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Abstract—Exploring and identifying a good feature representation to
describe large-scale datasets is one of the main problems of machine
learning algorithms. However, plenty of feature selection techniques and
distance metrics with very different properties exist, which entails an
intricacy for identifying the proper method. This paper provides a general
algorithm to design a high-order distance metric over a sparse selection
of features dedicated to semi-supervised clustering and classification.
We extend usual learning methods to design a metric accounting for
patterns over sets of objects. Our approach is based on Conditional
Random Field (CRF) energy minimization and Dual Decomposition,
which allow efficiency and great flexibility in the features to consider.
In particular, it enables to leverage the higher-order graph structures
information efficiently. The optimization technique employed ensures
the tractability of very high dimensionality problems using hundreds
of features and samples. On a challenging task of Covid-19 patients
stratification, we compare the classification results between state of the
art baselines and our proposed classifier, relying on the higher-order
distance learned to prove this metric formulation’s relevance.

Index Terms—Distance Learning, Conditional Random Field, Higher-
order, Feature Selection

1 INTRODUCTION

In machine learning, the choice of a suitable feature space is
of prime importance. Not only, dimensionality curse might
affect the data, but some variables might be noisy or non-
relevant. Many techniques have been investigated to select
the most relevant features using some statistical metrics
as correlation [1] or the importance weights an algorithm,
as elastic-net, grants to the variables [2]. Also, many ap-
proaches as clustering algorithms require a relevant metric
to define a similarity notion between the samples. However,
depending on the algorithm’s mathematical properties and
the metric, very different results are obtained [3]. To tackle
the difficult task of designing a dedicated similarity func-
tion, some studies investigated semi-supervised clustering
or distance learning [4]–[6]. Such approaches present the
significant advantage to perform both a selection of the most
relevant dimensions and a warping of the feature space fa-
voring the spatial proximity of samples presenting the same
labels. Despite the tremendous amount of work carried
on this topic, another aspect has been poorly considered,
leveraging higher-order patterns in the data.

Graph structures are a standard model for data repre-
sentation and allow great expressiveness. They have been

adopted in various fields from spotting weak points in
physical [7] or internet [8] networks to modeling opinion
diffusion processes [9], graph approaches’ versatility is re-
markable. Graphs attractiveness is explained by the valu-
able information they carry in many application fields. They
have already significantly spread for biological and medical
data as they allow to better express the intricate interactions
at stake [10]. Some of the prominent investigation areas
are genomics and proteomics [11]. But, their relevance for
imaging data has been demonstrated in, for instance, graph
matching problems [12], [13]. And, lately, they have been
gaining increasing importance with Graph Convolutional
Networks [14].

However, the information graphs carry is complex to
leverage from both a time and a memory point of view.
Most of the studies exploiting these structures are lim-
ited to second-order properties [15] i.e., the edges in the
graph. Some studies propose various ways to better esti-
mate higher-order properties. However, they mainly focus
on local properties [16] or small, specific and predefined
patterns to orient their analysis [17]. Even if some studies
attempt to design methods to avoid resorting to higher-
order structure surrogates involving simplification informa-
tion loss [18], those approaches have not been translated
to distance learning. Nevertheless, in exploratory studies
as [19], many different and complex higher-order graph
properties are leveraged as the connectivity or the centrality
of the nodes or their clique order. This work and the ever
growing influence of graph approaches will motivate our
Ghost approach.

This study proposes a new approach to bridge the gap
between feature selection, distance learning, and leveraging
higher-order patterns. The rest of the article is structured
as follows. In Section 2 we position our work compared
to existing studies. In Section 3 we present in details the
method we based our general framework on, our problem
formulation and resolution algorithm, how we leverage
higher-order graph information and perform classification
using the dedicated distance we learn. In Section 5, we
present the datasets we considered and the results obtained
compared to state of the art classification baselines.
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Figure 1: Proposed Ghost approach. A general overview of the different steps of our process. Our proposed Ghost
approach aims at identifying the most relevant meta-features for a classification task. Meta-features might include any
kind of distance or higher-order metric between any number of the natural features of the data. The approach relies on
Conditional Random Field energy minimization for distance learning. It combines cluster label inference and optimization
of meta-feature weights to induce a new metric space where samples with a same label are close.

2 RELATED WORK

Our study is based on the work of [6] which has the
tremendous advantage of allowing a very general definition
of distance, allowing both feature and metric selection, and
weighting. Besides, it is designed for a center-based clus-
tering algorithm, which presents the advantage of defining
a relevant cluster representative which exciting properties
have been demonstrated for feature selection in [3], [20].
This clustering paradigm is the critical point in our approach
for exploiting higher-order graph structures in a reasonable
computational time and space.

The idea of investigating clustering guided by field
experts properties has been poorly investigated in the
literature. Notwithstanding, we can observe two main
trends. First, the semi-supervised approach considers par-
tial annotations guiding the clustering process. Following
this paradigm, the methods from [21] or [22] account for
information of samples which must or cannot be clus-
tered together to influence the clustering using domain-
related knowledge. This approach might be further gener-
alized to constraints on conjunctions and disjunctions of
instances [23]. Second, the most prominent approach, metric
learning, aims to learn a measure to discover specific prop-
erties thanks to a supervised framework. It offers the ability
to identify structures similar to a given ground-truth. This
paradigm involves a completely annotated dataset at the
difference of the semi-supervised approach. However, once
the metric learned, its strength dwells in its ability to be ap-
plied for clustering without the need of any additional label.
Besides, many studies demonstrated the essential role of the
distance measure considered for clustering [5], even more
prominent than the choice of a correct clustering algorithm.
The distance notion has to capture the required information
to enable any algorithm to achieve a relevant clustering
of the data. Following this precept, several studies con-

sidered the arduous task of metric learning from different
perspectives. In [24], the authors leverage a deep learning
architecture to define a space representation allowing to
define a better similarity notion between instances while
authors from [25] resort to a Support Vector Machine algo-
rithm. In [4] constraints are defined to formulate the metric-
learning task as a convex optimization problem. Here, we
will consider more in detail the formulation proposed in [6]
which relies on the Conditional Random Field (CRF) energy
minimization principle to specify a metric in a center-based
clustering context. This model is all the more interesting that
the relevance of center-based techniques as been demon-
strated in [3] for feature selection towards classification
purposes.

Despite the excellent expressiveness of CRF and their
ability to capture higher-order relations, the toll for fully
leveraging this higher-order information might be heavy on
memory and time consumption aspects. To cope with this
issue, authors from [26], [27] proposed to exploit the binary
nature of the CRF labels to optimize the resolution. Finally,
in [28], dual decomposition is exploited to divide the initial
energy to minimize in several easier-to-solve sub-problems.

To naturally leverage higher-order information for clus-
tering, some first attempts investigated the presence of sim-
ple patterns in a graph [16]. Still, it is generally performed
with minimal patterns as a clique of order 3 or only for
a local higher-order clustering [17]. However, resorting to
those surrogates expose to an information loss in the com-
plex higher-order relations available [18].

In this study, we adapt and extend the formulation of
metric learning presented in [6]. The main contribution is to
bring the center-based clustering and the notion of pairwise
metrics to higher-order settings through the inclusion of
graph properties. In addition, we modify the error func-
tion that was considered to better account for unbalanced
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classes. Finally, we leverage graph structural information
from our data.

3 METHODOLOGY

Without loss of generality, let us define a metric assessing
the similarity of a set of h objects as a hth-order metric.
For instance, a usual distance is referred to as a 2nd-order
metric or pairwise metric. For the simple case of pairwise
metrics, we based our study on [6] which provides a gen-
eral, flexible and efficient approach to solve the learning
problem in a clustering context. This approach relies on
CRF energy minimization. In this study, we extend our
formulation introducing 3rd-order to hth-order metrics for
any h > 2. The case of 3rd-order metrics will be more
detailed for clarity’s sake. However, the same approach is
applied to obtain the results for any order. This section first
details the notations and potential functions formulations
used to define the problem’s energy. Then, we introduce the
optimization problem, discussing dual decomposition and
its application to the task. Finally, we present the process
used to extract the higher-order information we leverage.
The proposed Ghost approach is represented in Figure 1.

3.1 Center-Based Clustering

Our approach is based on center-based clustering. Consid-
ering a set of objects to cluster V , we define a set of binary
variables {xp,q}p,q∈V indicating whether p is assigned to the
cluster of center q, xp,q = 1, or not, xp,q = 0. We consider a
distance dp,q between objects p and q.

min
x

∑
p,q∈V

dp,qxp,q s.t.
∑
q∈V

xp,q = 1, ∀p

xp,q ≤ xq,q, xp,q ∈ {0, 1}, ∀p, q.
(1)

The above system minimizes the distance between a point
and the center of the cluster it is assigned to with respect
to three constraints. First, each point has to belong to one
and only one cluster. Second, if a point is assigned to a
cluster center, this center must be assigned to itself. Third,
assignment variables are binary. We can cast the previous
optimization problem as an equivalent energy minimization
task:

E(x, d) =
∑
p,q

up,q(xp,q, d) +
∑
p,q

φp,q(xp,q, xq,q) +
∑
p

φp(xp)

(2)

up,q being the second-order potentials of the CRF standing
for the distance to the cluster center and φp, φp,q the con-
straints. More precisely:

up,q(xp,q, d) = dp,qxp,q

φp,q(xp,q, xq,q) = δ(xp,q ≤ xq,q)
φp(xp) = δ(

∑
q

xp,q = 1)
(3)

with xp = {xp,q | q ∈ V } and δ(e) = 0 if e True and ∞
otherwise.

In this study, we propose a generalization of this energy
formulation for clustering. Here an example in a third-order

setting. In addition to the previous notations, we consider a
third-order distance dp,p′,q for triplet p, p′ and q.

E(x, d) =
∑
p,q

up,q(xp,q, d) +
∑
p,p′,q

up,p′,q(xp,qxp′,q, d)+∑
p,q

φp,q(xp,q, dq,q) +
∑
p

φp(xp)
(4)

the new function up,p′,q being the third-order potentials
of the CRF everything else remaining unchanged. More
precisely:

up,p′,q(xp,qxp′,q, d) = dp,p′,qxp,qxp′,q (5)

3.2 Metric Learning Formulation
Our framework learns a distance between objects using a set
of K training subjects {V k, Ck, yk} for each set k ∈ K , V k is
the set of objects to be clustered according to ground truth
Ck and knowing input data yk. We are also assuming that
we can get from the input data a positive feature function
for each pair of objects p, q as fp,q(yk) and for each triplet of
objects p, p′, q as fp,p′,q(yk). The codomain of the feature’s
functions will be called meta-feature space as it is obtained
from the actual features of the task and is the input space of
the framework. We consider a meta-feature space of size d.
One should notice that even though there is a ground truth
cluster for each set, the cluster centers remain unknown.
A feasible solution xk of Ck denoted as xk ∈ X (Ck), will
consist in a set of assignment such as for each ground truth
cluster C ∈ Ck all the objects p ∈ C are assigned to the same
center q ∈ C . Besides, we are looking for a distance over a
set S of cardinal 2 ≤| S |≤ 3 expressed as:

dkS =

{
dkp,q if S = {p, q}
dkp,p′,q otherwise

(6)

where

dkp,q = wT fp,q(y
k), dkp,p′,q = wT fp,p′,q(y

k)

For conciseness sake’s, we will denote Ek(x, d) = E(x, dk)
and uk(x, d) = u(x, dk).

w being the weight vector we want to estimate. At the
difference of the formulation proposed in [6], we impose
wi ≥ 0, ∀i ≤ d. This specificity aims to enforce the positivity
of the distance obtained. Also, as it has been presented
in [6], a projection of the weights onto R+ ensures better
performance in the second-order settings. We impose this
constraint to improve the tractability of the higher-order
distance learning resolution, as is highlighted in the proofs
(in Supplementary Materials).

Notice that our framework is very robust and flexible as
we use the same weight vector w for both the second-order
and the third-order distances, which means that a compo-
nent i of vectors fp,q(yk) and fp,p′,q(y

k) have to relate to
the same property. The i-th component of fp,p′,q(yk) can be
a generalization of fp,q(yk) one, but it can also stand alone,
and in this case, fp,q(yk) will be null. Similarly, a component
fp,q(y

k) might not possess any relevant generalization, and
in this case, fp,p′,q(yk) will be null. For instance, a suitable
third-order function fp,p′,q could have for component the
perimeter or surface of the triangle {p, p′, q}. With this par-
ticular example, in addition to the initial second-order warp-
ing of the space, such as we have a small distance between

3



each object of the cluster and the center, we will also have
a small distance between pairs of objects. However, much
more intricate properties can be introduced. For instance,
we can consider statistical distances as the Mahalanobis
distance between the set of observations {p, p′} and q, which
is designed to estimate if the object q is a natural center for
the set {p, p′} regarding mean and variance considerations.
We will present in Section 3.9, possible higher-order feature
functions definition on graph structures.

A Max-Margin approach is considered to approximate
w. We are looking for xk ∈ X (Ck) whose energy Ek(xk, d)
is smaller than the energy of any other solution x by an error
function ∆(x, d) to be defined, i.e.

∃xk ∈ X (Ck), Ek(xk, d) ≤ Ek(x, d)−∆(x, d) + ξk (7)

where slack variable ξk is considered in case of infeasible
training sets. Adding this constraint to the previous energy
minimization problem gives the regularized loss:

min
{xk∈X (Ck)}

τJ(w) +
∑
k

LEk (8)

where J(w) is a regularization term penalizing w complex-
ity, while the hinge loss LEk includes ξk and is expressed
as:

LEk(xk, w) = Ek(xk, w)−min
x

(Ek(x,w)−∆(x, Ck)) (9)

It favors feasible solutions with energy close to the minimal
energy for any possible assignment penalized by the error
function according to the violated constraints.

3.3 Max-Margin Energy

The good choice of ∆(x, Ck) is essential to obtain a relevant
w. In particular, we need this error function to be 0 if x ∈
X (Ck) and to have a value representing on what extent x
violates the constraints imposed by the ground truth X (Ck).
We adapt the error function proposed in [6] to better account
for unbalanced classes. We consider the training set k with
cluster ground truth Ck the function:

∆(x,Ck) = α
∑
C∈Ck

W (1−
∑
q∈C

xq,q)+

β
∑
C∈Ck

1

| C |
∑
p∈C

(1−
∑
q∈C

xp,q)
(10)

with W (z) = |z|([z < 0].(| V k | − | C |) + [z > 0]. | C |),
[.] being the indicator function. The first term penalizes so-
lutions xk presenting no or several exemplars for a ground
truth cluster C ∈ Ck. We put an additional penalty on the
sizable clusters presenting no exemplar or the small clusters
presenting several exemplars. The second term penalizes
the solutions that do not assign for an object of a ground
truth cluster C ∈ Ck an exemplar from C . We considered
a weight inversely proportional to the cluster’s size to
balance the importance of small clusters in the learning
process. The learning constants α and β are characterizing
the relative importance of the two terms. The regularized

loss defined in equation 8 can be expressed as a new CRF
energy Ēk = Ek −∆:

Ēk(x,w) =
∑
p,q

ūkp,q(xp,q) +
∑
p,p′,q

ūkp,p′,q(xp,qxp′,q)+∑
p,q

φ̄p,q(xp,q) +
∑
p

φ̄p(xp) +
∑
C∈Ck

φ̄C(xC)− β|Ck|
(11)

with:

ūkp,q(xp,q) = ukp,q(xp,q, d) + β[∃C ∈ Ck, p, q ∈ C]
xkp,q
| C |

ūkp,p′,q(xp,qxp′,q) = ukp,p′,q(xp,qxp′,q, d)

φ̄p,q(xp,q) = φp,q(xp,q, xq,q)

φ̄p(xp) = φp(xp)

φ̄C(xC) = −αW (1−
∑
q∈C

xq,q)

(12)

It is interesting to notice that thanks to the property of ∆ for
feasible solutions, ∀xk ∈ X (Ck), Ēk(xk, w) = Ek(xk, w).

3.4 Optimizing over {xk}

For a fixedw, minimizing Ēk(xk, w) requires the constraints
to be satisfied, φ̄p(xkp) = 0 and φ̄p,q(xkp,q) = 0, which entails
xk ∈ X (Ck). And, in this case, ∆(x,Ck) = 0. Thus,

xk = arg min
x∈X (Ck)

(
∑
p,p′,q

dp,p′,qxp,qxp′,q +
∑
p,q

dp,qxp,q) (13)

To minimize this problem, we only need to find the
set Qk of exemplars q minimizing the above function per
cluster in Ck and then assign each point of the cluster to
its exemplar. In this case, the constraints will be satisfied as
we ensure each cluster to have one and only one center and
assign all cluster samples to this center.

3.5 Dual Decomposition

The dual decomposition approach is a widespread approach
in optimization. Its efficient resolution by projected subgra-
dients has been introduced for MRF and CRF in [29]. It
presents the crucial property of optimally solving the dual
linear programming problem. Besides, its versatility allows
the generalization to higher-order CRF as performed in [28].

Dual decomposition principle aims at isolating several
much easier subproblems tailored to be equivalent to the
original problem after summation. A simple and popular
decomposition is to consider each node independently. Each
subproblem might be solved by very efficient inference
techniques as graph-cuts approaches without venturing into
a scaling issue. The global resolution leads to a projected
subgradient scheme, provably offering an optimal solution.
Formally, dual decomposition expression relies on simple
subproblems also called slave problems and on a master
problem enacting as a coordinator.
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Here, for each k < K , we define a slave problem per
datapoint p ∈ V k, Ēkp , and one per cluster C ∈ Ck, ĒkC .

Ēkp (x,w) =
∑
q 6=p

ūkp,q(xp,q) +
∑
p′,q 6=p

ūkp,p′,q(xp,qxp′,q)+

∑
q

φ̄p,q(xp,q) + φ̄p(xp)−
β

| V k |
+
∑
q

(
1

| V k | +1
(ūkp,q(x

k
q,q)+∑

p′

ūkq,p′,q(x
k
q,qx

k
p′,q)) + λp,qxq,q)

ĒkC(x,w) = φ̄C(xC) +
∑
q

(
1

| V k | +1
(ūkp,q(x

k
q,q)+∑

p′

ūkq,p′,q(x
k
q,qx

k
p′,q)) + λCqxq,q)

(14)

where the Lagrangian variables λ = {{λp,q}, {λCq
}} are

used to ensure the consistency of the solution. We impose
the satisfaction of: λ ∈ Λk = {λ :

∑
p∈Sk λp,q + λCq

=

0,∀C ∈ Ck, q ∈ C}. Therefore, by design, Ēk(xk, w) =∑
p Ē

k
p (x,w)+

∑
C Ē

k
C(x,w). Thus, finally, the loss function

to be minimized is:

min
{xk∈X (Ck)},w,{λk∈Λk}

τJ(w) +
∑
k

∑
p∈V k

LĒk
p

+
∑
k

∑
C∈Ck

LĒk
C

(15)

3.6 Slave Problems Optimization

To optimize w, we first need to solve the slave problems by
leveraging their specific structures. An essential characteris-
tic to notice is that, for fixed {xk}, the slaves energy can be
related to CRF energies. Details of all the proofs and com-
putation steps are provided in Supplementary Materials.

3.6.1 Optimizing over {x̂k,p}
Regarding the point-wise subproblems, we proceed as fol-
lows. The solution in pairwise settings has been demon-
strated in [6]. In the following lemma, we generalize the
solution that was proposed to a third-order context as:

Lemma 1. For fixed p ∈ V k, let θkq =
ūkq,q(1) + ūkq,q,q(1)

|V |k + 1
+

λp,q and θ̄kq = [θkq ]++ūkp,q(1)+ūkp,q,q(1)+ūkp,p,q(1) where
[z]+ = max(0, z). minimizer x̂p of Ēkp (x,w, λk) is given
by

x̂pq,q =[θkq < 0]

x̂pp,q =[q = q̄] where q̄ = arg min
q

(θ̄kq ) (16)

3.6.2 Optimizing over {x̂k,C}
Regarding the cluster-wise subproblems, we proceed as
follows. The solution in pairwise settings has been demon-
strated in [6]. We can notice that our formulation of the
cluster-wise subproblem presents a high similarity with
the original formulation, and the only difference for the
optimization is in θkq expression:

Lemma 2. For fixed C ∈ Ck, let θkq =
ūkq,q(1) + ūkq,q,q(1)

| V k | +1
+

λCq
, ∀q ∈ C . A minimizer x̂C of ĒkC(x,w, λk) is given

by

∀q ∈ C, x̂Cq,q =


[θkq < α(| V k | −|Ck|)],
if
∑
q′∈C [θkq − α(| V k | −|Ck|)]−+

α | V k |< 0
0 otherwise

(17)

with [z]− = min(0, z).

3.6.3 Optimizing over λ and w
To optimize over λ and w, we perform an iterative projected
subgradient approach:

w ←− w − stδw, λk ←− projΛk(λk − stδλk
) (18)

with {δw} and {δλk
} subgradient functions and projΛk the

projection onto Λk. Then, the following lemma gives the
updates to be applied iteratively to efficiently obtain the ap-
proximation of w and {λkp,q, λkCq

}. The updates are obtained
by summing the respective updates of each subproblem
according to the formula provided in equation 15.
Lemma 3. Let st be the weight granted to the optimization

at step t. We define X̂k
q = x̂k,Cq,q +

∑
p x̂

k,p
q,q and X̂k

p,q =

x̂k,pq,q x̂
k,p
p,q + x̂k,Cq,q [p = q, q ∈ C]. Then, update reduces to:

w −=st(τ∇J(w) +
∑
k

δkw)

λkp,q −=st(
X̂k
q

| V k | +1
− x̂k,pq,q )

λkp,q −=st(
X̂k
q

| V k | +1
− x̂k,Cq,q )

(19)

where

δkw =
∑

p,p′,q∈V k

xkp,qx
k
p′qf

k
p,p′,q +

∑
p,q∈V k

xkp,qf
k
p,q−

(
∑

p,q 6=p∈V k

(x̂k,pp,q x̂
k,p
q,qf

k
p,q,q + x̂k,pp,qf

k
p,p,q)+

∑
p,q 6=p∈V k

x̂k,pp,qf
k
p,q +

∑
q∈V k

1

| V k | +1
(X̂k

q f
k
q,q +

∑
p∈V k

X̂k
p,qf

k
q,p,q))

(20)

Note that ∇J(w) has to refer to a subgradient if J is non-
differentiable. Besides, a constraint can be imposed over w
by applying a projection during w update.

w ←− projW (w − stδw) (21)

where W can be any convex set of constraints included in
R+. For instance, we mimic a true distance and satisfy the
positivity constraint over w with projW (z) = max(z, 0). It
will also enforce an additional sparsity on the weight vector.
Notice that at least a positivity constraint has to be imposed
for the resolution of the higher-order distance learning. We
summarize the complete learning process in Algorithm 1.

To improve the tractability of the approach we leveraged
a stochastic gradient descent (sgd) framework. It consists
in randomly selecting a subset of the training samples at
each iteration and performing the updates by relying only
on those samples.
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Algorithm 1: Learning Process

Data: training cohorts {V k, Ck, yk}, features
functions {f2

p,q(y
k), f3

p,p′,q(y
k)}

1 λk ← 0, ∀k
2 do
3 Optimize xk: ∀C ∈ Ck,

qc = argminq∈C(
∑
p,p′∈C dp,p′,qxp,qxp′q +∑

p∈C dp,qxp,q);
4 xkp,q = 1, p ∈ C ⇐⇒ q = qC ;
5 Iterate T subgradient updates:
6 repeat
7 Solve slaves Ēkp , ĒkC via lemmas 1, 2;
8 Update w, λk via lemma 3
9 until T times;

10 Project w over W ⊂ R+

11 while Not Convergence;

3.7 Generalization to Higher-Order Distances

Our approach’s strength is its ability to be efficiently gener-
alized to any order. Let h ≥ 2 be the order of the distance
we are looking for. h corresponds to the maximal set size
we will consider in our metric definition. Our target metric
considers any set S of size | S |≤ h and is defined as:

dS = wT f{p}p∈S
(y) (22)

where f{p}p∈S
is a positive feature function providing a

closeness score on set S. This metric aims to establish a
characterization of the meaningfulness to group samples in
S altogether. In this case, we consider the energy defined as:

E(x, d)k =
∑

l∈[0,h−2]

∑
p,p1,...,pl,q

ukp,p1,...,pl,q(xp,q
∏
i∈[1,l]

xpi,q, d)+

∑
p,q

φp,q(xp,q, xq,q) +
∑
p

φp(xp) +
∑
C

φC(xC)− β|Ck|

(23)

We now consider the higher order potential of order l < h−
2, up,p1,...,pl,q(

∏
i∈[1,l] xpi,q, d) focusing on establishing the

cost of assigning p, p1, ..., pl to q. The potentials definitions
are:

ukp,p1,...,pl,q(xp,q
∏
i∈[1,l]

xpi,q, d) = dkp,p1,...,pl,qxp,q
∏
i∈[1,l]

xpi,q

dkp,
∏

i∈[1,l] pi
xp,q

∏
i∈[1,l]

xpi,q = wT fp,p1,...,pl,q(y
k)

φp,q(xp,q, xq,q) = δ(xp,q ≤ xq,q)
φp(xp) = δ(

∑
q

xp,q = 1)

(24)

First, regarding the optimization over {xk} for a fixed vector
w. As previously, the satisfaction of the constraints induces:

xk = arg min
x∈X (Ck)

(
∑

l∈[0,h−2]

∑
p,p1,...,pl,q

dkp,p1,...,pl,qxp,q
∏
i∈[1,l]

xpi,q)

(25)
And, again, this problem’s minimization only requires the
set Qk of exemplars q minimizing the above function per
cluster in Ck. Then, we assign each point of the cluster to

its exemplar. In this case, the constraints will be satisfied as
we ensure each cluster to have one and only one center and
assign all cluster samples to this center.

As before, for each k < K, we define a slave problem
per datapoint p ∈ V k, Ēkp , and one per cluster C ∈ Ck, ĒkC .

Ēkp (x,w) =
∑

l∈[0,h−2]

∑
p1,...,pl,q 6=p

ukp,p1,...,pl,q(xp,q
∏
i∈[1,l]

xpi,q, d)

+
∑
q

φ̄p,q(xp,q) + φ̄p(xp)−
β

| V k |
+

∑
q

(
1

| V k | +1
(
∑

l∈[0,h−2]

∑
p1,...,pl

ukq,p1,...,pl,q(xq,q
∏
i∈[1,l]

xpi,q, d))

+ λp,qxq,q)

ĒkC(x,w) = φ̄C(xC)+∑
q

(
1

| V k | +1
(
∑

l∈[0,h−2]

∑
p1,...,pl

ukq,p1,...,pl,q(xq,q
∏
i∈[1,l]

xpi,q, d)

+ λCq
xq,q)

(26)

where the Lagrangian variables λ = {{λp,q}, {λCq}} are
used to ensure the consistency of the solution. We impose
the satisfaction of: λ ∈ Λk = {λ :

∑
p∈Sk λp,q + λCq =

0,∀C ∈ Ck, q ∈ C}. Therefore, by design, Ēk(xk, w) =∑
p Ē

k
p (x,w)+

∑
C Ē

k
C(x,w). Thus, finally, the lost function

to be minimized is:

min
{xk∈X (Ck)},w,{λk∈Λk}

τJ(w) +
∑
k

∑
p∈V k

LĒk
p

+
∑
k

∑
C∈Ck

LĒk
C

(27)

3.7.1 Optimizing over {x̂k,p}
Regarding the point-wise subproblems, we proceed as fol-
lows. In the following lemma, we generalize the solution
that was proposed in Lemma 1 to a general order setting as:

Lemma 4. For fixed p ∈ V k, let θkq =

∑
l∈[0,h−2] u

k
q,...,q(1)

|V |k + 1
+

λkp,q and
θ̄kq = [θkq ]+ +

∑
l∈[0,h−2]

∑
p1,...,pl∈{p,q} u

k
p,p1,...,pl,q

where
[z]+ = max(0, z). minimizer x̂p of Ēkp (x,w, λk) is given
by

x̂k,pq,q =[θkq < 0]

x̂k,pp,q =[q = q̄] where q̄ = arg min
q

(θ̄kq ) (28)

3.7.2 Optimizing over {x̂k,C}
Regarding the cluster-wise subproblems, we generalize the
Lemma 2 with:

Lemma 5. For fixed C ∈ Ck, let θkq =

∑
l∈[0,h−2] u

k
q,...,q(1)

| V k | +1
+

λkCq
, ∀q ∈ C . A minimizer x̂k,C of ĒkC(x,w, λk) is given

by

∀q ∈ C, x̂k,Cq,q =


[θkq < α(| V k | −|Ck|)],
if
∑
q′∈C [θkq − α(| V k | −|Ck|)]−+

α | V k |< 0
0 otherwise

(29)

with [z]− = min(0, z).
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3.7.3 Optimizing over λ and w
Lemma 6. Let st be the weight granted to the optimiza-

tion at step t. We define X̂k
q = x̂k,Cq,q +

∑
p x̂

k,p
q,q and

X̂k
p,
∏

i∈[1,l] pi,q
= x̂k,pq,q

∏
i∈[1,l] x̂

k,p
piq + x̂

k,Cq
q,q [pi = q,∀i ∈

[1, l]]. Then, the updates reduce to:

w −=st(τ∇J(w) +
∑
k

δkw)

λkp,q −=st(
X̂k
q

| V k | +1
− x̂k,pq,q )

λkCq
−=st(

X̂k
q

| V k | +1
− x̂k,Cq,q )

(30)

where

δkw =
∑

l∈[0,h−2]

∑
p,p1,...,pl,q∈V k

fp,p1,...,pl,q(x
k
p,q

∏
i∈[1,l]

xkpi,q, d)−

∑
q∈V k

(X̂k
q f

k
q,q+∑

l∈[0,h−2]

(
∑

p 6=q∈V k

∑
pi∈{p,q}∀i∈[1,l]

x̂k,pp,q x̂
k,p
q,qf

k
p,p1,...,pl,q

+

1

| V k | +1

∑
p∈V k

∑
pi∈{p,q}∀i∈[1,l]

X̂k
p,
∏

i∈[1,l] pi,q
fkq,

∏
i∈[1,l] pi,q

))

(31)

3.8 Extension to Cluster Metrics

A final interesting addition we can bring to our higher-order
distance learning framework is to consider a metric between
a sample and a ground truth cluster. The difference between
this particular setting and the previous higher-order metrics
is that here we will consider a metric able to tackle sets
of objects of different sizes (the size of the clusters) and
thus will not have a defined order. The interest for such a
distance is to benefit from a structural metric characterizing
the closeness between a sample and a given cluster. It will
be especially valuable during inference to identify the fittest
cluster for a sample.

We formulate this new problem by adding to the higher-
order distance defined in the previous section a term
wT fp,C(yk) for any p ∈ V k and any C ∈ Ck. Then, from
the previously defined energy E(x, d)k we will define our
new energy

Ek∗(x, d) = Ek(x, d) +
∑
p∈V k

∑
C∈Ck

wT fp,C(yk)
∑
q∈C

xp,q

where we penalize the assignment of a sample p to a center
q by the distance between the sample and the center’s
cluster according to given cluster-wise feature functions.
First, regarding the optimization over {xk} for a fixed vector
w. As previously, the satisfaction of the constraints induces
to find the cluster centers q minimizing for its cluster C :

q = arg min
q∈C

(
∑

l∈[0,h−2]

∑
p,p1,...,pl,p∈C,pi∈C∀i∈[1,l]

dkp,p1,...,pl,qxp,q∏
i∈[1,l]

xpi,q +
∑
p∈C

wT fp,C(yk)xp,q)

(32)

xk is inferred by assigning each sample of a cluster to
the cluster center. Then, we modify the cluster-wise slave
problems of the dual decomposition as follows:

Ēk∗C (x,w) =ĒkC(x,w) +
∑
p∈V k

wT fp,C(yk)
∑
q∈C

xp,q+

1

2(| V k | +1)
wT fq,C(yk)

∑
q∈C

xq,q
(33)

with ĒkC(x,w) the energy defined as in equation 26. There-
fore, the cluster-wise slave resolution is now:
Lemma 7. For fixed C ∈ Ck. Let θk∗q =∑

l∈[0,h−2] u
k
q,...,q(1) + fq,C(yk)

| V k | +1 + λk∗Cq

, ∀q ∈ V k. A minimizer

x̂k,C∗ of Ēkk,C∗(x,w, λ
k∗) is given by:

∀q ∈ C, x̂k,C∗q,q =


[θk∗q < α(| V k | −|Ck|)],
if
∑
q′∈C [θk∗q − α(| V k | −|Ck|)]−+

α | V k |< 0
0 otherwise

(34)

Then, the updates are defined as:
Lemma 8. Let st be the weight granted to the optimization

at step t. We consider X̂k
q and X̂k

p,
∏

i∈[1,l] pi,q
as defined

in lemma 6.

w∗ −=st(τ∇J(w) +
∑
k

δk∗w )

λk∗p,q −=st(
X̂k
q

| V k | +1
− x̂k,pq,q )

λk∗Cq
−=st(

X̂k
q

| V k | +1
− x̂k,C∗q,q )

(35)

where

δk∗w =δkw +
∑
p∈V k

∑
C∈Ck

fp,C(yk)
∑
q∈C

xk∗p,q−∑
p∈V k

∑
C∈Ck

fp,C(yk)
∑
q∈C

(xk,C∗p,q + xk,pp,q )+

(
X̂k
q

| V k | +1

∑
q 6=p∈C

(xk,C∗p,q + xk,pp,q ))

(36)

3.9 Extracting and Leveraging Structural Information
from Data

Several approaches exist in order to design a graph structure
on data set with no natural graph representation. Here,
we relied on a distance matrix between objects computed
as the sum over all the different feature functions used in
the distance learning. Then, a k-nearest neighbors approach
was computed, meaning that there is an edge between two
objects p and q iff p (resp. q) is in the k objects the closest of
q (resp. p).

Once a graph structure obtained, we studied different
ways of leveraging their properties. Our first, most simple,
approach is considering the shortest path Sp,q between
objects p and q in the graph. The distance between those
objects will then be the weighted length Lp,q of such a
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No balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
function, No path Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Average 1 0.6 0.42 1 0.76 0.35 1 0.62 0.4 1 0.58 0.43
Minimum 1 0.52 0.4 1 0.75 0.27 1 0.54 0.38 1 0.49 0.42
Maximum 1 0.59 0.38 1 0.68 0.32 1 0.63 0.37 1 0.6 0.39
Min center 1 0.62 0.34 1 0.75 0.26 1 0.6 0.32 1 0.57 0.35

KNN 1 0.62 0.41 1 0.69 0.29 1 0.64 0.4 1 0.61 0.43
Balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity

function, No path Training Validation Test Training Validation Test Training Validation Test Training Validation Test
Average 1 0.71 0.61 1 0.72 0.62 1 0.72 0.6 1 0.71 0.62

Min 1 0.66 0.62 1 0.68 0.62 1 0.67 0.62 1 0.65 0.63
Min Max 1 0.65 0.58 1 0.65 0.59 1 0.65 0.56 1 0.65 0.59

Min center 1 0.74 0.62 1 0.75 0.64 1 0.75 0.61 1 0.74 0.63
KNN 1 0.72 0.6 1 0.73 0.62 1 0.72 0.58 1 0.73 0.61

Balanced error Balanced Accuracy Weighted Precision Weighted Sensitivity Weighted Specificity
function, Path Training Validation Test Training Validation Test Training Validation Test Training Validation Test

Average 1 1 0.77 1 1 0.84 1 1 0.73 1 1 0.82
Min 1 1 0.76 1 1 0.83 1 1 0.71 1 1 0.81

Min Max 1 1 0.79 1 1 0.85 1 1 0.75 1 1 0.83
Min center 1 1 0.78 1 1 0.8 1 1 0.73 1 1 0.8

KNN 1 1 0.69 1 1 0.81 1 1 0.63 1 1 0.75

Table 1: Results with the synthetic dataset of the different experiments in the second-order settings for the various inference
strategies.

path. The generalization of this method for a set of objects
{p1, ..., pl} and a potential center q is defined as follows:

SPl(p1, ..., pl) =
∑

i∈{1,...,l}

∑
j∈{i+1,...,l}

Lpi,q + Lpj ,q

Lpi,pj

The interpretation of this graph metric is that the center of
a cluster q has to be a hub for the objects of its cluster i.e.
the ratio between the shortest path and the shortest path
passing by q has to be small for any pair of objects in the
cluster.

Similarly, we considered the eccentricity of a set of
objects {p1, ..., pl} as a l-order graph metric. We deem a
set of objects has to have a small maximal weighted graph
diameter to belong to the same cluster.

Then, we considered two connectivity related metrics.
The first one is based on the clique order of a set of
objects CO(p1, ..., pl) and is defined as max degree(G) −
CO(p1, ..., pl) with max degree(G) the maximal degree of
a node in the whole graph. By doing so we consider that the
bigger the clique order in the set of objects the more relevant
their association in a cluster.

The second metric is based on the connectivity resilience
CR(p1, ..., pl) which is the minimal number of nodes to
remove to disconnect the set of objects. The metric is defined
as l − CR(p1, ..., pl).

3.10 Leveraging a Task Dedicated Distance for Classi-
fication
In order to perform the classification, we relied on a K-
Nearest Neighbors framework. Once the distance learnt, we
labeled a new sample as the ground truth cluster from which
it is the closest. We experimented and compared different
strategies to determine the closest cluster:
• Average distance to the points of the cluster.
• Minimum distance to the points of the cluster.
• Maximum distance to the points of the cluster.
• Distance to the center of the cluster.
• Majoritarian cluster of the k-nearest neighbors.

The distance between the new sample p and objects of the
cluster C is computed using the learnt dedicated distance.

For l > 2-order distances, we compute the distance on the
set {p, p1, ..., pl−2, q} where we iterate over all possible sets
{p1, ..., pl−2} ∈ Cl−2 and q is the cluster center discovered
during the learning step.

4 IMPLEMENTATION DETAILS

We implemented the algorithm proposed in [6] and
we used it as a baseline. It is available at https://
github.com/ebattistella/Second-order-Distance-learning.
Besides, the adaptation to general higher-order distances
we propose in this study has been implemented
and is available at https://github.com/ebattistella/
Higher-order-Distance-Learning-GHOST-.

To prove the relevance of our higher-order formulation,
we leveraged two datasets of a very different nature. First,
we synthesized a dataset with samples in dimension 100
with 60 noisy dimensions. Clusters are designed by con-
sidering 100 samples generated from Gaussian distributions
with different variances and means between the two clusters
on the non-noisy dimensions. The noise is simulated by
taking a much larger variance. Ideal graphs were generated
on this dataset as one clique per cluster with no connection
between cliques. Then, we added noise to the graphs using
a rewiring method [30]. For each pair of nodes, we added
or removed an edge with a probability of p. We considered
values of p ∈ [0, 0.5] with an increment of 0.1. We generated
a training, a validation, and a test sets considering different
variances and means. For each set, we considered base
variances randomly chosen for each feature between 0 and
200 shifted by respectively 10, 30 and 50 for the non-noisy
dimensions and 1000, 2000 and 10000 for the noisy ones.
Regarding the means, we considered base means randomly
chosen for each feature between −50 and 50 shifted by
respectively 0, 10, and 50. The aim was here to visualize the
generalizability of the learned weights and their resilience
to increasing noise. We then leveraged a Covid-19 dataset
introduced in [31]. We used the same training and testing
sets as the authors and compared their results to the classi-
fication performance of our proposed Ghost approach over
the Severe/Non-severe staging task. A graph on the data
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was obtained through the method proposed in Section 3.9
by considering the 5 closest neighbors.

The second-order feature functions we based all our
experiments on are feature-wise euclidean distances. In
addition, to assess the influence of different metrics, we con-
sidered as meta-features Euclidean, Minkowski, City-block,
Cosine, Correlation, Hamming, Jaccard, Chebyshev, Match-
ing, Yule, Braycurtis, Dice, Kulsinski, Russellrao, Pearson-
correlation based, Spearman-correlation based, Kendall-
correlation based distances on the full feature space.

For those datasets, we performed a thorough set of ex-
periments to highlight the relevance of our higher-order dis-
tance formulation and the consideration of graph structures.
We first used the simple pairwise distance defined using
the basic formulation from [6]. Then, we complemented
this with our balanced error function to better account for
the cluster size. We finally added a shortest-paths-based
metric SP2 to assess the value of graph information even
in second-order settings and compare it with the higher-
order. We performed the higher-order distance learning us-
ing the combination of the second-order meta-features with
the different higher-order metrics defined in Section 3.9.
We considered the third-order approach, the cluster metric
approach, and the combination of both approaches which
constitutes our Ghost approach.

5 RESULTS AND DISCUSSION

5.1 Synthesized Dataset

In this subsection, we considered the two synthesized clus-
ters. This experiment aimed to assess the capacity of our
higher-order framework to leverage information from a
graph according to its level of noise and combine it with
usual second-order metrics to perform classification. We
used as a baseline the second-order framework perfor-
mances with and without considering path length infor-
mation in a graph. First, we reported the results in the
second-order without graph information nor balanced error
function in Table 1. Here, we reported the performance of
the different strategies to infer the label of a new sample
defined in Section 3.10. We observed superior results of the
distance to cluster center approach on all metrics. This trend
was consistent in the different experiments we performed.
Thus, for concision sake’s in the following, we only reported
results from this strategy.

Table 2 presents the comparison of the performance
using the different frameworks defined in this study. The
second-order results with path length information have
been obtained with the ideal graph without noise. The fore-
most point to notice is the greater performance and lesser
overfitting of the methods leveraging graph information
when resorting to graph with a rewiring probability below
0.4. Although, it is worth mentioning that the second-order
non-graph-based meta-features do not compensate for the
noise brought by the graph-based meta-features for the
frameworks relying on graph information with p above 0.4.
Then, notice that whereas the cluster and the third-order
frameworks alone performed similarly, their combination
reported higher results.

5.2 Covid-19 Dataset
Table 3 presents the results of our Ghost framework over
the Covid-19 dataset introduced in [31] and compares them
to the results obtained by the authors using an Ensemble
approach for both feature selection and classification. We
also compared our results with an approach investigating
the use of deep learning-based representations to integrate
the imaging information. By leveraging the 3D contouring
model proposed in [31], we extracted a deep feature space of
dimension 128 of the lung. The same classification ensemble
approach used in [31] with classical imaging features is
used. In addition, we report the results of the automated ma-
chine learning tool TPOT [32] which relies on genetic algo-
rithms to find the best machine learning pipeline, including
feature selection and classification models. This experiment
highlights the interest of considering graph information as
it improves the results over the basic framework. Also,
it not only enables to outperforms an ensemble method
over several standard classifiers leveraging carefully chosen
features obtained with both field experts knowledge and
an ensemble data-driven framework but also the results
obtained using deep learning representation-based features
and a classification pipeline defined by a state of the art
genetic algorithm.

6 CONCLUSION

This paper proposed a novel distance learning framework to
leverage higher-order information, including graph patterns
and cluster-based metrics, towards a dedicated to the task
metric definition. Moreover, we demonstrated the value
of leveraging graph-based information for classification. In
particular, we have highlighted the interest in designing
a graphical representation of data to extract structural in-
formation. Also, we studied the relevance of higher-order
metrics and experimented several directions to better ac-
count for structures in the data. We have proved the rele-
vance of our approach on a challenging Covid-19 patient
stratification task and present results outperforming ensem-
ble approaches for feature selection and classification on
common classical and deep learning representations-based
imaging features as well as a dedicated pipeline automati-
cally designed by a state of the art genetic algorithm. In the
future, we aim at studying other kinds of data with known
graphical representations as PPI networks. We also want to
study more intricate metrics to better exploit higher-order
information as for instance Mahalanobis distance or graph-
density based information.
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