
HAL Id: hal-03545162
https://centralesupelec.hal.science/hal-03545162

Submitted on 27 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Disturbance Frequency Estimation for an LTV System
Stanislav Aranovskiy, Marina Korotina, Alexey Bobtsov

To cite this version:
Stanislav Aranovskiy, Marina Korotina, Alexey Bobtsov. Disturbance Frequency Estimation for an
LTV System. 14th IFAC Workshop on Adaptive and Learning Control Systems, Jun 2022, Casablanca,
Morocco. �hal-03545162�

https://centralesupelec.hal.science/hal-03545162
https://hal.archives-ouvertes.fr


Disturbance Frequency Estimation for an
LTV System

Marina Korotina ∗,∗∗ Stanislav Aranovskiy ∗∗ Alexey Bobtsov ∗

∗ Faculty of Control Systems and Robotics, ITMO University, 197101
Saint-Petersburg, Russia (e-mail: korotina.marina@gmail.com).
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Abstract: We consider the frequency estimation problem for a sinusoidal disturbance acting
on a linear time-varying system, where only the input and output signals are available. We
propose a novel parametrization that translates this problem into a linear regression model
with unknown parameters. The frequency estimation is performed using the Dynamic Regressor
Extension and Mixing procedure and an algebraic finite-time estimator. The resulting scheme
provides finite-time frequency estimation under the interval excitation condition. The role of
the tuning coefficients in satisfying the convergence condition is also discussed. Simulations
illustrate the applicability of the proposed solution.

Keywords: Adaptive system and control, Frequency estimation, Time-varying systems,
Excitation

1. INTRODUCTION

The disturbance frequency estimation problem has a
broad scope of engineering application. Notably, besides
the disturbance compensation and indirect adaptive regu-
lation, this problem also arises in fault detection (Alcorta-
Garcia et al., 2011) and marine applications (Belleter
et al., 2015). The most common problem statement con-
siders a linear time-invariant (LTI) plant perturbed by
a periodic, mono- or multi-sinusoidal disturbance (Ara-
novskiy et al., 2009; Wang et al., 2017). Solutions to
this problem are typically based on the plant’s frequency
response, and a linear time-invariant transformation is
applied to measurements generating auxiliary instrumen-
tals signals oscillating with the same frequencies as the
disturbance. Such an instrumental signal is often re-
ferred to as an image of the disturbance (Landau et al.,
2013). When the image of the disturbance is generated,
the frequency estimation problem can be solved with a
method suitable for measured signals. A variety of such
methods exist, e.g., notch filters (Mojiri and Bakhshai,
2004), PLL-based methods (Fedele and Ferrise, 2014; Pin
et al., 2014), second-order generalize integrators (Fedele
et al., 2009), and others, including methods for signals
with time-varying parameters (Vedyakov et al., 2017); see
(Aranovskiy et al., 2016b) for a comparison of selected
methods.

The LTI problem statement described above is moti-
vated by linearizing a plant around an equilibrium, e.g.,
stabilization. On the other hand, if the plant follows a
trajectory, its linearization may result in a linear time-
varying (LTV) system. Given that the system is subject
to a sinusoidal perturbation, the disturbance frequency
⋆ This work was partially supported by the Ministry of Science and
Higher Education of Russian Federation, passport of goszadanie no.
2019-0898, and by Rennes Metropole, France (project AIS-19C0326).

identification problem is formulated for an LTV model.
Unfortunately, as the frequency response analysis does
not apply to time-varying systems, the discussed approach
is unsuitable. Besides some particular methods, e.g., for
periodic systems (Louarroudi et al., 2014), the problem of
frequency estimation for LTV systems with unmeasured
states remains widely open.

This paper proposes a solution suitable for a mono-
sinusoidal disturbance acting on a system with the relative
degree (with respect to the disturbance) equal to one. The
proposed solution is based on a novel parameterization
applied to the considered LTV system. This parameteri-
zation yields a linear regression equation (LRE), where the
unknown frequency appears as an element of the vector of
unknown parameters. Thus, the frequency identification
problem is transformed into the parameter estimation
problem of an LRE.

The LRE estimation is one of the fundamental problems
in adaptive control, and numerous solutions are available.
Two standard solutions are the Least Squares with For-
getting and the Gradient algorithms (Sastry and Bodson,
2011; Narendra and Annaswamy, 2012; Ioannou and Sun,
2012). Both methods, widely used in adaptive control
and estimation, imply the Persistency of Excitation as-
sumption. Periodic disturbances acting on LTI systems
typically satisfy these requirements; however, it becomes
less straightforward for an LTV system. As the system’s
trajectories depend not only on the input signals but also
on the time-varying system’s parameters, the excitation
propagation analysis may be complicated. Motivated by
this reason, we aim at the frequency estimation under the
relaxed requirement of Interval Excitation.

The parameter estimation problem under relaxed excita-
tion requirements attracts researchers’ attention, and mul-
tiple solutions are available, such as composite (Pan and



Yu, 2018) and concurrent (Chowdhary and Johnson, 2010)
learning, excitation prolongation (Korotina et al., 2022),
fixed- and finite-time estimators (Wang et al., 2020), to
name a few. It is worth noting that the parametrization
proposed in this paper generates a vector of unknown
parameters having more elements than required for the
frequency estimation. This observation motivates the use
of the Dynamic Regressor Extension and Mixing (DREM)
procedure (Aranovskiy et al., 2016a) that allows element-
wise estimation of unknown parameters. In order to ensure
estimation under the relaxed excitation condition, a finite-
time algebraic estimator is then applied (Ortega et al.,
2020a).

Novelty and contribution. The paper proposes a novel
parametrization allowing for disturbance frequency esti-
mation for an LTV system. The proposed parametrization
allows for a DREM-based estimator providing the finite-
time frequency estimation under the interval excitation.
Moreover, we also discuss and illustrate the role of tuning
coefficients in the imposed convergence condition.

This article is organized as follows. In Section 2, we formu-
late our problem statement. Section 3 presents the novel
parametrization yielding a linear regression model, and
Section 4 discusses parameter estimation under the inter-
val excitation condition. Simulation results are presented
in Section 5. The paper is wrapped up with the conclusion
discussing possible extensions of this work.

Notation:

• R is the set of reals, R+ is the set of nonnegative
reals, and N is the set of positive integers;

• In is the n × n identity matrix, for all n ∈ N
(when clear form the context, the subscript n can
be omitted);

• p = d
dt is the differential operator;

• a linear operator F applied to a signal x : R+ → R,
we denote as F [x(t)]; if x : R+ → Rn, then F [x(t)]
denotes the element-wise application of the operator;

• the argument of time may be omitted when clear from
the context.

2. PROBLEM STATEMENT

Consider a linear time-varying system given by

ẋ(t) = A(t)x(t) +B(t)u(t) +Gσ(t),

y(t) = C⊤x(t),
(1)

where x(t) ∈ Rnx is the state vector, y(t) ∈ R is the
measured output signal, u(t) ∈ Rnu is the measured input,
A(t) and B(t) are the state and the input time-varying
matrices of the corresponding dimensions, respectively,
C ∈ Rnx and G ∈ Rnx are constant matrices, and

σ(t) = Aσ sin(ωt+ ϕσ) (2)

is the unknown and unmeasured disturbance with nonzero
frequency ω > 0. The matrices A(t), B(t), C, and G are
known, the state x is not measured. The relative degree
with respect to the disturbance σ equals to one; this
condition is formulated in the following Assumption.

Assumption 1. The matrices C and G are such that
C⊤G ̸= 0.

The goal is to estimate the unknown frequency ω of the
disturbance σ given the measurements of u and y, i.e. to
construct an estimate ω̂(t) such that

lim
t→∞

|ω̂(t)− ω| = 0.

As discussed in Introduction, the key obstacle to frequency
estimation in (1) is that the frequency-domain tools are
not pertinent for time-varying systems, and the output
signal is not necessarily periodic with the same frequency
as the disturbance. Thus, most available approaches do
not apply, and a more sophisticated parametrization is
required to translate the frequency estimation goal into
the parameter estimation problem.

Moreover, this excitation does not necessarily propagate
in time-varying systems despite sinusoidal signals being
exciting. Thus, it is desirable to estimate the unknown
frequency in the absence of the persistent excitation, e.g.,
under the weaker assumption of the interval excitation.

3. PARAMETERISATION

This section develops a parametrization that translates
the frequency estimation problem to the parameter esti-
mation for a linear regression model. Towards this end, we
first introduce several auxiliary signals and variables, and
then we use these definitions to present the parametriza-
tion, which is the main result of this section.

3.1 Auxiliary Signals

Define the matrix F (t) ∈ Rnx×nx and the vector V (t) ∈
Rnx as

F (t) := A(t)

(
I − 1

C⊤G
GC⊤

)
, (3)

V (t) := B(t)u(t) +
1

C⊤G
A(t)Gy(t). (4)

Define also the auxiliary signals ν(t) ∈ Rnx and χ(t) ∈ R
as

ν(t) :=
(
−C⊤P (t)

)⊤
, (5)

χ(t) := y(t)− C⊤ξ(t), (6)

where P (t) ∈ Rnx×nx and ξ(t) ∈ Rnx are the solutions of

Ṗ (t) = F (t)P (t), P (0) = Inx , (7)

ξ̇(t) = F (t)ξ(t) + V (t), ξ(0) = 0, (8)

respectively.

Define the stable second-order filter

F :=
λ2

(p+ λ)
2 , (9)

where λ > 0 is the tuning coefficient. Applying F and p2F
to the previously introduced signals ν and χ, define

q(t) := p2F [χ(t)] , (10)

m(t) :=

 F [χ(t)]
p2F [ν(t)]
F [ν(t)]

 , (11)

where q(t) ∈ R and m(t) ∈ R2nx+1.



3.2 Proposed Parametrization

Using the notation introduced in Section 3.1, we are now
in the position to formulate the following Theorem.

Theorem 1. Along the trajectories of (1), the signals q(t)
and m(t) defined in (10) and (11), respectively, satisfy the
linear regression equation

q(t) = m⊤(t)θ + ϵλ(t), (12)

where θ ∈ R2nx+1 is the vector of unknown constant
parameters,

θ :=

−ω2

e⊤0
ω2e⊤0


with e0 ∈ Rnx defined as

e0 := −x(0)−G
Aσ

ω
cos(ϕσ), (13)

and ϵλ is a generic exponentially decaying term whose rate
of decay depends on the tuning coefficient λ.

Proof. For the sinusoidal signal (2) it holds

σ̈(t) = −ω2σ(t).

Define the new variable

z(t) := x(t) +G
1

ω2
σ̇(t). (14)

From (1) and (14) it follows

y(t) = C⊤
(
z(t)−G

1

ω2
σ̇(t)

)
, (15)

and

− 1

ω2
σ̇(t) =

1

C⊤G

(
y(t)− C⊤z(t)

)
, (16)

where C⊤G ̸= 0 due to Assumption 1.

Then the time derivative of z is given by

ż(t) = A(t)x(t) +B(t)u(t) +Gσ(t) +G
1

ω2
σ̈(t)

= A(t)x(t) +B(t)u(t).

Adding and subtracting the term AG 1
ω2 σ̇ and recalling

(16), the derivative of z(t) can be written as

ż(t) = A(t)

(
x(t) +G

1

ω2
σ̇(t)

)
+B(t)u(t)−A(t)G

1

ω2
σ̇(t)

= A(t)z(t) +B(t)u(t) +A(t)G
1

C⊤G

(
y(t)− C⊤z(t)

)
= F (t)z(t) + V (t),

where F (t) and V (t) are defined in (3) and (4), respec-
tively. Note that the initial condition

z(0) = x(0) +G
Aσ

ω
cos(ϕσ)

is not known.

Define e := ξ − z, where ξ is defined in (8). Then

e(0) = −z(0) = e0,

where e0 is defined in (13). The time derivative of e(t) is
thus

ė(t) = F (t)e(t). (17)

Since P (t) defined in (7) is the fundamental matrix of the
LTV (17), it holds

e(t) = P (t)e0,

and
z(t) = ξ(t)− P (t)e0.

The latter allows rewriting (15) as

χ(t) = ν⊤(t)e0 + d(t), (18)

where ν and χ are defined in (5) and (6), respectively, and

d(t) := −C⊤G

ω2
σ̇(t).

Note that since σ is a sinusoidal signal, it holds

d̈(t) = −ω2d(t) = −ω2
(
χ(t)− ν⊤(t)e0

)
.

Apply p2F to the both sides of (18), where F is defined
in (9), and note that

p2F [d(t)] = F
[
d̈(t)

]
+ ϵλ(t),

where ϵλ(t) is a generic exponentially decaying term whose
rate of decay depends on the tuning coefficient λ. Then

p2F [χ(t)] = F
[
d̈(t)

]
+
(
p2F [ν(t)]

)⊤
e0 + ϵλ(t),

and thus

p2F [χ(t)] = −ω2F [χ(t)] +
(
p2F [ν(t)]

)⊤
e0

+ ω2 (F [ν(t)])
⊤
e0 + ϵλ(t),

which can also be written as (12). 2

Remark 1. Theorem 1 translates the frequency estimation
problem to the parameter estimation problem for the
linear regression model (12). The number of unknown
parameters in (12) is 2nx + 1. However, for the frequency
estimation, we are only interested in the first element of
the vector θ, namely θ1 = −ω2. That motivates the use
of the DREM procedure in Section 4 because it allows
estimating a single parameter and not the whole vector θ.

3.3 Excitation conditions

The system (1) is excited by the sinusoidal signal σ. How-
ever, it is not a trivial task to analyze how this excitation
propagates through the proposed parametrization. Indeed,
the regressor m in (12) depends on the behavior of the
time-varying matrices A and B, and the persistency of
excitation of m can hardly be ensured in advance. On the
other hand, it is reasonable to expect that the regressor
m is exciting at least during transients in the system (1).
For the parameter estimation task, we further assume that
the regressorm possesses the Interval Excitation property,
which is formulated in the following definition.

Definition 1. (Interval Excitation). A bounded signal x :
R+ → Rn is exciting on the interval [t1, t1+ tc] if for some
t1 ≥ 0 and tc > 0 there exists α > 0, such that∫ t1+tc

t1

x(s)x⊤(s)ds ≥ αIn.

This property is further denoted as x being (t1, tc, α)-IE
or x ∈ IE.

Remark 2. The interval excitation can also be referred to
as sufficient excitation (Kamalapurkar et al., 2017). Also,
the interval excitation property with t1 = 0 is known as
initial excitation (Pan and Yu, 2018).

Assumption 2. The vectorm defined in (11) is (t1, tc, αm)-
IE for t1 = 0 and some tc > 0, αm > 0.



4. PARAMETER ESTIMATION

This section presents an approach to estimate the fre-
quency ω of the disturbance σ given the linear regression
model (12). Since we are interested in estimating only the
first element of the vector θ, namely θ1 = ω2, we apply
the DREM procedure, which translates the vector problem
into a set of scalar estimation problems for each element
of the vector of unknown parameters independently and
preserves the excitation properties. Further, as we assume
only the Interval Excitation of the regressor m in (12),
we combine the DREM procedure with a finite-time alge-
braic observer. The resulting scheme allows for frequency
estimation under a proper choice of tuning parameters.

4.1 DREM procedure

The DREM procedure consists of two steps, where the
first step is the dynamics extension, and the second
step is mixing. At the first step, the linear regression
model (12) is extended to obtain a square regression
matrix. There exist various possible dynamics extension
method as discussed by Ortega et al. (2020b). Among
these methods, Kreisselmeyer’s extension scheme is of
particular interest as it guarantees the interval excitation
preservation (Korotina et al., 2020).

For the LRE (12), Kreisselmeyer’s scheme is given by

Φ̇H(t) = −aΦH(t) + βm(t)m⊤(t), ΦH(0) ≥ 0, (19)

ẎH(t) = −aYH(t) + βm(t)q(t), (20)

where a > 0 and β > 0 are the tuning coefficients. Here
ΦH(t) is a symmetric square (2nx + 1)×(2nx + 1) matrix,
and YH(t) is a vector with 2nx + 1 elements; the initial
value YH(0) ≥ 0 can be arbitrary. Then ΦH and YH form
the extended linear regression equation

YH = ΦHθ, (21)

with the same vector θ as (12).

The mixing step translates the extended equation (21)
into a set of scalar equations. Multiplying (21) on the left
by the adjugate matrix of ΦH, we obtain

Yi(t) = ∆(t)θi, i ∈ {1, 2, ..., 2nx + 1},
where

Y := adj{ΦH}YH,
and

∆ = det{ΦH}.

In what follows, we are interested only in the equation for
i = 1, namely

Y1(t) = ∆(t)θ1, (22)
as it allows estimating θ1 and thus ω.

It is worth also noting that due to the excitation preserva-
tion properties of Kreisselmeyer’s scheme, the new regres-
sor ∆ is also exiting on the same interval as the original
regressor m, i.e. ∆ is (0, tc, α∆)-IE for some α∆ > 0.

4.2 Finite-time estimation

To estimate θ1, we use the Finite-Time Convergence
(FTC) estimator (Ortega et al., 2020a). Recall first the
standard gradient estimator given by

˙̂
θ1(t) = γ∆(t)

[
Y1(t)−∆(t)θ̂1(t)

]
(23)

for some initial value θ̂1(0), where γ > 0 is the tuning

coefficient, and θ̂1(t) is the estimate of θ1.

For the gradient estimator (23), the condition ∆ ∈ IE is

not sufficient for the convergence of θ̂1(t) to the real value
θ1. To this end, we apply the FTC estimator

θ̂FTC
1 (t) :=

1

1− κc(t)

[
θ̂1(t)− κc(t)θ̂1(0)

]
, (24)

where θ̂1 is given by (23) and κc(t) is the clipping function

κc(t) =

{
µ, if κ(t) ≥ µ,

κ(t), if κ(t) < µ,

with µ ∈ (0, 1) and κ(t) given by

κ̇(t) = −γ∆2(t)κ(t), κ(0) = 1.

The convergence of the FTC estimator (23)-(24) under
the interval excitation is formulated in the following
proposition.

Proposition 2. Consider the linear regression equation (22)
and the estimation algorithm (23)-(24). Let ∆ be (0, tc, α∆)-
IE in the sense of Definition 1 for some tc > 0 and α∆ > 0.
If parameters γ > 0 and µ ∈ (0, 1) are such that the
inequality

γ α∆ ≥ − ln(µ), (25)

is satisfied, then the parameter estimation θ̂FTC
1 (t) con-

verges to the real value θ1 in finite time:

θ̂FTC
1 (t) = θ1, ∀t ≥ tc. (26)

The proof of Proposition 2 is given in (Ortega et al., 2020a,
Proposition 6).

Remark 3. It is worth noting that the excitation level
α∆ of the new regressor ∆ depends both on the exci-
tation level αm of the original regressor m in (12), see
Assumption 2, but also on the parameters a and β of
Kreisselmeyer’s scheme (19), (20). For more details on this
relation see (Aranovskiy et al., 2022).

5. SIMULATION

Consider the system (1) with nx = 2,

A(t) =

[
−1 cos(0.1t)

− cos(0.1t) −0.5

]
, B =

[
cos(2t)

1
1+t

]
,

C =

[
1
0

]
, G =

[
1
1

]
, x0 =

[
1
0.5

]
,

(27)

Choose the input signal u = sin(t) and the disturbance

σ(t) = 0.3 sin(ω1t), ω1 = 3. (28)

The output signal y1(t) is depicted in Fig. 1.

For the parameterization filter (9), the tuning parameter
λ = 30 is chosen. For the DREM procedure (19)–(20), we
choose ΦH(0) = 0, YH(0) = 0, a = 0.5, and β = 1. The
new regressor ∆ is depicted in Fig. 2; the figure illustrates
that the regressor ∆ satisfies the Interval Excitation
requirement.

For the estimation algorithms (23) and (23)–(24), we
choose the tuning coefficients γ = 1 and µ = 0.95. As
θ1 = ω2, the estimate of ω is constructed as

ω̂(t) =

√
|θ̂1(t)|,

ω̂FTC(t) =

√
|θ̂FTC

1 (t)|.
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Fig. 1. The output signal y(t) in the system (1), (27), (28).
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Fig. 2. The new regressor ∆.
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Fig. 3. Estimates of ω1 using (23) and (23)–(24).

The estimation results are shown in Fig. 3. Due to the
weak excitation of ∆, the gradient algorithm (23) does
not converge, and the estimate ω̂ does not reach the real
value ω1 = 3. However, for the FTC estimator (23)–(24),
the convergence is achieved.

Consider now the impact of various tuning coefficients on
the estimation convergence. Towards this end, replace the
disturbance σ(t) given by (28) with

σ(t) = 0.01 sin(ω2t+ π/8), ω2 = 7. (29)
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Fig. 4. The output signal y(t) in the system (1), (27), (29).

The output signal y(t) corresponding to the new distur-
bance is depicted in Fig. 4.

The convergence of the FTC estimator (23)–(24) depends
on the condition (25). It can be shown that the previously
used tuning coefficients do not satisfy the condition (25)
for the regressor ∆(t) resulting from the disturbance σ(t)
given by (29).

The retuning of the coefficients can be performed in-
creasing the gains γ and µ, or by adjusting the value of
α∆ via the parameter β of (19)–(20). The increase of µ
for values close to one may induce undesirable numerical
implementation effects as µ affects the expression 1−κc(t)
in the denominator of (26). Therefore, we consider tuning
of the coefficient γ and adjustment of the value α∆ via the
coefficient β.

In (Aranovskiy et al., 2022), the excitation preservation
properties of (19)–(20) are studied, and it is shown that
the value α∆ grows as β2(2nx+1), i.e., small changes in β
allow for significant increase of α∆.

Specifically, in this simulation example, the convergence
condition (25) is satisfied for the disturbance (29) setting
β = 2. In contrast, the required value of the coefficient
γ is 106, cf. with β = 1 and γ = 1 for the disturbance
(28). To summarize, β is the preferable tunning coefficient
impacting the convergence condition (25). The resulting
convergence of the FTC estimator for β = 2 and γ = 1 is
shown in Fig. 5.

6. CONCLUSION

A method is proposed to estimate the unknown frequency
of a sinusoidal disturbance acting on an LTV system. As
the frequency-response analysis does not apply, a novel
parameterization procedure is developed to translate the
frequency estimation into the constant parameters vector
estimation for a linear regression model.

The desired parameter is estimated using the DREM
procedure with an algebraic finite-time estimator. The re-
sulting scheme ensures the frequency estimation under the
interval excitation condition subject to a proper choice of
tuning coefficients. The necessary and sufficient condition
for the estimator convergence is given, and the impact of
the tuning coefficients is discussed.
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Fig. 5. Estimates ω2 estimations using (23) and (23)–(24).

The proposed solution considers the frequency estimation
problem for a single disturbance. The further extension of
the proposed method is to consider the case of a multi-
sinusoidal disturbance. Our preliminary studies indicate
that the proposed parametrization can be generalized to
the case when the number of sinusoidal components in the
signal σ(t) is known.
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