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Abstract

Modeling soot formation is a very difficult task which has been assessed

by the numerical combustion community. Numerical simulations of turbu-

lent sooting flames remain very challenging due to the complexity of soot

formation phenomena, which implies development of elaborate soot mod-

els often too computationally demanding, or simplified soot models that are

limited to a small range of operating conditions of interest. Here an inno-

vative optimized global approach called virtual chemistry is proposed. It

consists of a mathematical formalism including virtual species and virtual

reactions, whose thermochemical parameters are optimized in order to de-

scribe a combustion system. Thermochemical properties are trained through

a genetic algorithm, employing a learning database made of reference flame

elements. This makes it possible to reproduce multiple combustion regimes

and operating conditions. The virtual chemistry approach reproduces then
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the structure of hydrocarbon-air flames, as well as predicting specific user-

defined pollutant species. The objective of this article is to extend the virtual

chemistry methodology for soot formation prediction. As the radiative heat

losses are important in sooting flames, a new radiative virtual model is also

developed to account for them. The final reduced chemistry consists of 12

virtual species and 6 virtual reactions considerably decreasing the computa-

tional time compared to detailed chemistry models. Simulations of 1-D and

2-D laminar ethylene-air sooting flames are performed to evaluate the virtual

soot and radiative models. Temperature, soot volume fraction and radiative

heat losses are well predicted and are in good agreement with the reference

data.
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1. Introduction

Hydrocarbon/air combustion occurring in rich and incomplete conditions

in practical industrial applications causes the formation of undesirable soot

particles. Soot formation results from both highly complex gas phase chem-

istry and particles dynamics including nucleation, condensation, coalescence,

and surface reactions such as surface growth and oxidation. Because of the

complexity of these physico-chemical phenomena, numerical computations

of gas chemistry together with particles dynamics request high amounts of

CPU time, which quickly become an issue for the simulation of practical

combustion chambers.

The chemical kinetics describing the gaseous phase evolution including
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soot precursors needs a large number of species and reactions [1] so that de-

tailed chemical mechanisms generally cannot be directly employed in CFD

of sooting flames. Three main routes for kinetics reduction techniques are in

principle possible [2, 3]: analytically-reduced chemistry, tabulated chemistry

and optimized global chemistry. Thanks to recent progresses in computa-

tional resources and in the automation of chemistry reduction techniques [4],

analytically-reduced schemes have been recently used for LES of turbulent

sooting flames [5, 6]. Despite impressive results, the remaining high number

of species and the numerical stiffness of the system make difficult the sys-

tematic use of analytic schemes in a practical combustion chamber design

process. Application of tabulated chemistry to soot formation is therefore

more popular. It consists in storing complex chemistry up to polycyclic aro-

matic hydrocarbons (PAHs) in look-up tables, parametrized by a reduced set

of thermochemical variables [7, 8]. Despite its very low CPU cost, the tabu-

lated chemistry approach is not able to well predict multi-regime combustion

[9]. Finally, literature presents a few attempts to optimize global mecha-

nisms to predict soot precursor formation [10–12]. In these studies, a global

mechanism is adopted to describe the gas chemistry and soot formation is

described using a simplified chemistry.

The complex interaction between reactive gas phase and solid particles

dynamics has motivated the development of a wide variety of mathemat-

ical approaches such as (sorted from high to low computational demand):

Lagrangian models [6, 13], Chemical Discrete Sectional Model (CDSM) [1,

14, 15], Aerosol Discrete Sectional model (ADSM) [8, 16–19], or Method of

moments (MOMs) [20–23]. In addition, empirical and semi-empirical meth-
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ods [10, 24–26] have also been developed to track the soot volume fraction

and particle number density, and eventually the particle size distribution [27].

Such pragmatic approaches are attractive because of their very low CPU cost,

but in contrast, they are limited to a small range of operating conditions. In

most cases, the parameters are a function of the fuel. New techniques using

machine learning algorithms, such as artificial neural networks (ANNs), have

been recently developed to tackle the soot prediction problem by using a

post-processing tool and were tested in steady and unsteady laminar coflow

flames [28, 29].

The objective of the present work is to develop a highly-reduced soot

model for the prediction of the soot volume fraction, encompassing both the

detailed soot precursor chemistry and the physics of particles dynamics inter-

actions. The impact of radiation on both gas and solid phase temperature,

which is of primary importance in sooting flames, will be included. For that

purpose, we follow a methodology based on a recent approach called virtual

chemistry, introduced by Cailler et al. [30] to predict pollutants formation

such as CO [31, 32] or NOx [33]. The virtual chemistry method consists in

building-up an optimized set of reduced virtual chemical reactions including

virtual species. A machine learning algorithm is applied to retrieve a set of

user-defined constraints such as the temperature profiles, the heat release or

targeted pollutant mass fraction. Here we focus on the prediction of the soot

volume fraction. Predictions of the particle number density and the particle

size distribution are not be considered in this article.

The virtual chemistry principle is presented in Section 2. In Section 3

an extension of the virtual approach is developed to handle soot formation
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in laminar flames. Also, a new procedure is developed in Section 4 to in-

clude radiative heat transfer in the computations. The optimization set-up

of the virtual models and the computation cases are presented in Section 5.

The virtual approach is then validated in 1-D premixed and non-premixed

ethylene-air configurations in Section 6. Finally, the virtual chemistry for-

malism is challenged in a 2-D premixed ethylene-air slot burner and a 2-D

non-premixed ethylene-air coflow burner from Santoro et al. [34] in Section 7.

2. Virtual chemistry basics

The originality of virtual chemistry approach resides in virtual species

and reactions whose thermodynamic and chemical properties are optimized

using machine learning algorithms in order to retrieve properties of reference

flames gathered in a learning database [30]. The virtual reactions between

the virtual species do not represent real chemical processes but they form a

mathematical architecture designed to reproduce user-specified targets such

as temperature and mass fractions of combustion products and pollutant

species.

Learning database 
(from detailed chemistry 

Simulations

Machine 
learning 

Algorithm

Virtual main 
mechanism 

(Heat release)

Virtual sub- 
mechanism  

per Pollutant

CFD 
Solver

Figure 1: Schematic presentation of virtual chemistry methodology.

A virtual scheme consists of a main block that models the heat release
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from the flame and sub-mechanisms dedicated to predict pollutants. Figure

1 depicts a schematic presentation of the approach. Virtual kinetic sub-

mechanisms have so far been developed to predict pollutants such as carbon

monoxide (CO) [31] and nitrogen oxides (NOx) [33].

The virtual main mechanism structure presented in [30, 31] has shown

that the following reaction scheme, composed of 8 virtual species and 2 virtual

reactions, accurately captures the heat release and the flame temperature for

a wide range of fuel compositions:

αMF,1F + αMOx,1Ox→ I (RM
1 )

I →
NM

P =4∑
k=1

αMPk,2
Pk (RM

2 )

In this mechanism, F represents the fuel, Ox the oxidizer, I a virtual in-

termediate species and Pk the virtual products. αMk,r is the stoichiometric

coefficient per unit mass of the kth virtual species in the rth virtual reaction,

and NM
P is the number of virtual products. The superscript M stands for

virtual main chemistry. The vector of reaction parameters χM (see Supple-

mentary Material) of the main mechanism is optimized through the machine

learning algorithm proposed by Cailler et al. [30].

Virtual species enthalpy and heat capacity are optimized to recover mix-

ture properties at equilibrium. Unity Lewis number is assumed for the virtual

species in the main mechanism.

3. Virtual soot sub-mechanism
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3.1. Scheme architecture

As shown in Fig. 2(top), a classical soot model requires first a fine descrip-

tion of the detailed chemistry leading to the soot precursor formation (C2H2,

PAHs, etc.) [1]. Then, the formation of the particles is described through

a one-precursor (C2H2 or PAH) nucleation model [26, 35] or multiple-PAHs

approach [1, 36]. Some approaches consider that PAHs grow until they reach

an intermediate state, called dimer, between the gas and solid phases [21, 22].

Finally, the solid phase is modeled employing dedicated particles interaction

and distribution formalisms such as for instance sectional [8] or MOMs [22]

approaches. These successive modeling stages lead to the prediction of the

soot characteristics such as volume fraction, particle number density and

particle size distribution.

Most of chemical reduction methods, such as tabulated [37] or analytically-

reduced [4] approaches, are limited to the gas-phase kinetics. The description

of the solid phase, based on classical approaches, remains very time consum-

ing. The virtual soot sub-mechanism proposed in the present work (Fig. 2

bottom) has the advantage of reducing the overall process by targeting the

final quantities of interest only.

The soot volume fraction f sv is here targeted. The following chemical

structure is proposed to predict the formation of the soot particles species,

represented by the virtual chemical species S:

αMF,1F + αMOx,1Ox→ αsV1,1V1 + αsV3,1V3 (Rs
1)

V1 → αsS,2S + αsV2,2V2 (Rs
2)
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Figure 2: Diagram of soot formation models; top: current soot models, bottom: virtual

soot chemistry approach.

S + V1 + V2 → αsS,3S + αsV3,3V3 (Rs
3)

S +Ox+ V2 → Ox+ 2V3 (Rs
4)

where V1, V2 and V3 are three virtual species and αsk,r is the stoichiometric

coefficient per unit mass of the kth virtual species in the rth virtual reaction.

The superscript s stands for virtual soot sub-mechanism.

The soot production is initiated by reaction Rs
1. The rate of progress of

this reaction must be equal to that of reaction RM
1 in order to be consistent
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with the fuel oxidation through the main virtual mechanism. The three

virtual species V1, V2 and V3 together with virtual reactions Rs
2, Rs

3 and

Rs
4 represent the nucleation, surface growth and coagulation, and oxidation

of soot particles. This approach encompasses all the mechanisms of soot

formation in both gas and solid phases, without modeling individually each

physical step.

3.2. Kinetic parameters optimization

The virtual soot sub-mechanism reaction rates of reactions Rs
1 through

Rs
4 are expressed as follows:

qs1 = [F ]n
M
F,1 [Ox]n

M
Ox,1AM1 exp

(
−
EM
a,1

RT

)
, (1)

qs2 = [V1]n
s
V1,2As2 exp

(
−
Es
a,2

RT

)
, (2)

qs3 = [S]n
s
S,3 [V1]n

s
V1,3 [V2]n

s
V2,3As3 exp

(
−
Es
a,3

RT

)
, (3)

qs4 = [S]n
s
S,4 [Ox]n

s
Ox,4 [V2]n

s
V2,4As4T

βs
4 exp

(
−
Es
a,4

RT

)
, (4)

where Es
a,r is the the activation energy, Asr is the pre-exponential constant,

nsk,r is the order of species k in reaction r, and βsr is the temperature depen-

dence exponent. As previously mentioned, kinetic rate parameters of Eq. 1

are given by the first reaction RM
1 of the main mechanism.
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The ensemble of virtual chemical parameters of the virtual soot sub-

mechanism constitutes a vector χs = {Asr, Es
a,r, α

s
k,r, n

s
k,r, β

s
4} to be optimized.

It has been observed that the vector χs depends on the nature of the fuel

and of the mixture fraction Z [31, 33]. Also, the mass conservation imposes:

αsV1,1 + αsV3,1 = 1, αsS,2 + αsV2,2 = 1 and αsS,3 + αsV3,3 = 3.

The kinetic parameters in vector χs are optimized by minimizing the

following cost function:

Cs(χs) =
Nc∑
i=1

(
ws

∥∥f sv,i − fdv,i∥∥L2∥∥fdv,i∥∥L2

+ (1− ws)

∥∥gradf sv,i − gradfdv,i
∥∥
L2∥∥gradfdv,i

∥∥
L2

)
,

(5)

where f sv,i and fdv,i are the soot volume fractions of the ith flame solution,

respectively computed with virtual and detailed reference chemistries and

gradfv,i indicates the gradient of fv,i. The superscript d stands for reference

detailed chemistry solutions. Nc is the number of 1-D reference flame solu-

tions which constitute the learning database. The weight ws is set to 0.9, as

in the virtual main mechanism [31].

The soot volume fraction f sv is calculated from the virtual soot mass

fraction Y s
S :

f sv =
ρ

ρs
Y s
S (6)

where ρ is the gaseous mixture density, and ρs is the soot density considered

constant, ρs =1800 kg m−3.
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4. Radiative heat transfer modeling

Radiative heat transfer in the gas phase may significantly impact the heat

release and the flame temperature. To account for this phenomenon, radia-

tive gas properties of the reactive flow must also be included in the optimiza-

tion process of the virtual main mechanism. These properties depend on gas

temperature and mixture composition [38]. For sooting flames, the Planck

mean absorption coefficient κPlanck can be decomposed as κPlanck = κgas+κsoot

[39], where κgas and κsoot correspond to gas and solid phases, respectively.

4.1. Gas radiation model: virtual approach

The gaseous Planck mean absorption coefficient κMgas is expressed with the

polynomial development presented in [38]:

κMgas(Z,T ) = γM0 (Z) + γM1 (Z)(1000/T )

+ γM2 (Z)(1000/T )2 + γM3 (Z)(1000/T )3

+ γM4 (Z)(1000/T )4 + γM5 (Z)(1000/T )5,

(7)

where the polynomial coefficients γMl (Z) are chosen to retrieve solutions of

canonical combustion configurations including radiative heat transfer. The

vector of polynomial coefficients ΓM = {γM0 , γM1 , . . . γM5 } is in practice op-

timized through the evolutionary algorithm proposed by Cailler et al. [30].

The optimization procedure consists in minimizing the following cost func-

tion:
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CM(ΓM) =
Nc∑
i=1

(
wM

∥∥TMi − T di ∥∥L2∥∥T di ∥∥L2

+ (1− wM)

∣∣SML,i − SdL,i∣∣∣∣SdL,i∣∣
)
,

(8)

where Nc is the number of flame elements included in the learning database,

and SdL,i and T di are the targeted reference laminar flame speed and tempera-

ture retained for the optimization, respectively. The weight wM is set to 0.9,

as in Ref. [31].

4.2. Soot particles radiation model

The Planck soot absorption coefficient κvsoot is expressed from the soot

volume fraction f sv predicted by the virtual soot sub-mechanism and the gas

temperature T given by the main mechanism:

κvsoot = αf svT, (9)

where α is a modeling constant set to 1302 m−1K−1 as in Ref. [39].

5. Virtual schemes optimization set-up

5.1. Learning database and virtual scheme optimization

The reference flame database is generated using the detailed soot kinetics

model proposed by the CRECK Modeling Group [1] which consists of 16797

reactions and 297 species. Among these species, 20 lumped pseudo-species

called “BIN” are considered. BIN1 through BIN4 correspond to heavy PAHs

with 20, 40, 80 and 160 carbon atoms respectively. The nascent soot par-

ticles are classified as BIN5 and they grow from spherical shape (BIN5 to
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BIN12) until they take an aggregate form (BIN13 to BIN20) [1]. This kinetic

mechanism has been extensively validated on several experimental data in

many different systems [1, 15, 40]. This mechanism is used here for all de-

tailed chemistry ethylene-air combustion simulations. Radiative heat losses

are calculated using the optically-thin narrow-band radiation model based

on Ref. [41], which is included in REGATH package [42]. The reference soot

volume fraction is defined from the detailed chemistry flame solutions as

fdv = (ρ/ρs)Y
d
soot, where Y d

soot =
∑

i YBINi
for i = 5, 6, . . . , 20 [1].

The virtual main mechanism is trained by employing the genetic algo-

rithm detailed in [31]. The reference flame solutions, used to evaluate the

cost function given by Eq. 8, comprise 1-D freely-propagating laminar pre-

mixed flames including radiative heat transfer for a range of equivalence

ratios covering the flammability limits (φ = 0.5 and φ = 3.0). It has been

shown in [30, 31] that a learning database with similar limits was sufficient

to recover heat release and temperature in both premixed and non-premixed

flame regimes.

However, to account for multi-mode combustion in the virtual soot sub-

mechanism, the learning database is made of both 1-D freely-propagating

premixed flames and 1-D counterflow non-premixed flames as in [33]. The

database includes 11 1-D premixed flames at atmospheric pressure and initial

temperature of 298 K with equivalence ratios from φ = 1.8 through φ = 2.8,

by a step of ∆φ = 0.1. It also includes 6 non-premixed counterflow flames,

where pure ethylene at 298 K is injected against air at 298 K, covering strain

rates from a = 6s−1 to a = 95s−1, see Table 1. The total number of operating

conditions Nc in the database is Nc = N fpf
c + N cf

c = 17, with N fpf
c = 11 and
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N cf
c = 6.

Virtual scheme Reference archetype Operating condition

Main mechanism
Adiabatic and Radiative premixed φ = {0.5, · · · , 3.0}; ∆φ = 0.1

flames

Soot sub-mechanism
Adiabatic and Radiative premixed φ = {1.8, · · · , 2.8}; ∆φ = 0.1

and non-premixed flames a = {6, 10, 25, 45, 60, 95} s−1

Table 1: List of operating conditions of 1-D flames included in the learning database.

All detailed chemistry simulations include thermophoretic effects for all

species BIN5 to BIN20. Unity Lewis number is assumed for virtual species

present in the main and virtual mechanisms excepted for the virtual soot

species S for which LeS = 25 is considered. This value is estimated by aver-

aging the Lewis number of BINs found in the detailed mechanism. See the

Supplementary Material for more details. All flame calculations, with both

detailed and virtual chemistry, are performed using the REGATH package

[42].

The optimized reaction rate parameters to account for premixed and non-

premixed flames in the virtual soot sub-mechanism are given in the Supple-

mentary Material. The convergence of the cost function Cs(χs) defined in

Eq. 5 is illustrated in Fig. 3. Here, several realizations of the optimization

procedure have been conducted to ensure that the final solution corresponds

to a global minimum cost function value as suggested in [31].

5.2. Computed cases

The virtual mechanisms and radiation models are now challenged on 1-

D and 2-D ethylene-air flames. The following series of computations are

performed:
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Figure 3: Evolution of the cost function Cs(χs) during the optimization process. Each line

represents a single realization and the best kinetic parameters set χs corresponds to the

lowest value of the cost function Cs(χs) [31].

• D-A: Adiabatic flames using the detailed CRECK mechanism [1];

• D-R: Non-adiabatic flames using the detailed CRECK mechanism [1].

Only gas radiation is considered using the narrow-band radiation model

based on Ref. [41] for 1-D configurations, and on that of [38] for 2-D

configurations;

• D-Rs: Non-adiabatic flames using the detailed CRECK mechanism

[1]. Gas radiation is modeled as in the case D-R, whereas solid phase

radiation is modeled using Eq. 9;

• V-A: Adiabatic flames using the developed virtual mechanisms;

• V-R: Non-adiabatic flames using the the virtual mechanism. Only gas

radiation is considered;
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• V-Rs: Non-adiabatic flames using the the virtual mechanism. Both gas

and particle radiation are considered.

Table 2 summarizes the computed cases, indicating the kinetic model and

radiative effects involved.

Computed case D-A D-R D-Rs V-A V-R V-Rs

Kinetic model Detailed mechanism Virtual mechanism

Adiabatic
√

− −
√

− −

Gas radiation −
√ √

−
√ √

Soot radiation − −
√

− −
√

Table 2: Summary of computed cases. Kinetic model and radiative effects involved are

indicated.

6. 1-D laminar ethylene-air flame computations

6.1. Validation of virtual main mechanism

6.1.1. 1-D freely-propagating premixed flames

Simulations of 1-D freely-propagating premixed ethylene-air flames are

first conducted. The laminar consumption speed SL is plotted in Fig. 4 as

a function of the equivalence ratio φ. The virtual approach predicts very

well the flame speed in all conditions. As the radiative heat losses take

place essentially in hot gases, the flame front and the flame speed SL are not

affected by radiation.
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Figure 4: Evolution of the laminar flame speed of 1-D premixed ethylene-air flames (P = 1

atm, T0 = 298 K): comparison between the four cases D-A, D-R, V-A, V-R.

Figure 5: Impact of radiative heat losses on temperature profile in a 1-D freely-propagating

premixed ethylene-air flame (φ = 2.3): comparison between the four cases D-A, D-R, V-A,

V-R.
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Figure 6: Evolution of the maximum temperature Tmax with the strain rate a in 1-D non-

premixed ethylene-air counterflow flames: comparison between the four cases D-A, D-R,

V-A, V-R.

Figure 5 presents temperature profiles obtained at φ = 2.3 for four cases

D-A, D-R, V-A, and V-R. Both the adiabatic and non-adiabatic virtual mech-

anisms reproduce very well the reference temperature profiles. The impact

of radiation on the temperature, especially visible for long distances (long

residence times), is well captured by the virtual chemistry and radiation

models.

6.1.2. 1-D non-premixed counterflow flames

The gas phase virtual radiative model is validated in this section for

non-premixed flames. Four series of 1-D ethylene-air counterflow flames are

computed at different strain rates a again for the four conditions D-A, D-

R, V-A, and V-R. Figure 6 illustrates the evolution of the maximum flame

temperature with the strain rate. In both adiabatic and radiative cases,
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the virtual main chemistry and virtual radiative models predict very well

this evolution for a very wide range of strain rates, from equilibrium up to

quenching conditions. As expected, radiative heat losses affect the maximum

flame temperature at very low strain rates.

6.2. Validation of soot virtual sub-mechanism and virtual radiative model

6.2.1. 1-D freely-propagating premixed flames

Figure 7: Temperature (top) and soot volume fraction (bottom) profiles of premixed

ethylene-air flames, with and without considering solid particle radiation for different

equivalence ratios φ = 2.1 (left) and φ = 2.4 (right): comparison between the six cases:

D-A, D-R, D-Rs, V-A, V-R, V-Rs.
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Figure 8: Temperature and soot volume fraction profiles of adiabatic and non-adiabatic

1-D non-premixed counterflow flame using detailed and virtual models, cases D-A and

V-A. Soot volume fraction profile obtained by a virtual soot sub-mechanism optimized on

a learning database including only 1-D premixed flames (V-A-Prem.) is also plotted. The

region covered by the learning database of only 1-D premixed flames within the extinction

limits is shown by the grey area.

Temperature and soot volume fraction profiles are shown in Fig. 7 for

equivalence ratios equal to 2.1 and 2.4, respectively. Solutions are plotted

for the six simulation cases D-A, D-R, D-Rs, V-A, V-R and V-Rs.

Again, for both φ = 2.1 and φ = 2.4, comparisons between D-A/V-A and

D-R/V-R results in Fig. 7 (top) show that the virtual main mechanism ac-

curately captures the temperature profiles with and without considering gas

radiation. The soot volume fraction profiles, plotted in Fig. 7 (bottom) are

also very well predicted by the virtual soot sub-mechanism for these operating

conditions. The soot production, enhanced by radiative heat transfer, also

significantly increases by more than 2 orders of magnitude between φ = 2.1
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Figure 9: Influence of the virtual soot species S Lewis number, LeS , on soot volume

fraction in a counterflow ethylene-air flame.

Figure 10: Evolution of the maximum temperature Tmax (left), and maximum soot vol-

ume fraction fmax
v (right) as a function of strain rate a in 1-D counterflow non-premixed

ethylene-air flames: comparison between for the four cases D-A, V-A, D-Rs, and V-Rs.

and φ = 2.4.

The influence of solid phase radiation on temperature is only significant
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for φ = 2.4, where the soot volume fraction is high enough (cases D-Rs

and V-Rs). The virtual model which includes both gas and solid particles

radiation predicts very well the temperature and soot reference solutions.

6.2.2. 1-D non-premixed counterflow flames

Figure 8 presents temperature and soot volume fraction profiles for an

adiabatic 1-D non-premixed counterflow flame (strain rate a = 10 s−1) com-

puted with both detailed (D-A) and virtual (V-A) chemistry approaches.

Pure ethylene is injected from right while air is injected from left. Soot

formation takes place in a rich region located between the maximal flame

temperature position (x = −4mm) and the stagnation plane (x = 0). The

soot volume fraction is well predicted by the virtual soot sub-model trained

to capture both premixed and non premixed flame archetypes as indicated

on Table 1.

It is interesting to focus on the dashed-dotted profile that shows the soot

volume fraction profile obtained with a virtual scheme sub-mechanism (V-

A-Prem.) trained to target only 1-D premixed flames. The target premixed

flames are accessible only within the flammability limits, highlighted by the

grey area in Fig 8. The peak of the soot volume fraction is located at the

rich side of the grey zone. It can be seen that such target flame is unable to

capture the soot produced here above the rich extinction limit.

As indicated in Sec. 5.1, the virtual scheme used in case V-A has been

optimized with a Lewis number of species S set to LeS = 25 whereas Le=1 has

been assumed for all other virtual species (see the Supplementary Material

for the choice of LeS = 25). As soot particles diffusion is very small compared

to gaseous species, assuming unity Lewis also for the soot would have been
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unrealistic. This is illustrated in Fig. 9 where the solution obtained with

Le=1 for all species considerably underestimates the soot production.

Finally, the evolution of maximum temperature Tmax and maximum soot

volume fraction fmax
v as a function of strain rate a are presented in Fig. 10 for

adiabatic simulation cases D-A and V-A as well as non-adiabatic cases D-Rs

and V-Rs including both gaseous and solid phases radiative heat losses. The

virtual soot sub-mechanism predicts well the soot volume fraction maximum

value fmax
v of 1-D counterflow ethylene-air flames for a large range of strain

rates a.

6.3. Application of virtual models to burner-stabilized flames

The reduced chemistry approach is now applied to a burner-stabilized

ethylene-air flame studied within the International Sooting Flame (ISF) Work-

shop [45]. Two equivalence ratio of φ = 2.34 and φ = 2.64 are investigated

at atmospheric pressure and temperature of T = 298 K. Simulations are

conducted by imposing at the inlet the fresh gases injection velocity mea-

sured in experiments [43, 44] (6.73 cm·s−1). Figure 11 (top) show that for

both detailed and virtual radiative simulations, numerical prediction of tem-

perature agrees very well with experimental measurements [43]. Soot vol-

ume fraction profiles plotted in Fig. 11 (bottom), exhibit also a fair agree-

ment between simulations and experimental data. Therefore, even if burner-

stabilized flames where not included in the learning database, the virtual

chemistry is able to capture their chemical structure.
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Figure 11: Burner-stabilized premixed ethylene-air flames for φ = 2.34 and φ = 2.64.

Comparison of numerical results (D-Rs and V-Rs) of temperature (top) and soot volume

fraction (bottom) profiles against experiments; (M-L) Menon et al. [43] and (X-S, X-L)

Xu et al. [44].

7. Application of virtual models to 2-D laminar flames

In this section, the three simulation cases V-A, V-R and V-Rs (see Table

2) are challenged in two two-dimensional laminar flame configurations. First,

a 2-D premixed ethylene-air slot burner is simulated. Next, the non-premixed

Santoro coflow burner [34] from ISF workshop is studied.
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Figure 12: Premixed slot burner: geometry of the numerical setup used in simulations.

7.1. 2-D laminar ethylene-air premixed slot burner

The geometry of the premixed slot burner is shown in Fig. 12. The

domain is long enough to allow soot formation. The cell size in the flame

front are ∆x ∼ 0.03 mm, leading to 15-20 cells across the thermal layer.

Boundary conditions are indicated in Fig. 12. The burner walls are

adiabatic. The computation is carried out on half of the domain because of

the symmetric geometry of the burner. Symmetry is also assumed for outer

lateral boundary conditions. Ethylene-air mixture with equivalence ratio of

φ = 2.5 at T = 298 K and p = 1 atm is injected at the inlet. A parabolic axial

velocity distribution, with mean axial velocity um = 30 cm · s−1, is imposed

to mimic a fully-developed channel flow. The six numerical cases presented in

Sec. 5.2 are computed. Simulations are carried out with the laminarSMOKE
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package [46, 47] based on the OpenFOAM framework, designed to handle

arbitrarily complex kinetic mechanisms.
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Figure 13: Premixed Slot Burner: comparison of a) temperature and b) soot volume

fraction fields using the virtual and detailed models, case V-R (left) and case D-R (right).

Figure 13 compares the virtual soot sub-mechanism (case V-R) and the

detailed model (case D-R) results. The analysis of predicted temperature

fields shows the ability of the virtual chemistry to capture accurately the

flame position. Flame heights of 6 mm and 6.3 mm are found respectively

for D-R and V-R cases (5 % error). A good agreement is also observed on the

soot volume fraction fields. Temperature and soot volume fraction profiles

along the centerline are plotted in Fig. 14 for the six simulation cases D-A,
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D-R, D-Rs, V-A, V-R and V-Rs. All temperature profiles show very good

agreement with the detailed chemistry simulations. The temperature in all

cases differs in about 2 to 3%. Heat losses are fairly captured by the virtual

radiation model. The soot volume fraction profiles are also well predicted

by the three approaches. The maximum soot volume fraction in case (c)

presents an error of about 15 %, which is the maximum between the three

cases. When radiative effects are included, earlier soot inception is observed

as in 1-D flames results.

Figure 14: Premixed Slot Burner: Temperature (black) and soot volume fraction (green)

profiles along the centerline. Comparison of simulation (a) between cases D-A and V-A,

(b) between cases D-R and V-R, and (c) between cases D-Rs and V-Rs.

Figure 15 displays the radial temperature profiles for the six simulation

cases at two different heights above the burner z = 3 mm and z = 20 mm.

At z = 3 mm, the difference of the flame thickness is about 0.1 mm between

detailed (D-A, D-R, D-Rs) and virtual (V-A, V-R, V-Rs) results. Further

downstream at z = 20 mm, the temperature profile is almost uniform and

exhibits a difference of less than 2% between detailed and reduced simula-

tions.
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Figure 15: Premixed Slot Burner: radial temperature profiles at two different heights

above the burner, z = 3 mm (blue) and z = 20 mm (red). Comparisons (a) between cases

D-A and V-A, (b) between cases D-R and V-R, and (c) between cases D-Rs and V-Rs.

Figure 16 displays the radial soot volume fraction profiles for the six

different cases at z = 3 mm and z = 20 mm. At z = 3 mm, the virtual

adiabatic model (a) underestimates the peak of soot volume fraction given

by the reference solution by two orders of magnitude. The discrepancies are

reduced to a factor of two when radiative effects are included. At z = 20

mm, the mismatch is even limited to 25 % for the three cases.

Table 3 presents a comparison of the computational cost required by

virtual and detailed chemistries to simulate the premixed slot burner. A

speed-up of more than 2000 is observed when using the virtual scheme.

7.2. 2-D laminar Santoro Coflow Burner

The non-premixed flame experimentally studied by Santoro et al. [34] is

now computed with the virtual soot model. The burner consists of a central

pipe fed with pure ethylene surrounded by a concentric tube for air injection.

The fuel and air flow rates are 3.85 cm3·s−1 and 713.3 cm3·s−1, respectively.
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Figure 16: Premixed Slot Burner: radial soot volume fraction profiles at two different

heights above the burner, z = 3 mm (blue) and z = 20 mm (red). Comparisons (a)

between cases D-A and V-A, (b) between cases D-R and V-R, and (c) between cases D-Rs

and V-Rs.

Physical time
Computational time using Computational time using

Speed-up
Virtual Chemistry Detailed chemistry

1 ms 30 s 17.5 h 2100

50 ms 25 min 850 h 2040

Table 3: Comparison of the CPU time (per core) with the virtual scheme (12 species, 6

reactions) and the detailed CRECK scheme [1] (297 species and 16797 reactions) . The

numerical cost has been estimated by computing the 2-D premixed slot burner on 120

cores (Intel Xeon CPU E5-2670), without accounting for radiation.

Further details on the experimental setup are given in [34].

The 2-D numerical domain is 152 mm long and 47.5 mm wide. Following

ISF recommendations [45], symmetry condition is retained at the centerline

and slip walls are prescribed for the outer lateral boundary. The cartesian

grid is made of 26270 cells with a characteristic size of ∆x ∼ 0.075 mm in

the flame region, close to values used in [48]. The inlet fuel velocity follows a
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parabolic distribution adapted to fully-developed flow with a mean velocity

ufuel
m = 3.98 cm · s−1. Constant velocity ucoflow

m = 8.9 cm · s−1 is prescribed at

the air inlet. Both fuel and air are injected at T = 298 K. The inner tube

wall temperature is imposed at T = 350 K. Simulations are carried out with

the laminarSMOKE package [46, 47] based on the OpenFOAM framework.
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Figure 17: Santoro Coflow Flame: Temperature (left) and soot volume fraction (right)

fields using the virtual chemistry and radiative models.

The virtual chemistry simulation includes both gas and solid phases radi-

ation phenomena (V-Rs), which are both significant in this configuration [49].

2-D iso-contour of temperature and soot volume fraction fields are shown in

Fig. 17.

Radial profiles of temperature are plotted in Fig. 18 (a) for two heights

above the burner at z = 10 mm and 50 mm. Numerical results using the
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(a) (b)

Figure 18: Santoro Coflow Flame: Temperature profiles; (a) radial, and (b) axial. Com-

parison between detailed (D-Rs), solid lines, and virtual chemistry (V-Rs), dashed lines.

virtual non-adiabatic models (V-Rs) are in good agreement with detailed sim-

ulation (D-Rs) results and experimental data from [49]. The relative errors

for the maximum temperature between numerical results and experimental

data are about 5 % at z = 10 mm and 10 % at z = 50 mm. Both numerical

models overestimate the flame thickness. The temperature peak positions

are shifted by about 1.5 mm at z = 10 mm and about 0.5 mm at z = 50 mm.

The centerline temperature profiles, plotted in Fig. 18 (b), show an over-

prediction of 15 % by the virtual model (V-Rs) in the interval 15 < z < 45

mm, while the detailed chemistry model (D-Rs) underpredicts for z < 30

mm and overpredicts for z > 30 mm.

Radial profiles of soot volume fraction are presented in Fig. 19 (a), at

z = 10 mm and z = 50 mm, downstream the burner exit. The virtual

model (V-Rs) fairly reproduces the soot volume fraction profiles compared
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(a) (b)

Figure 19: Santoro Coflow Flame: (a) Soot volume fraction radial profiles at two different

heights above the burner, z = 10 mm (blue) and z = 50 mm (red), (b) Axial evolution of

the maximum soot volume fraction in the radial direction. Comparison between detailed

(D-Rs), solid lines, and virtual chemistry (V-Rs), dashed lines.

to detailed reference results (D-Rs) at both heights. At z = 10 mm, the

difference in the maximum soot volume fraction is about 40 %. Figure 19 (b)

shows the axial evolution of the maximum soot volume fraction in the radial

direction. The virtual approach (V-Rs) reproduces the maximum value of fv

as in the detailed simulations (D-Rs), but with a peak position 10 mm closer

to the burner exit. Soot is not well oxidized at the flame tip when using the

virtual model (V-Rs), where the difference of maximum soot volume fraction

compared to the detailed model results (D-Rs) is about 50 % at z = 60 mm.

Axial profiles of radially-integrated soot volume fraction, defined as Fv(z) =∫
r

2πfv(r, z)rdr, are shown in Fig 20. In addition to D-Rs solutions, detailed

chemistry solutions obtained by other groups are also indicated. Simulation
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results of Blacha et al. [18] have been obtained using a detailed chemistry

mechanism including 71 species and 803 reactions. Soot particles distribution

has been modeled with a sectional method whereas radiative heat transfer

from gas and soot particles are captured with the assumption of an optically

thin medium according to Di Domenico et al. [50]. Simulation results of

Akridis and Rigopoulos [51] have been obtained using a detailed mechanism

including 75 species and 529 reactions [52]. A discretized population balance

equation for soot the particles is solved, where its source terms closures are

based on different models from the literature [53–55]. An optically thin ap-

proximation for the radiation of gas species (H2O, CO2 and CO) and soot

particles from Kronenburg et al. [56] is here considered. Finally, experimen-

tal measurements from ISF database [45] are also added in this figure (blue

circles).

These results highlight qualitative differences between the three detailed

soot formation mechanisms solutions. Soot volume fraction tendency pre-

dicted by the virtual soot sub-mechanism is consistent with the three com-

plex chemistry solutions and with the experimental data: soot particles are

produced in the first half of the domain before being consumed downstream.

Deepening the analysis of the differences between the virtual chemistry so-

lutions and experimental data is not relevant here, as the accuracy of the

reduced model is naturally limited to that of the reference detailed mecha-

nism retained (CRECK) to generate the learning database.

In comparison with the CRECK detailed mechanism (D-Rs), the rate

of soot oxidation process downstream the burner is underestimated by the

virtual scheme (V-Rs). We attribute this drawback to the flame archetypes
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Figure 20: Santoro Coflow Flame: Integrated soot volume fraction profiles along the

centerline. Comparison of detailed and virtual chemistry results against experimental

measurements. Numerical results from other groups are also included.

retained in the learning database. Indeed, close to the fuel injection, the

chemical flame structure follows a classical non-premixed flame where pure

fuel diffuses into pure air. Such flame archetype has been well targeted

during the optimization process. However, further downstream, burnt gases

mix with surrounding air coflow before entering the soot chemistry reactive

region. In this case, the flame archetype is therefore closer to a diluted

air/burnt gases stream, a configuration which has not been considered in

the learning database during the virtual soot sub-mechanism optimization

process.

To further pursue these analyses, the learning database used to train the

virtual scheme, which includes premixed and non-premixed flames is pro-

jected in subspaces (T, Z) and (fv, Z) in Figs. 21 (a) and (b), respectively.
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(a) (b)

Figure 21: Scatter plot in the (a) (T,Z) and (b) (fv, Z) phase spaces using the reference

detailed mechanism results: points of 1-D premixed (blue) and non-premixed counterflow

(red) flames as well as results from the 2-D coflow flame (black) simulation from Section 7.2

are presented.

The chemical trajectories effectively followed by the 2-D Santoro computa-

tion are superimposed to these subspaces. Most of the chemical trajectories

are in practice well covered by the learning database in the (T, Z) subspace.

However, the projection of the Santoro flame solution in the (fv, Z) sub-

space reveals some incompleteness of the training database. Indeed, for Z

between 0.063 and 0.12 (equivalence ratios between 1 and 2 respectively),

several trajectories exceed by an order of magnitude the upper envelopes

given by premixed and non-premixed flame solutions. Complementary flame

archetypes should then be targeted during the optimization step to entirely

capture the soot formation process.
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8. Conclusions and discussion

A new reduced virtual chemistry model is developed to predict the tem-

perature profiles, heat release rate and soot volume fraction in laminar ethylene-

air flames. Also, a virtual approach is proposed in order to include gas phase

radiative heat transfer in the simulations. This new virtual approach inte-

grates for the first time both gaseous and solid phases in a virtual mechanism,

by bypassing the gas-solid complex formalism without explicit mathematical

distinction between both phases.

Numerical results using the new virtual model are validated in 1-D ethy-

lene air flames in canonical configurations, such as premixed and non-premixed

flames, against reference detailed chemistry calculations. Additionally, the

virtual model is challenged in a 1-D burner-stabilized flame configuration,

giving very good results when compared to reference detailed chemistry cal-

culations and experimental measurements. This shows that the virtual model

is capable to predict soot formation in configurations other than those used

to build the reference database.

Furthermore, simulations in two 2-D configurations are carried out using

the virtual models: a premixed slot burner and a non-premixed coflow burner

from the ISF workshop. In both configurations, very good results of the flame

structure and soot characteristics are obtained. Also, the new virtual radia-

tive model well provides the heat losses. In overall, the new virtual soot

sub-mechanism captures soot physical phenomena with good level of accu-

racy and is comparable to other numerical works in the literature with more

detailed models. By adding representative flames in the reference database

used for the generation of the virtual model, one would be able to cover both
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smoking and non-smoking conditions in Santoro’s flame [34, 49, 57].

In general, a massive reduction of the soot kinetics model is obtained,

passing from 297 species and 16797 reactions in the reference detailed mech-

anism to 12 virtual species and 6 virtual reactions in the virtual mechanism,

without need of additional models for solid particles. This chemical reduc-

tion has a big impact on the computational time of the simulations. When

using the virtual model in 2-D laminar flames simulations, the CPU cost is

reduced by a factor of about 2100 compared detailed models.

Perspectives to this work are to apply the soot virtual scheme to turbulent

flames encountered in practical applications. The main difficulty would be to

handle the different chemical paths followed by the various flame elements en-

countered in turbulent reactive flows. By training the virtual scheme on both

premixed and non-premixed strained flamelets, it is expected to accurately

capture most local combustion elements encountered in practical turbulent

flames. If this is not sufficient, additional flame configurations may be added

to the training database.
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