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We consider the frequency estimation problem for a sinusoidal disturbance acting on a linear time-varying system, where only the input and output signals are available. We propose a novel parametrization that translates this problem into a linear regression model with unknown parameters. The frequency estimation is performed using the Dynamic Regressor Extension and Mixing procedure and an algebraic finite-time estimator. The resulting scheme provides finite-time frequency estimation under the interval excitation condition. The role of the tuning coefficients in satisfying the convergence condition is also discussed. Simulations illustrate the applicability of the proposed solution.

INTRODUCTION

The disturbance frequency estimation problem has a broad scope of engineering application. Notably, besides the disturbance compensation and indirect adaptive regulation, this problem also arises in fault detection [START_REF] Alcorta-Garcia | A nonlinear observer-based strategy for aircraft oscillatory failure detection: A380 case study[END_REF] and marine applications [START_REF] Belleter | Experimental verification of a global exponential stable nonlinear wave encounter frequency estimator[END_REF]. The most common problem statement considers a linear time-invariant (LTI) plant perturbed by a periodic, mono-or multi-sinusoidal disturbance [START_REF] Aranovskiy | Adaptive observer of an unknown sinusoidal output disturbance for linear plants[END_REF][START_REF] Wang | Compensating for a multisinusoidal disturbance based on youla-kucera parametrization[END_REF]. Solutions to this problem are typically based on the plant's frequency response, and a linear time-invariant transformation is applied to measurements generating auxiliary instrumentals signals oscillating with the same frequencies as the disturbance. Such an instrumental signal is often referred to as an image of the disturbance [START_REF] Landau | Benchmark on adaptive regulation-rejection of unknown/time-varying multiple narrow band disturbances[END_REF]. When the image of the disturbance is generated, the frequency estimation problem can be solved with a method suitable for measured signals. A variety of such methods exist, e.g., notch filters [START_REF] Mojiri | An adaptive notch filter for frequency estimation of a periodic signal[END_REF], PLL-based methods [START_REF] Fedele | A frequency-lockedloop filter for biased multi-sinusoidal estimation[END_REF][START_REF] Pin | Sinusoidal signal estimation from a noisybiased measurement by an enhanced pll with generalized error filtering[END_REF], second-order generalize integrators [START_REF] Fedele | Multisinusoidal signal estimation by an adaptive sogi-filters bank[END_REF], and others, including methods for signals with time-varying parameters [START_REF] Vedyakov | A globally convergent frequency estimator of a sinusoidal signal with a time-varying amplitude[END_REF]; see (Aranovskiy et al., 2016b) for a comparison of selected methods.

The LTI problem statement described above is motivated by linearizing a plant around an equilibrium, e.g., stabilization. On the other hand, if the plant follows a trajectory, its linearization may result in a linear timevarying (LTV) system. Given that the system is subject to a sinusoidal perturbation, the disturbance frequency identification problem is formulated for an LTV model. Unfortunately, as the frequency response analysis does not apply to time-varying systems, the discussed approach is unsuitable. Besides some particular methods, e.g., for periodic systems [START_REF] Louarroudi | Frequency domain, parametric estimation of the evolution of the time-varying dynamics of periodically time-varying systems from noisy inputoutput observations[END_REF], the problem of frequency estimation for LTV systems with unmeasured states remains widely open.

This paper proposes a solution suitable for a monosinusoidal disturbance acting on a system with the relative degree (with respect to the disturbance) equal to one. The proposed solution is based on a novel parameterization applied to the considered LTV system. This parameterization yields a linear regression equation (LRE), where the unknown frequency appears as an element of the vector of unknown parameters. Thus, the frequency identification problem is transformed into the parameter estimation problem of an LRE.

The LRE estimation is one of the fundamental problems in adaptive control, and numerous solutions are available. Two standard solutions are the Least Squares with Forgetting and the Gradient algorithms [START_REF] Sastry | Adaptive control: stability, convergence and robustness[END_REF][START_REF] Narendra | Stable adaptive systems[END_REF][START_REF] Ioannou | Robust adaptive control[END_REF]. Both methods, widely used in adaptive control and estimation, imply the Persistency of Excitation assumption. Periodic disturbances acting on LTI systems typically satisfy these requirements; however, it becomes less straightforward for an LTV system. As the system's trajectories depend not only on the input signals but also on the time-varying system's parameters, the excitation propagation analysis may be complicated. Motivated by this reason, we aim at the frequency estimation under the relaxed requirement of Interval Excitation.

The parameter estimation problem under relaxed excitation requirements attracts researchers' attention, and multiple solutions are available, such as composite [START_REF] Pan | Composite learning robot control with guaranteed parameter convergence[END_REF] and concurrent [START_REF] Chowdhary | Concurrent learning for convergence in adaptive control without persistency of excitation[END_REF] learning, excitation prolongation [START_REF] Korotina | A new on-line exponential parameter estimator without persistent excitation[END_REF], fixed-and finite-time estimators [START_REF] Wang | Fixed-time estimation of parameters for nonpersistent excitation[END_REF], to name a few. It is worth noting that the parametrization proposed in this paper generates a vector of unknown parameters having more elements than required for the frequency estimation. This observation motivates the use of the Dynamic Regressor Extension and Mixing (DREM) procedure (Aranovskiy et al., 2016a) that allows elementwise estimation of unknown parameters. In order to ensure estimation under the relaxed excitation condition, a finitetime algebraic estimator is then applied (Ortega et al., 2020a).

Novelty and contribution. The paper proposes a novel parametrization allowing for disturbance frequency estimation for an LTV system. The proposed parametrization allows for a DREM-based estimator providing the finitetime frequency estimation under the interval excitation. Moreover, we also discuss and illustrate the role of tuning coefficients in the imposed convergence condition. This article is organized as follows. In Section 2, we formulate our problem statement. Section 3 presents the novel parametrization yielding a linear regression model, and Section 4 discusses parameter estimation under the interval excitation condition. Simulation results are presented in Section 5. The paper is wrapped up with the conclusion discussing possible extensions of this work.

Notation:

• R is the set of reals, R + is the set of nonnegative reals, and N is the set of positive integers; • I n is the n × n identity matrix, for all n ∈ N (when clear form the context, the subscript n can be omitted); • p = d dt is the differential operator; • a linear operator F applied to a signal x : R + → R, we denote as

F [x(t)]; if x : R + → R n , then F[x(t)]
denotes the element-wise application of the operator; • the argument of time may be omitted when clear from the context.

PROBLEM STATEMENT

Consider a linear time-varying system given by

ẋ(t) = A(t)x(t) + B(t)u(t) + Gσ(t), y(t) = C ⊤ x(t), (1) 
where

x(t) ∈ R nx is the state vector, y(t) ∈ R is the measured output signal, u(t) ∈ R nu is the measured input, A ( 
t) and B(t) are the state and the input time-varying matrices of the corresponding dimensions, respectively, C ∈ R nx and G ∈ R nx are constant matrices, and

σ(t) = A σ sin(ωt + ϕ σ ) (2)
is the unknown and unmeasured disturbance with nonzero frequency ω > 0. The matrices A(t), B(t), C, and G are known, the state x is not measured. The relative degree with respect to the disturbance σ equals to one; this condition is formulated in the following Assumption. Assumption 1. The matrices C and G are such that

C ⊤ G ̸ = 0.
The goal is to estimate the unknown frequency ω of the disturbance σ given the measurements of u and y, i.e. to construct an estimate ω(t) such that lim t→∞ |ω(t) -ω| = 0.

As discussed in Introduction, the key obstacle to frequency estimation in ( 1) is that the frequency-domain tools are not pertinent for time-varying systems, and the output signal is not necessarily periodic with the same frequency as the disturbance. Thus, most available approaches do not apply, and a more sophisticated parametrization is required to translate the frequency estimation goal into the parameter estimation problem.

Moreover, this excitation does not necessarily propagate in time-varying systems despite sinusoidal signals being exciting. Thus, it is desirable to estimate the unknown frequency in the absence of the persistent excitation, e.g., under the weaker assumption of the interval excitation.

PARAMETERISATION

This section develops a parametrization that translates the frequency estimation problem to the parameter estimation for a linear regression model. Towards this end, we first introduce several auxiliary signals and variables, and then we use these definitions to present the parametrization, which is the main result of this section.

Auxiliary Signals

Define the matrix F (t) ∈ R nx×nx and the vector V (t) ∈ R nx as

F (t) := A(t) I - 1 C ⊤ G GC ⊤ , (3) 
V (t) := B(t)u(t) + 1 C ⊤ G A(t)Gy(t). (4) 
Define also the auxiliary signals ν(t) ∈ R nx and χ(t) ∈ R as

ν(t) := -C ⊤ P (t) ⊤ , (5) 
χ(t) := y(t) -C ⊤ ξ(t), (6) 
where

P (t) ∈ R nx×nx and ξ(t) ∈ R nx are the solutions of Ṗ (t) = F (t)P (t), P (0) = I nx , (7) ξ(t) = F (t)ξ(t) + V (t), ξ(0) = 0, (8) respectively. 
Define the stable second-order filter

F := λ 2 (p + λ) 2 , (9) 
where λ > 0 is the tuning coefficient. Applying F and p 2 F to the previously introduced signals ν and χ, define

q(t) := p 2 F [χ(t)] , (10) 
m(t) :=   F [χ(t)] p 2 F [ν(t)] F [ν(t)]   , (11) 
where q(t) ∈ R and m(t) ∈ R 2nx+1 .

Proposed Parametrization

Using the notation introduced in Section 3.1, we are now in the position to formulate the following Theorem. Theorem 1. Along the trajectories of (1), the signals q(t) and m(t) defined in ( 10) and ( 11), respectively, satisfy the linear regression equation q(t) = m ⊤ (t)θ + ϵ λ (t), ( 12) where θ ∈ R 2nx+1 is the vector of unknown constant parameters,

θ :=   -ω 2 e ⊤ 0 ω 2 e ⊤ 0   with e 0 ∈ R nx defined as e 0 := -x(0) -G A σ ω cos(ϕ σ ), (13) 
and ϵ λ is a generic exponentially decaying term whose rate of decay depends on the tuning coefficient λ.

Proof. For the sinusoidal signal (2) it holds

σ(t) = -ω 2 σ(t). Define the new variable z(t) := x(t) + G 1 ω 2 σ(t). ( 14 
)
From ( 1) and ( 14) it follows

y(t) = C ⊤ z(t) -G 1 ω 2 σ(t) , (15) 
and

- 1 ω 2 σ(t) = 1 C ⊤ G y(t) -C ⊤ z(t) , (16) 
where C ⊤ G ̸ = 0 due to Assumption 1.

Then the time derivative of z is given by

ż(t) = A(t)x(t) + B(t)u(t) + Gσ(t) + G 1 ω 2 σ(t) = A(t)x(t) + B(t)u(t).
Adding and subtracting the term AG 1 ω 2 σ and recalling (16), the derivative of z(t) can be written as

ż(t) = A(t) x(t) + G 1 ω 2 σ(t) + B(t)u(t) -A(t)G 1 ω 2 σ(t) = A(t)z(t) + B(t)u(t) + A(t)G 1 C ⊤ G y(t) -C ⊤ z(t) = F (t)z(t) + V (t)
, where F (t) and V (t) are defined in (3) and (4), respectively. Note that the initial condition

z(0) = x(0) + G A σ ω cos(ϕ σ )
is not known.

Define e := ξ -z, where ξ is defined in (8). Then e(0) = -z(0) = e 0 , where e 0 is defined in (13). The time derivative of e(t) is thus ė(t) = F (t)e(t).

(17) Since P (t) defined in ( 7) is the fundamental matrix of the LTV (17), it holds e(t) = P (t)e 0 , and z(t) = ξ(t) -P (t)e 0 . The latter allows rewriting (15) as

χ(t) = ν ⊤ (t)e 0 + d(t),
(18) where ν and χ are defined in ( 5) and ( 6), respectively, and

d(t) := - C ⊤ G ω 2 σ(t). Note that since σ is a sinusoidal signal, it holds d(t) = -ω 2 d(t) = -ω 2 χ(t) -ν ⊤ (t)e 0 .
Apply p 2 F to the both sides of ( 18), where F is defined in ( 9), and note that

p 2 F [d(t)] = F d(t) + ϵ λ (t),
where ϵ λ (t) is a generic exponentially decaying term whose rate of decay depends on the tuning coefficient λ. Then

p 2 F [χ(t)] = F d(t) + p 2 F [ν(t)] ⊤ e 0 + ϵ λ (t),
and thus

p 2 F [χ(t)] = -ω 2 F [χ(t)] + p 2 F [ν(t)] ⊤ e 0 + ω 2 (F [ν(t)]) ⊤ e 0 + ϵ λ (t),
which can also be written as ( 12). 2 Remark 1. Theorem 1 translates the frequency estimation problem to the parameter estimation problem for the linear regression model ( 12). The number of unknown parameters in ( 12) is 2n x + 1. However, for the frequency estimation, we are only interested in the first element of the vector θ, namely θ 1 = -ω 2 . That motivates the use of the DREM procedure in Section 4 because it allows estimating a single parameter and not the whole vector θ.

Excitation conditions

The system (1) is excited by the sinusoidal signal σ. However, it is not a trivial task to analyze how this excitation propagates through the proposed parametrization. Indeed, the regressor m in (12) depends on the behavior of the time-varying matrices A and B, and the persistency of excitation of m can hardly be ensured in advance. On the other hand, it is reasonable to expect that the regressor m is exciting at least during transients in the system (1).

For the parameter estimation task, we further assume that the regressor m possesses the Interval Excitation property, which is formulated in the following definition. Definition 1. (Interval Excitation). A bounded signal x : R + → R n is exciting on the interval [t 1 , t 1 + t c ] if for some t 1 ≥ 0 and t c > 0 there exists α > 0, such that t1+tc t1

x(s)x ⊤ (s)ds ≥ αI n .

This property is further denoted as x being (t 1 , t c , α)-IE or x ∈ IE. Remark 2. The interval excitation can also be referred to as sufficient excitation [START_REF] Kamalapurkar | Concurrent learning for parameter estimation using dynamic state-derivative estimators[END_REF]. Also, the interval excitation property with t 1 = 0 is known as initial excitation [START_REF] Pan | Composite learning robot control with guaranteed parameter convergence[END_REF]. Assumption 2. The vector m defined in ( 11) is (t 1 , t c , α m )-IE for t 1 = 0 and some t c > 0, α m > 0.

PARAMETER ESTIMATION

This section presents an approach to estimate the frequency ω of the disturbance σ given the linear regression model ( 12). Since we are interested in estimating only the first element of the vector θ, namely θ 1 = ω 2 , we apply the DREM procedure, which translates the vector problem into a set of scalar estimation problems for each element of the vector of unknown parameters independently and preserves the excitation properties. Further, as we assume only the Interval Excitation of the regressor m in ( 12), we combine the DREM procedure with a finite-time algebraic observer. The resulting scheme allows for frequency estimation under a proper choice of tuning parameters.

DREM procedure

The DREM procedure consists of two steps, where the first step is the dynamics extension, and the second step is mixing. At the first step, the linear regression model ( 12) is extended to obtain a square regression matrix. There exist various possible dynamics extension method as discussed by [START_REF] Ortega | On modified parameter estimators for identification and adaptive control. a unified framework and some new schemes[END_REF]. Among these methods, Kreisselmeyer's extension scheme is of particular interest as it guarantees the interval excitation preservation [START_REF] Korotina | On parameter tuning and convergence properties of the drem procedure[END_REF].

For the LRE ( 12), Kreisselmeyer's scheme is given by ΦH

(t) = -aΦ H (t) + βm(t)m ⊤ (t), Φ H (0) ≥ 0, (19) ẎH (t) = -aY H (t) + βm(t)q(t), (20) 
where a > 0 and β > 0 are the tuning coefficients. Here Φ H (t) is a symmetric square (2n x + 1)×(2n x + 1) matrix, and Y H (t) is a vector with 2n x + 1 elements; the initial value Y H (0) ≥ 0 can be arbitrary. Then Φ H and Y H form the extended linear regression equation

Y H = Φ H θ, (21) 
with the same vector θ as (12).

The mixing step translates the extended equation ( 21) into a set of scalar equations. Multiplying (21) on the left by the adjugate matrix of Φ H , we obtain

Y i (t) = ∆(t)θ i , i ∈ {1, 2, ..., 2n x + 1}, where Y := adj{Φ H }Y H , and ∆ = det{Φ H }.
In what follows, we are interested only in the equation for

i = 1, namely Y 1 (t) = ∆(t)θ 1 , (22) 
as it allows estimating θ 1 and thus ω.

It is worth also noting that due to the excitation preservation properties of Kreisselmeyer's scheme, the new regressor ∆ is also exiting on the same interval as the original regressor m, i.e. ∆ is (0, t c , α ∆ )-IE for some α ∆ > 0.

Finite-time estimation

To estimate θ 1 , we use the Finite-Time Convergence (FTC) estimator (Ortega et al., 2020a). Recall first the standard gradient estimator given by θ1

(t) = γ∆(t) Y 1 (t) -∆(t) θ1 (t) (23) 
for some initial value θ1 (0), where γ > 0 is the tuning coefficient, and θ1 (t) is the estimate of θ 1 .

For the gradient estimator ( 23), the condition ∆ ∈ IE is not sufficient for the convergence of θ1 (t) to the real value θ 1 . To this end, we apply the FTC estimator θFTC

1 (t) := 1 1 -κ c (t) θ1 (t) -κ c (t) θ1 (0) , (24) 
where θ1 is given by ( 23) and κ c (t) is the clipping function

κ c (t) = µ, if κ(t) ≥ µ, κ(t), if κ(t) < µ,
with µ ∈ (0, 1) and κ(t) given by κ(t) = -γ∆ 2 (t)κ(t), κ(0) = 1. The convergence of the FTC estimator ( 23)-( 24) under the interval excitation is formulated in the following proposition. Proposition 2. Consider the linear regression equation ( 22) and the estimation algorithm ( 23)-( 24). Let ∆ be (0, t c , α ∆ )-IE in the sense of Definition 1 for some t c > 0 and α ∆ > 0. If parameters γ > 0 and µ ∈ (0, 1) are such that the inequality γ α ∆ ≥ -ln(µ), ( 25) is satisfied, then the parameter estimation θFTC 1 (t) converges to the real value θ 1 in finite time: θFTC

1 (t) = θ 1 , ∀t ≥ t c . (26) 
The proof of Proposition 2 is given in (Ortega et al., 2020a, Proposition 6). Remark 3. It is worth noting that the excitation level α ∆ of the new regressor ∆ depends both on the excitation level α m of the original regressor m in (12), see Assumption 2, but also on the parameters a and β of Kreisselmeyer's scheme ( 19), (20). For more details on this relation see [START_REF] Aranovskiy | On preserving-excitation properties of Kreisselmeier's regressor extension scheme[END_REF].

SIMULATION

Consider the system (1) with n x = 2,

A(t) = -1 cos(0.1t) -cos(0.1t) -0.5 , B = cos(2t) 1 1+t , C = 1 0 , G = 1 1 , x 0 = 1 0.5 , (27) 
Choose the input signal u = sin(t) and the disturbance σ(t) = 0.3 sin(ω 1 t), ω 1 = 3. (28) The output signal y 1 (t) is depicted in Fig. 1.

For the parameterization filter (9), the tuning parameter λ = 30 is chosen. For the DREM procedure ( 19)-(20), we choose Φ H (0) = 0, Y H (0) = 0, a = 0.5, and β = 1. The new regressor ∆ is depicted in Fig. 2; the figure illustrates that the regressor ∆ satisfies the Interval Excitation requirement.

For the estimation algorithms ( 23) and ( 23)-( 24), we choose the tuning coefficients γ = 1 and µ = 0.95. As θ 1 = ω 2 , the estimate of ω is constructed as 27), (28). The estimation results are shown in Fig. 3. Due to the weak excitation of ∆, the gradient algorithm (23) does not converge, and the estimate ω does not reach the real value ω 1 = 3. However, for the FTC estimator ( 23)-( 24), the convergence is achieved.

ω(t) = | θ1 (t)|, ωFTC (t) = | θFTC 1 (t)|.
Consider now the impact of various tuning coefficients on the estimation convergence. Towards this end, replace the disturbance σ(t) given by ( 28) with σ(t) = 0.01 sin(ω 2 t + π/8), ω 2 = 7. (29) 27), ( 29).

The output signal y(t) corresponding to the new disturbance is depicted in Fig. 4.

The convergence of the FTC estimator ( 23)-( 24) depends on the condition (25). It can be shown that the previously used tuning coefficients do not satisfy the condition (25) for the regressor ∆(t) resulting from the disturbance σ(t) given by ( 29).

The retuning of the coefficients can be performed increasing the gains γ and µ, or by adjusting the value of α ∆ via the parameter β of ( 19)-( 20). The increase of µ for values close to one may induce undesirable numerical implementation effects as µ affects the expression 1-κ c (t) in the denominator of ( 26). Therefore, we consider tuning of the coefficient γ and adjustment of the value α ∆ via the coefficient β.

In [START_REF] Aranovskiy | On preserving-excitation properties of Kreisselmeier's regressor extension scheme[END_REF], the excitation preservation properties of ( 19)-( 20) are studied, and it is shown that the value α ∆ grows as β 2(2nx+1) , i.e., small changes in β allow for significant increase of α ∆ .

Specifically, in this simulation example, the convergence condition ( 25) is satisfied for the disturbance (29) setting β = 2. In contrast, the required value of the coefficient γ is 10 6 , cf. with β = 1 and γ = 1 for the disturbance (28). To summarize, β is the preferable tunning coefficient impacting the convergence condition (25). The resulting convergence of the FTC estimator for β = 2 and γ = 1 is shown in Fig. 5.

CONCLUSION

A method is proposed to estimate the unknown frequency of a sinusoidal disturbance acting on an LTV system. As the frequency-response analysis does not apply, a novel parameterization procedure is developed to translate the frequency estimation into the constant parameters vector estimation for a linear regression model.

The desired parameter is estimated using the DREM procedure with an algebraic finite-time estimator. The resulting scheme ensures the frequency estimation under the interval excitation condition subject to a proper choice of tuning coefficients. The necessary and sufficient condition for the estimator convergence is given, and the impact of the tuning coefficients is discussed. 23) and ( 23)-( 24).

The proposed solution considers the frequency estimation problem for a single disturbance. The further extension of the proposed method is to consider the case of a multisinusoidal disturbance. Our preliminary studies indicate that the proposed parametrization can be generalized to the case when the number of sinusoidal components in the signal σ(t) is known.
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 5 Fig.5. Estimates ω 2 estimations using (23) and (23)-(24).