,k+1,2

xu
i,k+1,3

xu
i,k+1,4

xu
i,k+1,5

xu
i,k+1,6

xu
i,k+1,7


=



xu
i,k,1 + T d cos

(
xu
i,k,4

)
cos
(
xu
i,k,5

)
V u

xu
i,k,2 + T d cos

(
xu
i,k,4

)
sin
(
xu
i,k,5

)
V u

xu
i,k,3 + T d sin

(
xu
i,k,4

)
V u

xu
i,k,4

xu
i,k,5 + T dxt

i,k,6

xu
i,k,6 + T dxt

i,k,7

ui,k


. (28)

The altitude xu
i,k,3 = 100m, the flight path angle xu

i,k,4 = 0,
and the speed module V u = 16.6 m/s are assumed constant.

The UAVs are equipped with identical optical seekers
able to observe a subset of the RoI. The angle between the
longitudinal axis of the UAV and the orientation of the seeker
is 3π/8. The apertures of the seekers are equal to π/4 in

Fig. 4. Map of the environment with obstacles, targets, and UAVs (left
side). Estimates X1,2,191 (yellow) and X191 (green) of UAV 1 (red) (right
side)

azimuth and in elevation. A set of 8 observation cones is
chosen as in Fig. 2. The vertices are at π/4, 3π/4, 5π/4,
and 7π/4 for the azimuth and at 0, π/3, and π for the
elevation. Consequently, v1 = (1/

√
2,−1/

√
2, 0)T, v2 =

(1/(2
√
2),−1/(2

√
2),

√
3/2)T,. . . and v9 = (0, 0, 1)T.

A noisy measurement of the first two components of xj

is obtained when target j is detected by UAV i at time k.
The noise is bounded in [−5m, 5m].

The communication condition (6) is defined as

c
(
xu
i,k,x

u
i′,k

)
= dc −

∥∥xu
i,k − xu

i′,k

∥∥ ,
where dc = 200m is the maximum communication range
and

∥∥∥xu
i,k − xu

i′,k

∥∥∥ is the distance between the locations of
the UAVs i and i′. Some results accounting for the impact of
the choice of dc are presented in [14]. The prediction horizon
for the SM-MPC is h = 2. The control input is computed
with a period T c = 0.5 s and is equal to the communication
period. The parameters of (27) are α1 = 0.002, α2 = 1, and
λ = 100. The exact values for α1 and α2 are less important
for the proper functionality of the control, nevertheless, their
ratio should give more importance to the value of ϕ in the
criterion of (27) and thus to the reduction of the sets.

The simulations have been carried out in Matlab where
Matlab’s polyshapes are used to represent sets. Polyshapes
simplify the handling of sets in R2 regarding Boolean and
geometrical operations. In higher-dimensions, subpavings,
i.e., unions of non-overlapping interval vectors [15] can be
used.

Fig. 4 is an example of the resulting simulation with
7 obstacles (gray boxes), 10 targets (black circles) and 4
UAVs. The plot on the left illustrates the simulation scenario
and the occluded area (darker gray) for the red UAV. This
information is not accessible for the UAVs. The plot on the
right shows the set estimates Xi,j,k (green) and Xi,k (yellow)
known to the red UAV.

The results in Fig. 5 are obtained for 30 independent
simulations with the same number of obstacles, targets, and
UAVs. The initial locations of the obstacles, targets, and
UAVs are changed in each simulation. Fig. 5 shows the
evolution with time of ϕ

(
Xk

)
=
∑Nu

i=1 ϕ
(
Xi,k

)
/Nu and of

the contribution to Φk of ϕ
(
Xℓ,k

)
=
∑Nu

i=1 ϕ
(
Xi,ℓ,k

)
/Nu,

ℓ ∈ {1, ..., L}, and ϕ (Xk) =
∑Nu

i=1 ϕ(
⋃

Xi,j,k∈Xi,k
Xi,j,k)/

Nu. The conic observation subsets are additionally grouped
into ℓ∗∗ = {1, 2, 3, 4}, cones with elevation bounds [0, π/3],



0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
×105

Time t (s)

M
ea
su
re
φ
(.
)
(m

2
)

Φk

φ
(
Xk

)

φ
(
X`∗,k

)

φ
(
X`∗∗,k

)

φ (Xk)

Fig. 5. Mean value of ϕ (Xk), ϕ
(
Xℓ∗,k

)
, and ϕ

(
Xℓ∗∗,k

)
for 30

simulations; 10 targets, 7 obstacles, and 4 UAVs; Mean values (line) and
root-mean-square error (area) of ϕ

(
Xk

)
.

and into ℓ∗ = {5, 6, 7, 8}, cones with elevation bounds
[π/3, π/2]. In Fig. 5, one can see that the evolution of
ϕ(Xℓ,k) is similar for all ℓ ∈ {1, ..., L}. One observes a
slightly faster decrease of ϕ(Xℓ∗∗,k) for indexes ℓ∗∗ of cones
with elevation in [0, π/3] compared to ϕ(Xℓ∗,k) for indexes
ℓ∗ of cones with elevation in [π/3, π/2]. This is caused by
the elevation of the FoV that leads to larger intersection with
Xi,ℓℓ∗∗,k for cones with low value of elevation.

Regarding the target set estimate, one observes that ϕ(Xk)
remains small compared to ϕ(Xℓ,k) and that the assumptions
considered in Section V-A are reasonable.

The reduction of ϕ(Xk) appears only after an area has
been explored from locations belonging to the L different
observation cones since Xi,k =

⋃
ℓ∈{1,...,L} Xi,ℓ,k.

The average computation time for a simulated time hori-
zon of 600 s was 2121 s on a Windows 10 machine with an
Intel Xeon W-2123 processor.

Some video sequences associated to the simulations are
at https://drive.google.com/drive/folders/
1djk7qQJCGBYPKVwD8nAey7C9f4bbQ65I?usp=
sharing

Note that in the video sequences some UAVs are leaving
the RoI during the search. This allows UAVs to turn and
better reduce the size of the unexplored sets.

VII. CONCLUSIONS

In this paper, we proposed and illustrated via simulations
a new algorithm for cooperative search of ground targets
by a fleet of UAVs. The approach accounts for potential
occultation of targets by unknown obstacles. This makes it
necessary to collect observations from a variety of points of
view to assess the presence or absence of targets.

Instead of considering a probability of non-detection that
could be difficult to tailor to the various relative positions
of the targets and obstacles, we introduce the notion of
detectability set for a target, used in a robust distributed
set-membership estimator able to provide set estimates of

the target locations. The resulting set estimates are guaran-
teed to contain the locations of all the targets within the
search area. The search strategy needs to be adapted to
provide trajectories that sweep the different points of view
required to conclude to the effective presence or absence
of a target at a given location. A multi-agent cooperative
control problem has then to be solved. A model predictive
control approach determines the UAVs control inputs that
minimize a measure of the set estimates accounting for
the detection performance. The distributed algorithms take
advantage of communications of data among neighboring
UAVs within communication range. The performance of the
resulting method is illustrated on simulations.

Future work includes accounting for varying sensor and
communication parameters. Further developments are also
foreseen to take into account moving targets.
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